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We propose a way to implement geometric quantum computation based on a Hamiltonian which
has a doubly degenerate ground state. Thus the system, which is steered adiabatically, remains
in the instantaneous ground-state eigenspace during the evolution regardless of dissipation. The
proposed physical implementation relies on a superconducting circuit composed of three SQUIDs
and two superconducting islands with the charge states encoding the logical states. We obtain a
universal set of single-qubit gates and implement a non-trivial two-qubit gate exploiting the mutual
inductance between two neighboring circuits, allowing us to realize a fully geometric ground-state
quantum computation. The introduced paradigm for the implementation of geometric quantum
computation is expected support intrinsic robustness against environmental effects.

PACS numbers: 03.65.Vf, 85.25.Dq

I. INTRODUCTION

One of the major issues in the present quantum infor-
mation technology is the protection of quantum systems
from external noise. The noise can be due to imprecise
control or undesired interaction with the environment.
To eliminate the errors of the first kind, geometric quan-
tum computation (GQC) has been proposed [1–4]. The
idea behind it is to use the so-called geometric phases [5]
to manipulate the quantum state. Usually the appear-
ance of a geometric phase is associated to a cyclic and
adiabatic manipulation of the system. The advantage is
twofold: the adiabatic evolution eliminates the problem
of fine-tuning of the evolution time and the geometric
operators can be intrinsically robust against fluctuations
of the imprecise control field [6].
It is not possible to realize universal quantum com-

putation only by means of the Abelian Berry phase [5].
Therefore, utilizing the non-Abelian geometric phases
[7], the geometric quantum computation was proposed
in 1999 [1]. In this case, the logical states are encoded
in a degenerate subspace of the full Hilbert space and
they can be manipulated by means of purely geometric
non-Abelian operators. The first proposals of the physi-
cal implementations were based on trapped ions and ex-
ploited the so-called tripod Hamiltonian to build a dou-
bly degenerate logical subspace [8, 9]. Subsequently, the
same Hamiltonian has been used in many quantum sys-
tems providing means for possible implementation for
neutral atoms, superconducting circuits, quantum dots,
and Bose-Einstein condensates [10–14]. In conjunction
with these proposals, various studies have been carried
out to test the stability of geometric gates against differ-
ent types of noise. Here, GQC has proven robust against
fast adiabatic fluctuations of control fields [15] and cer-
tain type of environmental noise [16, 17].
Despite the theoretical efforts, not only we are still far

from a full GQC but also the experimental observations
of non-Abelian phases remain very limited and still un-

der discussion [18]. One possible reason behind the ab-
sence of experimental verification is the decoherence due
to the interaction of the quantum system with the envi-
ronment. In fact, because of the condition of adiabatic
evolution, it is challenging to protect the system for long
enough time to implement geometric operations. This is
the case for all of the above proposals based on tripod-
like Hamiltonians in which the evolution does not occur
in the lowest-energy eigenspace. In general, one expects
that decoherence such as relaxation can be avoided if the
evolution occurs in the ground-state manifold. This has
been recently confirmed for a driven two-level system in
the adiabatic limit [19, 20]. In the same studies, it was
shown that relaxation induced by the environment can
help to keep the system in the ground state potentially
leading to an improved robustness of the ground-state
evolution.

These results suggest that GQC which exploits a de-
generate ground-state eigenspace can be experimentally
feasible. The first step in this direction has been taken in
Ref. [21] in which a way to detect non-Abelian phases in
superconducting Josephson devices was proposed. How-
ever, the work mainly focused on observing the geometric
non-Abelian effects and only a particular unitary trans-
formation was discussed.

The extension to a universal set of transformations is
non-trivial and is the main result of this paper. Start-
ing from a general Hamiltonian, we show how to obtain
the basic logical gates in an abstract context. Then, us-
ing the same system as in Ref. [21], we show how these
gates can be implemented in a physical set-up. We build
all the logical gates needed for quantum computation: a
complete set of single-qubit gates and a two-qubit gate
exploiting the mutual inductance between two circuits
next to each other. Together these gates form an univer-
sal set allowing full geometric quantum computation.

The paper is organized as follows. In Sec. II, we in-
troduce a model Hamiltonian with a doubly degenerate
ground state which can produce universal single-qubit
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transformations. In Sec. III, we present the physical
system and show how to map the abstract model into
the physical Hamiltonian. In Sec. IV, we show how to
manipulate the quantum system in order to obtain two
fundamental single-qubit gates. Section V is devoted to
the implementation of a geometric two-qubit gate. In
Sec. VI, the readout measure is discussed and Sec. VII
concludes the paper.

II. MODEL

We consider a quantum system with a two-fold de-
generate ground-state eigenspace and an excited state.
The system is steered adiabatically along a loop by ex-
ternal control fields. If the evolution is adiabatic and
occurring in time Tad, the dynamics can be accurately
determined by instantaneous diagonalization of the sys-
tem Hamiltonian since the system follows approxima-
tively the evolution of the eigenstates. It is convenient
to fix the logical basis in order to have the initial Hamil-

tonian in a diagonal form: in particular, the two degen-
erate ground-states used as logical states are denoted as
|0〉 and |1〉, and the excited one representing an auxiliary
state is denoted as |a〉. Taking the ground and excited
state energies equal to a and a+α, respectively, we have
Ĥ(t = 0) = a11+α|a〉〈a|, where 11 = |0〉〈0|+|1〉〈1|+|a〉〈a|.
The basis {|a〉, |0〉, |1〉} is time-independent and corre-
sponds to the eigenbasis only if the Hamiltonian is in the
above form.

We require that the Hamiltonian has always a doubly
degenerate ground state during the control cycle. Thus
we can formally write it as Ĥ(t) = a11 + α|v1〉〈v1| where
|v1〉 is a linear combination of the time-independent
{|a〉, |0〉, |1〉} states. Throughout the paper we adopt
the convention to denote with the operators with hat
symbol (e.g., Ĥ) and their representation in the basis

{|a〉, |0〉, |1〉} with the tilde (e.g., H̃). Following Ref. [22],

the most general representation with the spectrum of Ĥ
in the basis {|a〉, |0〉, |1〉} reads

H̃ =





a+ α cos2 θ1 cos2 θ2 −αe−iφ1 cos θ1 cos
2 θ2 sin θ1 −αe−iφ2 cos θ1 cos θ2 sin θ2

−αeiφ1 cos θ1 cos
2 θ2 sin θ1 a+ α cos2 θ2 sin

2 θ1 αei(φ1−φ2) cos θ2 sin θ1 sin θ2
−αeiφ2 cos θ1 cos θ2 sin θ2 αe−i(φ1−φ2) cos θ2 sin θ1 sin θ2 a+ α sin2 θ2



 , (1)

where φ1, φ2, θ1, and θ2 are experimentally modulated
parameters. In the following we will assume that φ1 = 0.
The parameters θ1, θ2, and θ2 describe effectively the
time evolution of the Hamiltonian. The instantaneous
eigenvectors of Ĥ can be written as

|v1〉 = −e−iφ2 cos θ1 cos θ2|a〉+ e−iφ2 cos θ2 sin θ1|0〉
+sin θ2|1〉

|v2〉 = sin θ1|a〉+ cos θ1|0〉
|v3〉 = e−iφ2 cos θ1 sin θ2|a〉 − e−iφ2 sin θ1 sin θ2|0〉

+cos θ2|1〉, (2)

where |v2〉 and |v3〉 are now the degenerate time-
dependent ground states.
The restriction to adiabatic evolution, i.e., αTad ≫ 1,

assures that no transitions to the excited state occurs; the
evolution is restricted the the ground-state eigenspace.
The final unitary transformation depends only on the
geometric features, i.e., on the loop γ covered in the pa-
rameter space {θ1, θ2, φ2}, and it reads [1, 7, 22]

Uγ = Pexp
[

−
∮

γ

(Aθ1dθ1 +Aθ2dθ2 +Aφ2
dφ2)

]

, (3)

where P denotes the path ordering operator. The Ax

are the so-called connections and, restricted to the de-
generate eigenspace, they are defined by Ax,j−1,i−1 =

〈vj |∂x|vi〉 (i, j = 2, 3). In our case, restricted to the de-
generate eigenspace, they assume a simple form

Aθ1 =

(

0 eiφ2 sin θ2
−e−iφ2 sin θ2 0

)

,

Aθ2 =

(

0 0
0 0

)

Aφ2
=

(

0 0
0 −i sin2 θ2

)

. (4)

Since Aθ2 gives no contribution, the unitary transfor-
mation associated to a loop γ in the parameter space
{θ1, θ2, φ2} can be written as

Uγ = Pexp
(

−
∮

γ

(Aθ1dθ1 +Aφ2
dφ2)

)

. (5)

III. PHYSICAL REALIZATION

The physical set-up considered for the implementation
of GQC is shown in Fig. 1(a). It is composed of three
superconducting quantum interference devices (SQUIDs)
in series with two superconducting islands between them
[21]. The SQUIDs are operated as tunable Josephson
junctions which can be closed (Josephson energy Ei = 0)
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FIG. 1: (Color online) (a) Scheme for the superconducting geometric qubit. The gate voltages and the capacitance of the
ith island are denoted by Vgi and Cgi , respectively. The ith SQUID is described by Josephson energy Ei, capacitance Ci,
and flux Φi. The phase across the device is ϕ. (b) The hexagonal (honeycomb) stability diagram in the ngs − ngd plane
with all the SQUIDs closed (Ei = 0). In the inset, the loops that generate the logical gates. The trapezoidal loop (solid line
1 → 2 → 3 → 4 → 1) generates the Hadamard gate and triangular loop (dashed line 1 → 4 → 5 → 1) generates the swap and
phase gates. The circle represents the point in which the SQUIDs are closed and the phase across the device is reversed from
ϕ to −ϕ in the implementation of the swap gate.

and opened (Ei 6= 0) by controlling the magnetic flux
through them. The phase difference of the order param-
eter across the whole device, ϕ = φR − φL, is controlled
by the magnetic flux Φ through the outer-most loop. A
slightly simpler device has been already used to measure
experimentally the Berry phase [23].

The total Hamiltonian Ĥphys is composed of the charg-

ing Hamiltonian, Ĥch, and the Josephson Hamiltonian,
ĤJ . The first one reads

Ĥch =EC1
(n̂1 − ng1)

2 + EC2
(n̂2 − ng2)

2

+Em(n̂1 − ng1)(n̂2 − ng2), (6)

where n̂i is the operator for the excess number of Cooper
pairs on the island i and ngi = CgiVgi/(2e) is the corre-
sponding gate charge. The charging energies are EC1

=
2e2C∑

2
/C2, EC2

= 2e2C∑
1
/C2, and Em = 4e2Cm/C2.

Here, C∑
i
is the total capacitance of the island i, namely,

C∑
1
= CL +Cm +Cg1 and C∑

2
= CR +Cm +Cg2 , and

C2 = C∑
1
C∑

2
− C2

m.
The Josephson Hamiltonian is given by

ĤJ = −1

2

∞
∑

n1,n2=−∞

(

EL(ΦL)e
iϕ/2|n1 + 1, n2〉〈n1, n2|

+ER(ΦR)|n1 + 1, n2 − 1〉〈n1, n2|

+Em(Φm)e−iϕ/2|n1, n2 + 1〉〈n1, n2|+ h.c.
)

,

(7)

where |n1, n2〉 denotes the eigenstate of n̂1 and n̂2 and
{Ei(Φi)} are the tunable Josephson energies which are
controlled by the fluxes through the SQUIDs {Φi}.

Above we have neglected the contributions arising form
the finite loop inductance and suppose that the SQUIDs
are perfectly symmetric.
It is convenient to use the total charge on the two is-

lands, n̂ = n̂2 + n̂1, and the charge asymmetry, m̂ =
n̂2−n̂1 as quantum numbers. Thus, the quantum state of
the system is denoted by |n,m〉 and the new gate parame-
ters are ngs = ng1+ng2 and ngd = ng1−ng2. If the charg-
ing energies of the islands are equal EC = ECL

= ECR
,

the charging Hamiltonian (6) with the new notation
reads [24]

Ĥch =
2EC + Em

4

[

(n̂− ngs)
2 +

2EC − Em

2EC + Em
(m̂− ngd)

2

]

,

(8)

and the Josephson Hamiltonian can be expressed as

ĤJ = −1

2

∞
∑

n,m=−∞

(

EL(ΦL)e
iϕ/2|n+ 1,m+ 1〉〈n,m|

+ ER(ΦR)|n,m+ 2〉〈n,m|
+ Em(Φm)e−iϕ/2|n+ 1,m− 1〉〈n,m|+ h.c.

)

. (9)

If all the SQUIDs are closed, i.e., EL = Em = ER = 0,
the conventional stability diagram with a hexagonal lat-
tice structure in the ngs−ngd plane is recovered as shown
in Fig. 1(b) [24]. Hexagonal cells of the lattice are de-
noted by hn,m and inside the cell the state |n,m〉 is the
non-degenerate ground state. The edges of the cells rep-
resent lines of double degeneracy and the intersection
points of three cells are associated with triple degenera-
cies.
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In the following, we restrict the evolution to the vicin-
ity of the triple degeneracy point {ngs, ngd} = {(3 −
k)/2, 0} with k = (2EC − Em)/(2EC + Em) at which
the states |n = 1,m = 1〉 ≡ |a〉, |n = 1,m = −1〉 ≡ |0〉
and |n = 2,m = 0〉 ≡ |1〉 have the same charging en-
ergy. They correspond to 1 excess charge on the first
island and no charge on the second, no charge on the

first island and 1 in the second, and 1 charge on the
first and second island, respectively. For small Joseph-
son coupling, Ei ≪ EC , and in the vicinity of the triple
degeneracy point, the system evolution is restricted to
the basis {|a〉, |0〉, |1〉}. Thus we can truncate the Hamil-

tonian Ĥphys into this basis with the representation

H̃phys =







ẼC [(1− ngs)
2 + k(1− ngd)

2] − 1
2ER(Φ2) − 1

2Em(Φ3)e
−

iϕ
2

− 1
2ER(Φ2) ẼC [(1− ngs)

2 + k(1 + ngd)
2] − 1

2EL(Φ1)e
iϕ
2

− 1
2Em(Φ3)e

iϕ
2 − 1

2EL(Φ1)e
−

iϕ
2 ẼC [(2− ngs)

2 + kn2
gd]






, (10)

where ẼC = (2EC + Em)/4.

The mapping between the matrices H̃ and H̃phys is
straightforward for the diagonal elements and the ab-
solute values of the off-diagonal terms. For example,
we can solve the system of equations for the diagonal
terms H̃ii = H̃phys,ii. From the first equation we obtain

a = ẼC [(1−ns)
2+ k(1−nd)

2]−α cos2 θ1 cos
2 θ2, and we

solve the remaining equations to have
{

ngs = α 3 cos2 θ2−2
4ẼC

+ 2(3− k)

ngd = −α cos(2θ1) cos
2 θ2

4kẼC
.

(11)

Mapping the absolute values of the off-diagonal terms
as a function of θ1 and θ2 results in







|EL(ΦL)| = 2α cos θ2 sin θ1 sin θ2
|ER(ΦR)| = 2α cos θ1 cos

2 θ2 sin θ1
|Em(Φm)| = 2α cos θ1 cos θ2 sin θ2.

(12)

The parameter α is the energy gap of the system but it
has no general simple expression in terms of the physical
parameters. In the following, we impose that α is con-
stant during the evolution and determine the correspond-
ing evolution of the physical parameters by Eqs. (11)
and (12). However, the value of α and even its time-
independence are not important for the model since the
geometric operator does not depend on the value of the
energy gap. This further degree of freedom can be uti-
lized to design a time-dependent α leading to ease the
control of the physical parameters for the experimental
implementation.
Even if Eqs. (11) and (12) are satisfied, comparison

between Eqs. (1) and (10) reveals that it is not possible
to match the phases of the off-diagonal terms, and thus,
a global bijective mapping does not exist. In fact, if all
the SQUIDs are open, it turns out that the two Hamil-
tonians have different spectra and the physical Hamilto-
nian has a degenerate ground state only for particular
choices of the phase across the device: ϕ = 0, π (see also
[24]). However, there is still the possibility to map the
two Hamiltonians locally if we assume that it is possible
to close the SQUIDs perfectly.

IV. SINGLE-QUBIT LOGICAL GATES

Since the calculation of the geometric unitary trans-
formation is simpler using the model Hamiltonian Ĥ , we
use the following approach: first determine the loop for
Ĥ which produces the desired geometric transformation
and then map it into the physical parameter space.
Along a single loop it is convenient to keep φ2 constant

thus restricting the curve to the θ1 − θ2 plane. It follows
from Eqs. (4) and (5) that a rectangular loop in the θ1−θ2
plane produces the final transformation (in the logical
{|0〉, |1〉} basis)

Uγ = exp
[(

0 eiφ2g
−e−iφ2g 0

)]

, (13)

where g = (sin θM2 − sin θm2 )(θM1 − θm1 ), and θMi (θmi ) is
the maximum (minimum) value of θi.

A. Hadamard gate

We set φ2 = 0 and perform the loop

(θ1, θ2) : (0, 0) → (0, π/6) → (π/2, π/6)

→ (π/2, 0) → (0, 0), (14)

which corresponds to θM1 = π/2, θM2 = π/6, and θmi = 0.
The corresponding transformation using Eq. (13) is the

Hadamard gate (apart from an irrelevant global phase),

U1 =
1√
2

(

1 −1
1 1

)

. (15)

In this case, the mapping to the physical Hamiltonian
is simple. If we set the phase ϕ across the device to
zero, the Hamiltonian corresponding to Eq. (10) can be
globally mapped into the one in Eq. (1) with the help
of Eqs. (11) and (12). The corresponding loop in the
ngs − ngd plane is shown in the inset of Fig. 1(b).
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FIG. 2: (Color online) Time evolution (normalized by the adiabatic time Tad) of the physical parameters along the swap gate
loop. (a) The gate parameters ngs (solid line) and ngd (dashed line) and (b) the SQUID parameters EL (solid line), ER (dashed

line), and Em (dot-dashed line) in unit of ẼC . The blue dot denotes the point, in which the SQUIDs are closed and the phase

across the device is reversed ϕ → −ϕ. In all the plots the energy gap is constant α = 0.1× ẼC and k = 1/3.

B. Swap and phase gates

Let us consider the case in which the model Hamil-
tonian (1) undergoes a loop with φ2 6= 0 but time-
independent. We choose θMi = π/2, θMi = π/2 and the
loop

(θ1, θ2) : (0, 0) → (π/2, 0) → (π/2, π/2)

→ (0, π/2) → (0, 0), (16)

which produces the transformation

Usw(φ2) =

(

0 −eiφ2

e−iφ2 0

)

. (17)

The choice of this particular loop is due to the sim-
plicity in calculating the unitary operator. In fact, the
path (π/2, π/2) → (0, π/2) is not necessary since all the
SQUIDs are closed (Ej = 0) and the ngs and ngd are con-
stant. The Hamiltonian (1) does not change along this
path [see Eqs. (11) and (12)] which therefore is physically
irrelevant.
To locally map the physical Hamiltonian Ĥ to Ĥphys

along the loop in Eq. (16), the physically irrelevant step
(π/2, π/2) → (0, π/2) can be neglected. The physical
evolution can be obtained from Eqs. (11) and (12) and
it is shown in Figs. 1(b) and 2. The sequential open-
ing of SQUIDs R, L, and m in Fig. 2(b) corresponds to
the three edges of the triangular loop in Fig. 1(b). How-
ever, particular attention must be paid to the choice of
the phase across the device ϕ for the correct mapping
between the Hamiltonians.
In the beginning of the loop all the SQUIDs are

closed and we fix the phase to ϕ = −2φ2. At point
(θ1, θ2) = (π/2, π/2), again all the SQUIDs are closed,
both the Hamiltonians are diagonal and the mapping be-
tween them is trivial. At this point [marked with a dot
in Figs. 1(b) and 2(b)], no information about the phase is
present, and hence we can adiabatically reverse the phase

across the device ϕ to 2φ2. During this process, an ad-
ditional diagonal contribution proportional to ϕ̇ arises in
the physical Hamiltonian due to the ac Josephson rela-
tion. It appears in the Hamiltonian as a finite bias volt-
age and can be treated as an effective shift in the gate
charges δngi in Eq. (6), and hence, it can be eliminated
by an proper choice of ngi allowing to restore the desired
degeneracy. After this procedure, the third SQUID is
open but, since the phase through the system has been
changed, it is possible to map the Hamiltonians along the
third path. The final result is a mapping between the
physical Hamiltonian and the model Hamiltonian with
constant phase φ2 = ϕ/2. Thus, this generates Usw (φ2)
transformation.

Having established the loop to build a logical swap
gate, we can obtain a phase gate if we perform two se-
quential loops with opposite phases −ϕ/2 and ϕ/2. The
final transformation is

Uph(φ2) = Usw (φ2)Usw (−φ2) = −
(

e−2iφ2 0
0 e2iφ2

)

,

(18)
which allows us to control the relative phase between the
logical states.

C. Sequential application of logical gates

To obtain the logical transformation U1 and Usw (ϕ/2)
we have assumed that φ2 is constant. However, in a
sequential application of different logical gates or in the
implementation of Uph(ϕ) in Eq. (18), we must change
φ2 from one loop to the other. These changes have no
effect on the dynamics of the system. In fact, they are
performed when the SQUIDs are closed, θ1 = θ2 = 0
and thus, from Eq. (4) even if φ2 changes the associated
connection vanish gives no contribution.
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V. TWO-QUBIT LOGICAL GATE

To complete the set of gates for universal geometric
quantum computation we need a non-trivial two-qubit
gate [25]. To this end, we use two superconducting qubits
as described above. To couple the qubits, the mutual in-
ductance between the two circuits is exploited as the key
physical phenomenon as depicted in Fig. 3. If a current
is flowing through one circuit, the flux and the overall
phase across the other one are changed allowing us to
implement controlled logical operations. In the following
we use the first circuit as a control qubit and the sec-
ond one as a target qubit. Thus, we let the current flow
through the first circuit and apply to the second qubit
a geometric transformation which depends on the flux
induced by mutual inductance.

A. Current through the first circuit

To couple the qubits, a stationary current is induced
through the first circuit whose direction depends on the

logical state of the qubit.

Denoting the Hamiltonian associated to the first cir-
cuit as Ĥphys,1 and the relative phase across it as ϕ1,
the current operator through the first circuit is defined
as Î1 = (2e/~)∂ϕ1

Ĥphys,1 [21]. To calculate the current
at ϕ1 = 0, we consider the variation of the Hamiltonian
for ϕ1 ≪ 1: Ĥphys,1(0) + δĤphys,1(ϕ1). The Hamiltonian

Ĥphys,1(0) is the dominant contribution and δĤphys,1(ϕ1)
is a perturbation that can be obtained as linear contribu-
tion in ϕ1. The dominant part Ĥphys,1(0) can be mapped

into Ĥ and analytically diagonalized. Thus, the eigenba-
sis in Eq. (2) represent the preferred basis for our calcula-
tion. Using the degenerate-state perturbation theory, it
is possible to diagonalize δĤphys,1(ϕ1) in the degenerate

subspace. The eigenstates are |v′2〉 = (i|v2〉 + |v3〉)/
√
2

and |v′3〉 = (−i|v2〉 + |v3〉)/
√
2 and, in the new basis

{|v1〉, |v′2〉, |v′3〉}, using Eq. (11) and (12), Ĥphys,1(ϕ1) can
be written as

H̃phys,1(ϕ1) =





a+ α −f∗ϕ1 fϕ1

−fϕ1 a− α cos2 θ2 sin (2θ1) sin θ2ϕ1 0
f∗ϕ1 0 a+ α cos2 θ2 sin (2θ1) sin θ2ϕ1



 , (19)

where f = α [i cos (2θ1) + sin (2θ1) sin θ2] sin (2θ2) /(2
√
2).

Using Eq. (19), the current operator Î1 for ϕ1 = 0
can be calculated and the average current associated
to the degenerate eigenstates reads I1,i = 〈v′i|Î|v′i〉 =
(−1)i+1(2eα/~) sin (2θ1) sin θ2 cos

2 θ2 (with i = 2, 3).
Thus, the the current flows in opposite direction depend-
ing on the system state.

However, this is not sufficient. In fact, if initially the
SQUIDs are closed, the current states |v′2〉 = 1/

√
2(i|0〉+

|1〉) and |v′3〉 = 1/
√
2(−i|0〉 + |1〉) do not coincide with

the logical states. Since we want the logical states to be
associated with the flowing current, we must rotate the
logical basis into the current state basis before opening
the SQUIDs using the geometric operators Uph(π/2)U1.
After this rotation, the opening of the SQUIDs could it-
self produce a mixing of the |v′2〉 and |v′3〉 states. To avoid
this we open the SQUIDs following the path (θ1, θ2) :
(0, 0) → (0, π/4) → (π/4, π/4). Using equation simi-
lar to Eq. (5), by direct calculation, it can be verified
that the current states |v′2〉 and |v′3〉 are not mixed along
this path [26]. Thus, the SQUIDs are open, the current

flowing through the first circuit is I1 = ±eα/(~
√
2) de-

pending on the initial logical state |0〉 or |1〉.
Equation (19) allows us to estimate the effect of self-

inductance L on the system. Even if the phase across

the device is initially set to zero, the current I1 flowing
in the circuit induces a change δΦ1 in the the magnetic
flux. Thus, the system experiences a small additional
phase δϕ1 = πδΦ1/Φ0 = ±πL|I1|/Φ0 associated to the
eigenstates |v′2〉 and |v′3〉. As observed from Eq. (19), be-
cause of the different sign of the phase shift, both the
degenerate eigenstates have the same energy and the de-
generacy is preserved up to the linear order in δϕ1.

B. Two-qubit interaction Hamiltonian

Let us assume for simplicity that the phase across the
second circuit, ϕ2, is initially fixed to zero. Due to the
current through the first circuit, the second one expe-
riences an additional flux through the outermost loop
δΦ2 = ±MI1, where M is the mutual inductance be-
tween the loops. This induces a phase increment δϕ2 =
πδΦ2/Φ0 = ±πM |I1|/Φ0 depending on the initial logical
state of the first qubit.

The total Hamiltonian is Ĥtot = Ĥphys,1(ϕ1 = 0) +

Ĥphys,2(δϕ2). We suppose that the quantum state of the
first circuit is a combination of the degenerate states |v′2〉
and |v′3〉. In this subspace, the current operator Î1 is
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diagonal and we can write the phase operator δϕ̂2 as

δϕ̂2 = −πM |I1|
Φ0

(|v′2〉〈v′2| − |v′3〉〈v′3|). (20)

In the second circuit we suppose to have always at least
one SQUID closed and thus, no current flows through it
and the first circuit does not experience an additional
mutual flux. The charging Hamiltonian of the second
circuit does not depend on the phase operator δϕ̂2. For
this reason, the interaction between the two circuits oc-
curs though the Josephson Hamiltonian of the second
circuit Ĥ int

J,2(δϕ̂2). Using Eq. (9) it can be written as

Ĥ int
J,2(δϕ̂2) = −1

2

∑

n,m

(

EL,2(ΦL,2)e
i
δϕ̂2

2 ⊗ |n+ 1,m+ 1〉〈n,m|

+ER,2(ΦR,2)11⊗ |n,m+ 2〉〈n,m|
+Em,2(Φm,2)e

−i
δϕ̂2

2 ⊗ |n+ 1,m− 1〉〈n,m|
+h.c.

)

, (21)

where Ek,2 and Φk,2 indicate the Josephson energy and
the flux of the kth SQUID of the second circuit, respec-
tively, and δϕ̂2 acts on the Hilbert space associated to
the first circuit.
Writing the Hamiltonian in the degenerate subspace

{|v′2〉, |v′3〉}, we have

Ĥ int
J,2(δϕ̂2) = |v′2〉〈v′2| ⊗ ĤJ,2(δϕ2/2) (22)

+ |v′3〉〈v′3| ⊗ ĤJ,2(−δϕ2/2),

where ĤJ,2(±δϕ2/2) is now the in the form of Eq. (9).
This Hamiltonian allows us to perform an operation on
the second qubit depending on the state of the first
one. In fact, if the first qubit is in the state |v′2〉 (|v′3〉),
we act on the second by the Hamiltonian ĤJ,2(δϕ2/2)

[ĤJ,2(−δϕ2/2)].

C. Two-qubit logical gate

To be more specific, we choose to implement a par-
ticular controlled phase gate on the second qubit. The
SQUIDs are initially closed and the degenerate logical
space is spanned by {|00〉, |01〉, |10〉, |11〉}. We rotate
the states of the first qubit by mean of transformation
Uph(π/2)U1. In this way, when the SQUIDs are open the
current flows through circuit depending on the initial log-
ical state (for example, for |0〉 we have current I1 and for
|1〉 we have current −I1). The total phase across the sec-
ond circuit is ±δϕ2 and we apply a phase gate discussed
in Sec. IVB. Then, we close the SQUIDs of the first
circuit and apply a transformation [Uph(π/2)U1]

† back
to the logical basis. At the end of this procedure, the
logical states acquire a phase proportional to δϕ2

|00〉 → eiδϕ2 |00〉
|10〉 → e−iδϕ2 |10〉
|01〉 → e−iδϕ2 |01〉
|11〉 → eiδϕ2 |11〉.

(23)

I1

-I1

Φ2 ±MI1

M

FIG. 3: (Color online) Circuit scheme for two qubit gate im-
plementation. The circuits are coupled by mutual inductance,
M . A current ±I1 circulating in the first circuit corresponds
to an additional magnetic flux δΦ2 = ±MI1 through the sec-
ond.

The total transformation can be written as

U2qubs = eiδϕ2σz ⊗ |0〉〈0|+ e−iδϕ2σz ⊗ |1〉〈1|
= (eiδϕ2σz ⊗ 11)

×(11⊗ |0〉〈0|+ e−2iδϕ2σz ⊗ |1〉〈1|), (24)

where σz = |0〉〈0| − |1〉〈1|.
From the last line in Eq. (24), we observe that the

operator represents a controlled phase operation. An ar-
bitrary controlled phase gate can be produced increasing
the current I1 in the first circuit or by iterative applica-
tion of the presented logical gate. The additional single
qubit σz rotation can compensated after the iteration.

VI. MEASUREMENT SCHEME

The logic information is encoded in the charge degree
of freedom of the two islands and the logical states cor-
respond to |n1 = 0, n2 = 1〉 = |0〉 and |n1 = 1, n2 =
1〉 = |1〉. Thus the measurement of the charge on the left
island is sufficient to distinguish between the two logical
states. This measurement can be done in several ways,
for example, by using a radio frequency single-electron
transistor (rf-SET) [27–29] that is capacitevely coupled
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to the left island. The SET is embedded in a tank cir-
cuit and the readout of the charge state is performed by
monitoring the reflected radio frequency signal from the
circuit sensitive to the charge state on the island.
This measurement scheme has been proved to be fast

and sensitive [28]. An additional advantage is that the
measurement apparatus is switched off when no radio
frequency signal is induced in the resonant circuit. This
point is critically important in our case since the inter-
action between the system and an external measurement
apparatus can lead to the breaking of the ground state
degeneracy. The effect of the additional measurement
circuit on the island increases its total capacitance and it
can be taken into account by a compensation in the gate
voltages.

VII. CONCLUSIONS

In this paper, we have presented means to implement
ground-state geometric quantum computation in super-
conducting systems. We have shown how to build all the
logical gates necessary for a geometric quantum computa-
tion by manipulation of a few experimental parameters.
The main advantage with respect to the previous pro-

posals for geometric quantum computation is that the
evolution occurs completely in the ground state. This
feature renders the implementation robust against low-
temperature environments which motivates for an experi-
mental verification. In fact, the physical system discussed
here can be potentially built and similar measurements
on a simplier system have already carried out [23, 30].

Although we focused on the implementation in super-
conducting circuits, it is possible that similar Hamiltoni-
ans can be found in other physical systems as happened
for the first experimental proposal in Refs. [8, 9].

The future challenge is to study in detail the robust-
ness of our scheme against environmental effects. In this
context, the results of Ref. [19, 20] seem promising since
the non-degenerate ground state evolution has proven to
be robust against low-temperature environmental noise.
If similar results are obtained for the present model, it
could become a new paradigm for the implementation of
robust geometric quantum computing.

We acknowledge Academy of Finland and Emil Aalto-
nen Foundation for financial support. We have received
funding from the European Community’s Seventh Frame-
work Programme under Grant Agreement No. 238345
(GEOMDISS).
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Möttönen, Phys. Rev. B 81, 174506 (2010).

[22] A. O. Niskanen, M. Nakahara, and M. M. Salomaa,
Quant. Inf. Comp., 2, 560 (2002).
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[30] M. Möttönen, J. P. Pekola, J. J. Vartiainen, V. Brosco,

and F. W. J. Hekking, Phys. Rev. B 73, 214523 (2006).


