
ar
X

iv
:1

00
9.

20
96

v1
 [

qu
an

t-
ph

]
 1

0
Se

p
20

10

Secure Two-Party Quantum Evaluation of

Unitaries Against Specious Adversaries

Frédéric Dupuis1⋆, Jesper Buus Nielsen2, and Louis Salvail3⋆⋆

1 Institute for Theoretical Physics, ETH Zurich, Switzerland
dupuis@phys.ethz.ch

2 DAIMI, Aarhus University, Denmark
jbn@cs.au.dk

3 Université de Montréal (DIRO), QC, Canada
salvail@iro.umontreal.ca

Abstract. We show that any two-party quantum computation, specified
by a unitary which simultaneously acts on the registers of both parties,
can be securely implemented against a quantum version of classical semi-
honest adversaries that we call specious.
We first show that no statistically private protocol exists for swapping
qubits against specious adversaries. The swap functionality is modeled
by a unitary transform that is not sufficient for universal quantum com-
putation. It means that universality is not required in order to obtain
impossibility proofs in our model. However, the swap transform can easily
be implemented privately provided a classical bit commitment scheme.
We provide a simple protocol for the evaluation of any unitary transform
represented by a circuit made out of gates in some standard universal
set of quantum gates. All gates except one can be implemented securely
provided one call to swap made available as an ideal functionality. For
each appearance of the remaining gate in the circuit, one call to a classical
AND-box is required for privacy. The AND-box can easily be constructed
from oblivious transfer. It follows that oblivious transfer is universal for
private evaluations of unitaries as well as for classical circuits.
Unlike the ideal swap, AND-boxes are classical primitives and cannot be
represented by unitary transforms. It follows that, to some extent, this
remaining gate is the hard one, like the and gate for classical two-party
computation.

1 Introduction

In this paper, we address the problem of privately evaluating some unitary trans-
form U upon a joint quantum input state held by two parties. Since unitaries
model what quantum algorithms are implementing, we can see this problem as
a natural extension of secure two-party evaluation of functions to the quantum

⋆ Supported by Canada’s NSERC Postdoctoral Fellowship Program.
⋆⋆ Supported by Canada’s NSERC discovery grant, MITACS, and the QuantumWorks

networks(NSERC).

http://arxiv.org/abs/1009.2096v1

realm. Suppose that a state |φin〉 ∈ A⊗B is the initial shared state where Alice
holds register A and Bob holds register B. Let U ∈ U(A ⊗ B) be some unitary
transform acting upon A and B. What cryptographic assumptions are needed
for a private evaluation of |φout〉 = U |φin〉 where private means that each player
learns no more than in the ideal situation depicted in Fig. 1? Of course, answers
to this question depend upon the adversary we are willing to tolerate.

|φin〉

{
A

U
A

}

|φout〉B B

Fig. 1. Ideal Functionality
for unitary U .

In [21], it was shown that unitaries cannot be
used to implement classical cryptographic prim-
itives. Any non-trivial primitive implemented by
unitaries will necessarily leak information toward
one party. Moreover, this leakage is available to a
weak class of adversaries that can be interpreted
as the quantum version of classical semi-honest ad-
versaries. It follows that quantum two-party com-
putation of unitaries cannot be used to implement
classical cryptographic primitives. This opens the possibility that the crypto-
graphic assumptions needed for private evaluations of unitaries are weaker than
for their classical counterpart. So, what classical cryptographic assumptions, if
any, are required to achieve privacy in our setting? Are there unitaries more
difficult to evaluate privately than others?

In this work, we answer these questions against a class of weak quantum
adversaries, called specious, related to classical semi-honest adversaries. We say
that a quantum adversary is specious if at any step during the execution of a
protocol, it can provide a judge with some state that, when joined with the state
held by the honest player, will be indistinguishable from a honest interaction.
In other words, an adversary is specious if it can pass an audit with success
at any step. Most known impossibility proofs in quantum cryptography apply
when the adversary is restricted to be specious. Definitions similar to ours have
been proposed for the quantum setting and usually named semi-honest. However,
translating our definition to the classical setting produces a strictly stronger class
of adversaries than semi-honest4, as demonstrated in Appendix B which justifies
not adopting the term semi-honest. We propose the name specious as the core
of the definition is that the adversary must appear to act honestly.

Contributions. First, we define two-party protocols for the evaluation of uni-
taries having access to oracle calls. This allows us to consider protocols with
security relying on some ideal functionalities in order to be private. We then say
that a protocol is in the bare model if it does not involve any call to an ideal
functionality. We then formally define what we mean by specious adversaries.

4 As an example, assume there exist public key cryptosystems where you can sample
a public key without learning the secret key. Then this is a semi-honest oblivious
transform: The receiver, with choice bit c, samples pkc in the normal way and learns
its corresponding secret key and samples pk1−c without learning its secret key. He
sends (pk0, pk1). Then the sender sends (Epk0

(m0), Epk1
(m1)) and the receiver de-

crypts Epkc(mc). This is not secure against a specious adversary who can sample
pk1−c along with its secret key sk1−c and then delete sk1−c before the audit.

Privacy is then defined via simulation. We say that a protocol for the two-party
evaluation of unitary U is private against specious adversaries if, for any joint
input state and at any step of the protocol, there exists a simulator that can
reproduce the adversary’s view having only access to its own part of the joint
input state. Quantum simulation must rely on a family of simulators for the
view of the adversary rather than one because quantum information does not
accumulate but can vanish as the protocol evolves. For instance, consider the
trivial protocol that let Alice send her input register to Bob so that he can apply
locally |φout〉 = U |φin〉 before returning her register. The final state of such a
protocol is certainly private, as Bob cannot clone Alice’s input and keep a copy,
yet at some point Bob had access to Alice’s input thus violating privacy. No
simulator can possibly reproduce Bob’s state after he received Alice’s register
without having access to her input state.

Second, we show that no protocol can be shown statistically private against
specious adversaries in the bare model for a very simple unitary: the swap gate.
As the name suggests, the swap gate simply permutes Alice’s and Bob’s input
states. Intuitively, the reason why this gate is impossible is that at some point
during the execution of such protocol, one party that still has almost all its
own input state receives a non-negligible amount of information (in the quan-
tum sense) about the other party’s input state. At this point, no simulator can
possibly re-produce the complete state held by the receiving party since a call
to the ideal functionality only provides access to the other party’s state while
no call to the ideal functionality only provides information about that party’s
own input. Therefore, any simulator cannot re-produce a state that contains in-
formation about the input states of both parties. It follows that cryptographic
assumptions are needed for the private evaluation of unitaries against specious
adversaries. On the other hand, a classical bit commitment is sufficient to im-
plement the swap privately in our model.

Finally, we give a very simple protocol for the private evaluation of any uni-
tary based on ideas introduced by [11, 10] in the context of fault tolerant quantum
computation. Our construction is similar to Yao’s original construction in the
classical world[26, 13]. We represent any unitary U by a quantum circuit made
out of gates taken from the universal set UG = {X,Y, Z,CNOT,H,P,R} [17]. The
protocol evaluates each gate of the circuit upon shared encrypted input where
the encryption uses the Pauli operators {X,Y, Z} together with the identity. In
addition to the Pauli gates X,Y , and Z, gates CNOT, H, and P can easily be
performed over encrypted states without losing the ability to decrypt. Gates of
that kind belong to what is called the Clifford group. The CNOT gate is the only
gate in UG acting upon more than one qubit while the R-gate is the only one that
does not belong to the Clifford group. In order to evaluate it over an encrypted
state while preserving the ability to decrypt, we need to rely upon a classical
ideal functionality computing securely an additive sharing for the AND of Alice’s
and Bob’s input bits. We call this ideal functionality an AND-box. Upon input
x ∈ {0, 1} for Alice and y ∈ {0, 1} for Bob, it produces a ∈R {0, 1} and b ∈ {0, 1}
to Alice and Bob respectively such that a⊕ b = x ∧ y. An AND-box can be ob-

tained from any flavor of oblivious transfer and is defined the same way than
an NL-box[18, 19] without the property that its output can be obtained before
the input of the other player has been provided to the box (i.e., NL-boxes are
non-signaling). The equivalence between AND-boxes, NL-boxes, and oblivious
transfer is discussed in [25]. At the end of the protocol, each part of the shared
key allowing to decrypt the output must be exchanged in a fair way. For this
task, Alice and Bob rely upon an ideal swap functionality called SWAP. The re-
sult is that any U can be evaluated privately upon any input provided Alice and
Bob have access to one AND-box per R-gate and one call to the an ideal swap.
If the circuit happens to have only gates in the Clifford group then only one call
to an ideal swap is required for privacy. In other words, SWAP is universal for
the private evaluation of circuits in the Clifford group (i.e., those circuits having
no R-gate) and itself belongs to that group (SWAP is not a classical primitive).
To some extent, circuits in the Clifford group are the easy ones. Privacy for cir-
cuits containing R-gates however needs a classical cryptographic primitive to be
evaluated privately by our protocol. It means that AND-boxes are universal for
the private evaluation of any circuit against specious adversaries. We don’t know
whether there exist some unitary transforms that are universal for the private
evaluation of any unitary against specious adversaries.

Previous works. All impossibility results in quantum cryptography we are aware
of apply to classical primitives. In fact, the impossibility proofs usually rely upon
the fact that an adversary with a seemingly honest behavior can force the im-
plementation of classical primitives to behave quantumly. The result being that
implemented that way, the primitive must leak information to the adversary.
This is the spirit behind the impossibility of implementing oblivious transfer
securely using quantum communication[14]. In that same paper the impossi-
bility of any one-sided private evaluation of non-trivial primitives was shown.
All these results can be seen as generalizations of the impossibility of bit com-
mitment schemes based on quantum communication[15, 16]. The most general
impossibility result we are aware of applies to any non-trivial two-party classi-
cal function[21]. It states that it suffices for the adversary to purify its actions
in order for the quantum primitive to leak information. An adversary purify-
ing its actions is specious as defined above. None of these impossibility proofs
apply to quantum primitives characterized by some unitary transform applied
to joint quantum inputs. Blind quantum computation is a primitive that shows
similarities to ours. In [6], a protocol allowing a client to get its input to a quan-
tum circuit evaluated blindly has been proposed. The security of their scheme
is unconditional while in our setting almost no unitary allows for unconditional
privacy.

An unpublished work of Smith[23] shows how one can devise a private pro-
tocol for the evaluation of any unitary that seems to remain private against all
quantum adversaries. However, the techniques used require strong cryptographic
assumptions like homomorphic encryption schemes, zero-knowledge and witness
indistinguishable proof systems. The construction is in the spirit of protocols for
multiparty quantum computation[4, 8] and fault tolerant quantum circuits[22,

2]. Although our protocol only guarantees privacy against specious adversaries,
it is obtained using much weaker cryptographic assumptions.

Organization. We introduce protocols for the two-party evaluation of unitaries
in Sect. 2.1. In Sect. 3, we define the class of specious quantum adversaries and
in Sect. 3.3, we define privacy. We show in Sect. 4 that no private protocol exists
for swap. The description of our protocol follows in Sect. 5 and the proof of
privacy is in Appendix E.

2 Preliminaries

The N -dimensional complex Euclidean space (i.e., Hilbert space) will be denoted
by HN . We denote quantum registers using calligraphic typeset A. As usual, A⊗
B denotes the space of two such quantum registers. We write A ≈ B when A and
B are such that dim (A) = dim (B). A register A can undergo transformations
as a function of time; we denote by Ai the state of space A at time i. When a
quantum computation is viewed as a circuit accepting input in A, we denote all
wires in the circuit by w ∈ A. If the circuit accepts input in A⊗ B then the set
of all wires is denoted w ∈ A ∪ B.

The set of all linear mappings from A to B is denoted by L(A,B) while L(A)
stands for L(A,A). To simplify notation, for ρ ∈ L(A) and M ∈ L(A,B) we
write M · ρ for MρM †.

We denote by Pos(A) the set of positive semi-definite operators in A. The
set of positive semi-definite operators with trace 1 acting on A is denoted D(A);
D(A) is the set of all possible quantum states for register A. An operator A ∈
L(A,B) is called a linear isometry if A†A = 11A. The set of unitary operators
(i.e., linear isometries with B = A) acting in A is denoted by U(A). The identity
operator in A is denoted 11A and the completely mixed state in D(A) is denoted
by IA. For any positive integer N > 0, 11N and IN denote the identity operator
respectively the completely mixed state in HN . When the context requires, a
pure state |ψ〉 ∈ AB will be written |ψ〉AB

to make explicit the registers in
which it is stored.

A linear mapping Φ : L(A) 7→ L(B) is called a super-operator since it belongs
to L(L(A),L(B)). Φ is said to be positive if Φ(A) ∈ Pos(B) for all A ∈ Pos(A).
The super-operator Φ is said to be completely positive if Φ ⊗ 11L(Z) is posi-
tive for every choice of the Hilbert space Z. A super-operator Φ can be phys-
ically realized or is admissible if it is completely positive and preserves the
trace: tr(Φ(A)) = tr(A) for all A ∈ L(A). We call such a super-operator a
quantum operation. Any quantum operation Φ : L(A) 7→ L(B) can be writ-

ten in its Kraus form {Ej}dim (A)·dim (B)
j=1 where Ej ∈ L(A,B) for every j such

that Φ(ρ) =
∑

j EjρE
†
j , for any ρ ∈ Pos(A) and where

∑
j E

†
jEj = 11B. An-

other way to represent any quantum operation is through a linear isometry
W ∈ L(A,B⊗Z) such that Φ(ρ) = trZ(W ·ρ), for some extra space Z. Any such
isometryW can be implemented by a physical process as long as the resource to

implement the space Z is available. This is just a unitary transform in U(A⊗Z)
where the system in Z is initially in known state |0Z〉.

|ψ〉
Bell

x
•

|Ψ0,0〉

{ z
•

Z X |ψ〉

_ _ _ _
�

�

�

�

�

�

�

�

_ _ _ _

Fig. 2. The teleportation circuit

For two states ρ0, ρ1 ∈ D(A), we de-
note by ∆(ρ0, ρ1) the trace norm distance
between ρ0 and ρ1: ∆(ρ0, ρ1) :=

1
2‖ρ0− ρ1‖.

If ∆(ρ0, ρ1) ≤ ε then any quantum process
applied to ρ0 behaves exactly as for ρ1 ex-
cept with probability at most ε [20].

We let C1 be the Pauli group (the set of
tensor products of the three Pauli matrices X, Y, and Z, see Appendix A, and
the 2× 2 identity matrix 112). Furthermore, Ci+1 is then defined recursively for
i ≥ 1 as Ci+1 ≡ {U |UC1U

† ∈ Ci}, where C2 is called the Clifford group.
The Bell measurement is a complete orthogonal measurement on two qubits

made out of the measurement operators {|Ψ0,0〉〈Ψ0,0|, |Ψ0,1〉〈Ψ0,1|, |Ψ1,0〉〈Ψ1,0|, |Ψ1,1〉〈Ψ1,1|}
where |Ψ0,0〉 := 1√

2
(|00〉+|11〉), |Ψ0,1〉 := 1√

2
(|00〉−|11〉), |Ψ1,0〉 := 1√

2
(|01〉+|10〉),

and |Ψ1,1〉 := 1√
2
(|01〉 − |10〉). The outcome |Ψx,z〉 of the Bell measurement is

identified by the two classical bits (x, z) ∈ {0, 1}2. The quantum one-time-pad
is a perfectly secure encryption of quantum states[3]. It encrypts a qubit |ψ〉 as
XxZz|ψ〉, where the key is two classical bits, (x, z) ∈ {0, 1}2 and X0Z0 = 11,
X0Z1 = Z, X1Z0 = X and X1Z1 = Y are the Pauli operators. Quantum tele-
portation[5] can be used to implement the quantum one-time-pad. Consider the
teleportation circuit in Fig. 2. If the state to encrypt is |ψ〉 then the state of the
lower wire before entering the out-dashed box is the encryption of |ψ〉 under a
uniformly random key produced by the Bell measurement. The two gates inside
the dashed-box is the decryption circuit.

2.1 Modeling two-party strategies

Consider an interactive two-party strategy ΠO between parties A and B and
oracle calls O. ΠO can be modeled by a sequence of quantum operations for
each player together with some oracle calls also modeled by quantum operations.
Each quantum operation in the sequence corresponds to the action of one party
at a certain step of the strategy. The following definition is a straightforward
adaptation of n-turn interactive quantum strategies as described in [12]. The
main difference is that here, we provide a joint input state to both parties and
that quantum transmissions taking place during the execution is modeled by a
quantum operation; one that is moving a state on one party’s side to the other
party.

Definition 2.1. A n–step two party strategy with oracle calls denoted ΠO =
(A ,B,O, n) consists of:

1. input spaces A0 and B0 for parties A and B respectively,
2. memory spaces A1, . . . ,An and B1, . . . ,Bn for A and B respectively,
3. an n-tuple of quantum operations (A1, . . . ,An) for A , Ai : L(Ai−1) 7→

L(Ai), (1 ≤ i ≤ n),

4. an n-tuple of quantum operations (B1, . . . ,Bn) for B, Bi : L(Bi−1) 7→
L(Bi), (1 ≤ i ≤ n),

5. memory spaces A1, . . . ,An and B1, . . . ,Bn can be written as Ai = AO
i ⊗A′

i

and Bi = BO
i ⊗ B′

i, (1 ≤ i ≤ n), and O = (O1,O2, . . . ,On) is an n-tuple of
quantum operations: Oi : L(AO

i ⊗ BO
i) 7→ L(AO

i ⊗ BO
i), (1 ≤ i ≤ n).

If Π = (A ,B, n) is a n-turn two-party protocol then the final state of the inter-
action upon input state ρin ∈ D(A0⊗B0⊗R), where R is a system of dimension
dimR = dimA0 dimB0, is:

[A ⊛ B](ρin) :=(11L(A′
n⊗B′

n⊗R) ⊗ On)(An ⊗Bn ⊗ 11R)

. . . (11L(A′
1
⊗B′

1
⊗R) ⊗ O1)(A1 ⊗B1 ⊗ 11R)(ρin) .

Step i of the strategy corresponds to the actions of Ai and Bi followed by the
oracle call Oi.

Note that we consider input states defined on the input systems together
with a reference system R; this allows us to show the correctness and privacy
of the protocol not only for pure inputs, but also for inputs that are entangled
with a third party. This is the most general case allowed by quantum mechanics.

A two-party strategy is therefore defined by quantum operation tuples (A1, . . . ,An),
(B1, . . . ,Bn), and (O1, . . . ,On). These operations also define working spaces
A0, . . . ,An,B0, . . . ,Bn together with the input-output spaces to the oracle calls
AO
i and BO

i for 1 ≤ i ≤ n.
A communication oracle from Alice to Bob is modeled by having AO

i ≈
BO
i and letting Oi move the state in AO

i to BO
i and erase AO

i . Similarly for
communication in the other direction. We define a bare model protocol to be one
which only uses communication oracles.

3 Specious Quantum Adversaries

3.1 Protocols for two-party evaluation

Let us consider two-party protocols for the quantum evaluation of unitary trans-
form U ∈ U(A0 ⊗ B0) between parties A and B upon joint input state ρin ∈
D(A0 ⊗ B0 ⊗ R). We define these protocols as two-party interactive strategies
with placeholder for the output as follows:

Definition 3.1. A two-party protocol ΠO
U = (A ,B,O, n) for U ∈ U(A0 ⊗ B0)

is an n–step two-party strategy with oracle calls, where An ≈ A0 and Bn ≈ B0.
It is said to be ε–correct if

∆ ([A ⊛ B](ρin), (U ⊗ 11R) · ρin) ≤ ε for all ρin ∈ D(A0 ⊗ B0 ⊗R) .

We denote by ΠU a two-party protocol in the bare model where, without loss of
generality, we assume that O2i+1 (0 ≤ i ≤ ⌊n2 ⌋) implements a communication
channel from A to B and O2i (1 ≤ i ≤ ⌊n2 ⌋) implements a communication
channel from B to A . Communication oracles are said to be trivial.

In other words, a two-party protocol ΠO
U for unitary U is a two-party interac-

tive strategy where, at the end, the output of the computation is stored in the
memory of the players. ΠO

U is correct if, when restricted to the output registers
(and R), the final quantum state shared by A and B is (U ⊗ 11R) · ρin.

As it will become clear when we discuss privacy in Sect. 3.3, we need to
consider the joint state at any step during the evolution of the protocol. We
define,

ρ1(ρin) := (11L(A′
1
⊗B′

1
⊗R) ⊗ O1)(A1 ⊗B1 ⊗ 11L(R))(ρin),

ρi+1(ρin) := (11L(B′
i+1

⊗A′
i+1

⊗R) ⊗ Oi+1)(Ai+1 ⊗Bi+1 ⊗ 11L(R))(ρi(ρin)) , (1)

for 1 ≤ i < n. We also write the final state of ΠO
U upon input state ρin as

ρn(ρin) = [A ⊛ B](ρin).

3.2 Modeling Specious Adversaries

Intuitively, a specious adversary acts in any way apparently indistinguishable
from the honest behavior, in the sense that no audit can distinguish the behavior
of the adversary from the honest one.

More formally, a specious adversary in ΠO
U = (A ,B,O, n) may use an ar-

bitrary large quantum memory space. However, at any step 1 ≤ i ≤ n, the
adversary can transform its own current state to one that is indistinguishable
from the honest joint state. These transforms are modeled by quantum opera-
tions, one for each step of the adversary in ΠO

U , and are part of the adversary’s
specification. We denote by (T1, . . . ,Tn) these quantum operations where Ti

produces a valid transcript at the end of the i–th step.
Let Ã and B̃ be adversaries in ΠO

U . We denote by ΠO
U (Ã) = (Ã ,B,O, n)

andΠO
U (B̃) = (A , B̃,O, n) the resulting n–step two-party strategies. We denote

by ρ̃i(Ã , ρin) the state defined in (1) for protocol ΠO
U (Ã) and similarly by

ρ̃i(B̃, ρin) that state for protocol ΠO
U (B̃).

Adding the possibility for the adversary to be ε-close to honest, we get the
following definition:

Definition 3.2. Let ΠO
U = (A ,B,O, n) be an n–step two-party protocol with

oracle calls for U ∈ U(A0 ⊗ B0). We say that:

– Ã is ε–specious if ΠO
U (Ã) = (Ã ,B,O, n) is an n–step two-party strategy

with Ã0 = A0 and there exists a sequence of quantum operations (T1, . . . ,Tn)
such that:
1. for every 1 ≤ i ≤ n, Ti : L(Ãi) 7→ L(Ai),
2. for every input state ρin ∈ D(A0 ⊗ B0 ⊗R), and for all 1 ≤ i ≤ n,

∆
(
(Ti ⊗ 11L(Bi⊗R))

(
ρ̃i(Ã , ρin)

)
, ρi(ρin)

)
≤ ε .

– B̃ is ε–specious if ΠO
U (B̃) = (A , B̃,O, n) is a n–step two-party strategy with

B̃0 = B0 and there exists a sequence of quantum operations (T1, . . . ,Tn) such
that:

1. for every 1 ≤ i ≤ n, Ti : L(B̃i) 7→ L(Bi),
2. for every input state ρin ∈ D(A0 ⊗ B0 ⊗R), and for all 1 ≤ i ≤ n,

∆
(
(11L(Ai⊗R) ⊗Ti)

(
ρ̃i(B̃, ρin)

)
, ρi(ρin)

)
≤ ε .

If a party is ε(m)–specious with ε(m) negligible for m a security parameter then
we say that this party is statistically specious.

3.3 Privacy

Privacy for ΠO
U is defined as the ability for a simulator, having only access to

the adversary’s input and the ideal functionality U , to reproduce the state of
the adversary at any step in the execution of ΠO

U . Our definition is similar to
the one introduced in [24] for statistical zero-knowledge proof systems.

A simulator for an adversary in ΠO
U is represented by a sequence of quantum

operations (Si)
n
i=1, where Si re-produces the view of the adversary after step i.

Si initially receives the adversary’s input and has access to the ideal functional-
ity for U evaluated upon the joint input of the adversary and the honest player.
Because of no-cloning, a simulator calling U loses its input, and the input might
be required to simulate e.g. early steps in the protocol, so we have to allow that
Si does not call U . For this purpose we introduce a bit qi ∈ {0, 1}. When qi = 0,
Si does not call U and when qi = 1, Si must first call the ideal functionality U
before performing some post-processing. More precisely,

Definition 3.3. Let ΠO
U = (A ,B,O, n) be an n–step two-party protocol for

U ∈ D(A0 ⊗ B0). Then,

– S (Ã) = 〈(S1, . . . ,Sn), q〉 is a simulator for adversary Ã inΠO
U if it consists

of:

1. a sequence of quantum operations (S1, . . . ,Sn) where for 1 ≤ i ≤ n,
Si : L(A0) 7→ L(Ãi),

2. a sequence of bits q ∈ {0, 1}n determining if the simulator calls the ideal
functionality at step i: qi = 1 iff the simulator calls the ideal functional-
ity.

– Similarly, S (B̃) = 〈(S1, . . . ,Sn), q
′〉 is a simulator for adversary B̃ in ΠO

U

if it consists of:
1. a sequence of quantum operations (S1, . . . ,Sn) where for 1 ≤ i ≤ n,

Si : L(B0) 7→ L(B̃i)
2. a sequence of bits q′ ∈ {0, 1}n determining if the simulator calls the ideal

functionality at step i: q′i = 1 iff the simulator calls the ideal functional-
ity.

Given an input state ρin ∈ D(A0 ⊗B0 ⊗R), we define the Ã ’s respectively B̃’s
simulated views as:

νi(Ã , ρin) := trB0

(
(Si ⊗ 11L(B0⊗R)) ((U

qi ⊗ 11R) · ρin)
)
,

νi(B̃, ρin) := trA0

(
(11L(A0⊗R) ⊗Si)

(
(U q

′

i ⊗ 11R) · ρin
))

.

We say that protocol ΠO
U is private against specious adversaries if there exits a

simulator for the view at any step of any such adversary. In more details,

Definition 3.4. Let ΠO
U = (A ,B,O, n) be a protocol for U ∈ U(A0 ⊗ B0) and

let 0 ≤ δ ≤ 1. We say that ΠO
U is δ–private against ε–specious Ã if there ex-

ists a simulator S (Ã) such that for all input states ρin ∈ D(A0 ⊗ B0 ⊗ R)
and for all 1 ≤ i ≤ n, ∆

(
νi(Ã , ρin), trBi

(ρ̃i(Ã , ρin))
)
≤ δ. Similarly, we say

that ΠU is δ–private against ε–specious B̃ if there exists a simulator S (B̃)
such that for all input states ρin ∈ D(A0 ⊗ B0 ⊗ R) and for all 1 ≤ i ≤
n, ∆

(
νi(B̃, ρin), trAi

(ρ̃i(B̃, ρin))
)
≤ δ. Protocol ΠO

U is δ–private against ε–

specious adversaries if it is δ–private against both Ã and B̃. For γ > 0, if
ΠO
U is 2−γm–private for m ∈ N

+ a security parameter then we say that ΠO
U is

statistically private.

One should keep in mind that δ should be kept small compared to the number
of rounds, since the protocol is only secure if we can ensure that, with high
probability, the adversary cannot behave differently in the simulated world at
any of the rounds. If δn is kept small, we can use the union bound over all the
rounds to ensure this.

We show next that for some unitary, statistical privacy cannot be satisfied
by any protocol in the bare model.

4 Unitaries with no private protocols

In this section, we show that no statistically private protocol for the swap gate
exists in the bare model. The swap gate, denoted SWAP, is the following unitary
transform:

SWAP : |φA〉A0 |φB〉B0 7→ |φB〉A0 |φA〉B0 ,

for any one qubit states |φA〉 ∈ A0 and |φB〉 ∈ B0 (i.e., dim (A0) = dim (B0) = 2).
Notice that SWAP is in the Clifford group since it can be implemented with three
CNOT gates. It means that universality is not required (gates in the Clifford
groups are not universal for quantum computation) for a unitary to be impossible
to evaluate privately. The impossibility of SWAP essentially follows from no
cloning.

Theorem 4.1 (Impossibility of swapping). There is no correct and statis-
tically private two-party protocol ΠSWAP = (A ,B,O, n(m)) in the bare model.

Using this line of reasoning, Theorem 4.1 can be extended to apply to any
protocol for almost any unitary preventing both parties to recover their input
states from its output.

Sufficient Assumptions for Private SWAP. A private protocol for SWAP

in the bare model would exist if the players could rely on special relativity and
a lower bound on their separation in space: they simply send their messages
simultaneously. The fact that messages cannot travel faster than the speed of
light ensures that the messages are independent of each other. It is also straight-
forward to devise a private protocol for SWAP based on commitment schemes.
A sends one half EPR-pair to B while keeping the other half. A then teleports
(without announcing the outcome of the measurement) her register and commits
on the outcome of the Bell measurement. B sends his register to A before she
opens her commitment. This allows B to reconstruct A ’s initial state.

5 The Protocol

We now describe a private protocol for the two-party evaluation of any unitary
U ∈ U(A0 ⊗ B0) denoted by PO

U = (A ∗,B∗,O, nU + 1) where U is represented
by a circuit CU with u gates in UG. We slightly abuse the notation with respect
to the parameter nU + 1. Given circuit CU , we let nU be the number of oracle
calls (including calls to communication oracles). Setting the last parameter to
nU + 1 instead of nU comes from the fact that in our protocol, A ∗ and B∗

have to perform a last operation each in order to get their outcome. These
last operations do not involve a call to any oracle. Let Gj be the j-th gate in
CU = GuGu−1 . . . G1. The protocol is obtained by composing sub-protocols for
each gate similarly to well-known classical constructions[26, 13]. Notice that PO

U

will not be presented in the form of Definition 3.1. A ∗ is not necessarily sending
the first and the last messages. This can be done without consequences since
we provide a simulation for each step where a message from the honest party is
received or the output of a call to an ideal functionality is available. Putting PO

U

in the standard form of Definition 3.1 is straightforward and changes nothing to
the proof of privacy.

The evaluation of each gate is performed over shared encrypted states. Each
wire in CU will be updated from initially holding the input ρin ∈ D(A0⊗B0⊗R)
to finally holding the output (U ⊗11R) ·ρin ∈ D(A0⊗B0⊗R). The state of wires
w ∈ A0 ∪ B0 after the evaluation of Gj are stored at A ∗’s or B∗’s according if
w ∈ A0 or w ∈ B0. The shared encryption keys for wire w ∈ A0 ∪ B0 updated
after the evaluation of Gj are denoted by Kj

A ∗(w) = (Xj
A ∗(w), Z

j
A ∗(w)) ∈ {0, 1}2

and Kj
B∗(w) = (Xj

B∗(w), Z
j
B∗(w)) ∈ {0, 1}2 for A ∗ and B∗ respectively and are

held privately in internal registers of each party.
The final phase of the protocol is where a call to an ideal functionality is

required. A ∗ and B∗ exchange their own part of each encryption key for the
other party’s wires. In order to do this, the key-releasing phase invokes an ideal
SWAP-gate as functionality: OnU

: L(AO
nU
⊗ BO

nU
) 7→ L(AO

nU
⊗ BO

nU
), where

OnU
(ρ) := SWAP · ρ. Upon joint input state ρin ∈ D(A0 ⊗ B0 ⊗ R), protocol

P
O(U)
U runs the following phases:

Initialization: We assume that A ∗ and B∗ have agreed upon a description of
U by a circuit CU made out of u gates (G1, . . . , Gu) in UG. For all wires

w ∈ A0 ∪ B0, A ∗ and B∗ set their initial encryption keys as K0
A ∗(w) =

(X0
A ∗(w), Z0

A ∗(w)) := (0, 0) and K0
B∗(w) = (X0

B∗(w), Z0
B∗(w)) := (0, 0) re-

spectively.
Evaluation: For each gate number 1 ≤ j ≤ u, A ∗ and B∗ evaluate Gj as

described in details below. This evaluation results in shared encryption un-
der keys Kj

A ∗(w) = (Xj
A ∗(w), Z

j
A ∗(w)) and K

j
B∗(w) = (Xj

B∗(w), Z
j
B∗(w)) for

all wires w ∈ A0 ∪ B0, which at that point hold a shared encryption of
((GjGj−1 . . . G1) ⊗ 11R) · ρin. Only the evaluation of the R-gate requires a
call to an ideal functionality (i.e., an and-box).

Key-Releasing: Let AO
nU

and BO
nU

be the set of registers holding respectively
Ku

A ∗(w) = (Xu
A ∗(w), ZuA ∗(w)) for w ∈ B0 and Ku

B∗(w) = (Xu
B∗(w), ZuB∗(w))

for w ∈ A0. We assume w.l.g that dimensions of both sets of registers are
identical5:
1. A ∗ and B∗ run the ideal functionality for the SWAP-gate upon registers
AO
nU

and BO
nU

.
2. A ∗ applies the decryption operatorK

A ∗(w) = (Xu
A ∗(w)⊕Xu

B∗(w), ZuA ∗(w)⊕
Zu

B∗(w)) to each of her wires w ∈ A0.
3. B∗ applies the decryption operator for keyK

B∗(w) = (Xu
A ∗(w)⊕Xu

B∗(w),
Zu

A ∗(w)⊕ ZuB∗(w)) to each of his wires w ∈ B0.
In the following subsections 5.1 to 5.3, we describe the evaluation phase for each
gate in UG.

Swapping for key-releasing. Notice that the key-releasing phase only uses
the SWAP-gate with classical input states. The reader might therefore wonder
why this functionality is defined quantumly when a classical swap would work
equally well. The reason is that, perhaps somewhat surprisingly, a classical swap
is a potentially stronger primitive than a quantum swap. From a classical swap
one can build a quantum swap by encrypting the quantum states with classical
keys, exchange the encrypted states using quantum communication, and then
using the classical swap to exchange the keys. Obtaining a classical swap from
a quantum one, however, is not obvious. Suppose that registers A and B should
be swapped classically while holding quantum states beforehand. These registers
could be entangled with some purification registers before being swapped. Using
a quantum swap between A and B will always leave these registers entangled
with the purification registers until they become measured while a classical swap
will ensure that A and B become unentangled with the purification registers after
its invocation. In other words, a classical swap could prevent an adversary from
exploiting entanglement in his attack.

The ideal AND-box functionality. As we are going to see next, a call to an
ideal AND-box is required during the evaluation of the R-gate. Unlike the ideal
SWAP used for key-releasing, the AND-box will be modeled by a purely classical
primitive denoted and-box. This is required for privacy of our protocol since

5 Otherwise, add enough registers initially in state |0〉 to the smaller set.

any implementation of it by some unitary will necessarily leak[21]. The quantum
operation implementing it will first measure the two one-qubit input registers in
the computational basis in order to get classical inputs x, y ∈ {0, 1} for A ∗ and
B∗ respectively. The classical output bits are then set to a ∈R {0, 1} for A ∗ and
b = a⊕ xy for B∗.

5.1 Computing over Encrypted States

Before the execution of Gj+1 in CU , A ∗ and B∗ share an encryption of ρj =
((Gj ·Gj−1 · . . . ·G1)⊗ 11R) · ρin in registers6 holding wires w ∈ A0 ∪ B0. Each
wire w ∈ A0 ∪ B0 is encrypted by a shared quantum one-time pad as

((
⊗

w∈A0∪B0

XXj

A∗ (w)⊕Xj

B∗ (w)ZZ
j

A∗ (w)⊕Zj

B∗ (w)

)
⊗ 11R

)
· ρj , (2)

whereKj
A ∗(w) := (Xj

A ∗(w), Z
j
A ∗(w)) ∈ {0, 1}2 andKj

B∗(w) := (Xj
B∗(w), Z

j
B∗(w)) ∈

{0, 1}2 are two bits of secret keys for A ∗ and B∗ respectively. In other words,
wires w ∈ A0 ∪B0 are encrypted by XxZz where x = X

j
A ∗(w)⊕Xj

B∗(w) and z =

Z
j
A ∗(w)⊕ZjB∗(w) are additive sharings for the encryption of w. Then, evaluating

Gj+1 upon state (2) will produce a new sharing Kj+1
A (w) := (Xj+1

A (w), Zj+1
A (w))

and Kj+1
B (w) := (Xj+1

B (w), Zj+1
B (w)) for the encryption of state ρj+1 = (Gj+1 ⊗

11R) · ρj. In the following, we describe how to update the keys for the wires in-
volved in the current gate to be evaluated—all other wires retain their previous
values.

5.2 Evaluation of Gates in the Pauli and Clifford Groups

Pauli gates. Non-trivial Pauli gates (i.e., X,Y, and Z) can easily be computed
on encrypted quantum states since they commute or anti-commute pairwise. Let
Gj+1 ∈ {X,Y, Z} be the Pauli gate to be executed on wire w. We have:

Gj+1

(
XXi

A∗ (w)⊕Xj

B∗ (w)ZZ
j

A∗(w)⊕Zj

B∗ (w)
)
= ±

(
XXj

A∗ (w)⊕Xj

B∗ (w)ZZ
j

A∗ (w)⊕Zj

B∗ (w)
)
Gj+1 .

It means that up to an irrelevant phase factor, it suffices for the owner of w to
apply Gj+1 without the need for neither party to update their shared keys, i.e.,

K
j+1
A ∗ (w) := K

j
A ∗(w) and K

j+1
B∗ (w) := K

j
B∗(w).

H, P, and CNOT on local wires. Now, suppose that Gj+1 ∈ {H,P}. Each of
these one-qubit gates applied upon wire w will be computed by simply letting
the party owning w apply Gj+1. Since

H

(
XXj

A∗(w)⊕Xj

B∗ (w)ZZ
j

A∗ (w)⊕Zj

B∗(w)
)
=
(
XZj

A∗ (w)⊕Zj

B∗(w)ZX
j

A∗ (w)⊕Xj

B∗ (w)
)
H , and

6 To ease the notation in the following, we assume ρj ∈ D(A0 ⊗ B0) rather than in
D(A0 ⊗B0 ⊗R). It is easy to see that this can be done without loss of generality.

P

(
XXj

A∗(w)⊕Xj

B∗ (w)ZZ
j

A∗ (w)⊕Zj

B∗(w)
)
=
(
XXj

A∗ (w)⊕Xj

B∗ (w)ZX
j

A∗ (w)⊕Xj

B∗(w)⊕Zj

A∗ (w)⊕Zj

B∗ (w)
)
P ,

the encryption keys are updated as follows:

H : Kj+1
A ∗ = (Xj+1

A ∗ (w), Zj+1
A ∗ (w)) := (ZiA ∗(w), X

j
A ∗(w)) ,

K
j+1
B∗ = (Xj+1

B∗ (w), Zj+1
B∗ (w)) := (Zj

B∗(w), X
j
B∗(w)) ,

P : Kj+1
A ∗ = (Xj+1

A ∗ (w), Zj+1
A ∗ (w)) := (Xj

A ∗(w), X
j
A ∗(w)⊕ ZjA ∗(w)) ,

K
j+1
B∗ = (Xj+1

B∗ (w), Zj+1
B∗ (w)) := (Xj

B∗(w), X
j
B∗(w)⊕ ZjB∗(w)) .

Any one-qubit gate in the Clifford group can be implemented the same way using
their own commutation relations with the Pauli operators used for encryption. A
CNOT-gate on local wires can be evaluated in a similar way. That is, whenever
both wires w and w

′ feeding the CNOT belong to the same party. Assume that
w is the control wire while w

′ is the target and that A ∗ holds them both(i.e.,
w, w′ ∈ A0). Then, A ∗ simply applies CNOT on wires w and w

′. Encryption keys
are updated as:

CNOT : Kj+1
A ∗ (w) = (Xj+1

A ∗ (w), Zj+1
A ∗ (w)) := (Xj

A ∗(w), Z
j
A ∗(w)⊕ ZjA ∗(w

′)) ,

K
j+1
A ∗ (w′) = (Xj+1

A ∗ (w′), Zj+1
A ∗ (w′)) := (Xj

A ∗(w
′)⊕Xj

A ∗(w), Z
j
A ∗(w

′)) ,

K
j+1
B∗ (w) := K

j
B∗(w) and K

j+1
B∗ (w′) := K

j
B∗(w

′) .

When B∗ holds both wires, the procedure is simply performed with the roles of
A ∗ and B∗ reversed.

Nonlocal CNOT. We now look at the case where Gj+1 = CNOT upon wires w
and w

′, one of which is owned by A ∗ while the other is owned by B∗. In this
case, interaction is unavoidable for the evaluation of the gate. Let us assume
w.l.g that A ∗ holds the control wire w while B∗ holds the target wire w

′ (i.e.,
w ∈ A0 and w

′ ∈ B0). We start from a construction introduced in [11] in the
context of fault tolerant quantum computation.

w

Bell

ax
•

|Ψ0,0〉

{ az
•

• Z X Z

|Ψ0,0〉

{ �������� X X Z

Bell

bx
•

w
′

bz
•

_ _ _ _ _�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

_ _ _ _ _

Fig. 3. Evaluation of CNOT.

The idea behind the sub-protocol is de-
picted in Fig. 3. The effect of the Bell mea-
surement is to teleport the input state of wires
w and w

′ through the CNOT-gate[11]. The in-
put to the CNOT appearing in the circuit of
Fig. 3 is independent of both input wires w

and w
′ (they are just two half epr-pairs).

The sub-protocol for the evaluation of
CNOT simply consists in executing the circuit
of Fig. 3 without the decryption part (i.e., the
part inside the dotted rectangle). The state
|ξ〉 := (11A ⊗ CNOT ⊗ 11B)|Ψ0,0〉|Ψ0,0〉 can be prepared by one party. We let the
holder of the control wire (i.e., A ∗ in Fig. 3) prepare |ξ〉 before sending its two
rightmost registers to the other party. The decryption in the dotted-rectangle

is used to update the encryption keys according to the measurement outcomes
(ax, az, bx, bz):

CNOT : Kj+1
A ∗ (w) := (Xj

A ∗(w)⊕ ax, ZjA ∗(w)⊕ az) ,
K
j+1
B∗ (w) := (X i

B∗(w), Z
j
B∗(w)⊕ bz) ,

K
j+1
A ∗ (w′) := (Xj

A ∗(w
′)⊕ ax, ZjA ∗(w

′)) ,

K
j+1
B∗ (w′) := (Xj

B∗(w
′)⊕ bx, ZjB∗(w

′)⊕ bz) .

As for all previous gates, the key updating phase is performed locally without
the need for communication.

5.3 Evaluation of the R-Gate

The only gate left in UG is Gj+1 := R. We assume without loss of generality
that A ∗ owns wire w upon which R is applied (i.e., w ∈ A0). The subprotocol
needs a call to an ideal and-box in order to guarantee privacy during the key
updating process. Observe first that the R-gate commutes with Pauli encryption
operator Z. It means that applying the R-gate upon a state encrypted with Z
produces the correct output state still encrypted with Z. However, the equality
R ·X = e−iπ/4Y P ·R tells us that a P-gate should be applied for the decryption of
the output when the input has been encrypted usingX . This breaks the invariant
that wires after each gate are all encrypted by Pauli operators. We remove the
P-gate by converting it into a sequence of Pauli operators.

Suppose A ’s wire w is encrypted as usual by shared keysKj
A ∗(w) := (Xj

A ∗(w), Z
j
A ∗(w)),

andKj
B∗(w) := (Xj

B∗(w), Z
j
B∗(w)). Ignoring an irrelevant global phase, the result

of applying R on wire w is

RZZ
j

A∗ (w)⊕Zi
B∗ (w)XXj

A∗ (w)⊕Xj

B∗ (w) =

ZZ
j

A∗ (w)⊕Zj

B∗ (w)⊕Xj

A∗ (w)⊕Xj

B∗ (w)XXj

A∗ (w)⊕Xj

B∗ (w)P
Xj

A∗ (w)⊕Xj

B∗ (w)R ,
(3)

Xj

A∗ (w) r r′

w R P X Z

P X Z

Xj

B∗ (w)
s s′

Fig. 4. Implementation of the R-gate.

To remove the P-gate, we let
each party remove his part of

P
Xj

A∗ (w)⊕Xj

B∗ (w) in a private in-
teractive process. To do this,
A ∗ picks random bits r and
r′, and B∗ picks random bits s
and s′. A ∗ applies the operator
XrZr

′

PX
i
A∗ (w) and sends the re-

sulting quantum state to B∗. B∗ applies the operator XsZs
′

PX
j

B∗ (w) and sends
the result back to A ∗. The resulting protocol is shown in Fig. 4. It starts with
A ∗ applying R upon the encrypted state before the one-round interactive process
described above starts.

After A ∗’s application of R, the resulting state is as described on the right-
hand side of (3). At the end of the process (i.e., circuit of Fig. 4), the encryption

becomes:

Zs
′

Xs
P
Xj

B∗ (w)Zr
′

Xr
P
Xj

A∗ (w)

ZZ
j

A∗ (w)⊕Zj

B∗(w)⊕Xj

A∗ (w)⊕Xj

B∗ (w)XXj

A∗ (w)⊕Xj

B∗ (w)P
Xj

A∗ (w)⊕Xj

B∗ (w) .
(4)

Since Z and P commute and P ·X = XZ · P, we can re-write (4) (i.e., up to an
irrelevant phase factor) as

Zs
′⊕r′⊕r·Xj

B∗ (w)Xs⊕r
P
Xj

A∗ (w)+X
j

B∗ (w)

ZZ
j

A∗ (w)⊕Zj

B∗ (w)⊕Xj

A∗ (w)⊕Xj

B∗ (w)XXj

A∗ (w)⊕Xj

B∗ (w)X
j

A∗ (w)⊕Xj

B∗(w) .

Using the fact that for a, b ∈ {0, 1}, Pa+b = ZabPa⊕b, the previous equation can
be re-written as

Zs
′⊕r′⊕Zj

A∗ (w)⊕Zj

B∗ (w)⊕XA∗(w)⊕XB∗ (w)⊕(r⊕Xj

A∗(w))·Xj

B∗ (w)

Xs⊕r
P
Xj

A∗ (w)⊕Xj

B∗ (w)XXj

A∗ (w)⊕Xj

B∗ (w)P
Xj

A∗ (w)⊕Xj

B∗ (w).
(5)

Moving the leftmost P-gate to the right results in Pauli encryption,

Zs
′⊕r′⊕Xj

A∗ (w)⊕Xj

B∗ (w)⊕Zj

A∗ (w)⊕Zj

B∗ (w)⊕(r⊕Xj

A∗ (w))·Xj

B∗ (w)

Xs⊕r⊕Xj

A∗ (w)⊕Xj

B∗ (w) .
(6)

Encryption (6) is not a proper additive sharing since the Z-operator depends on
(r⊕Xj

A ∗(w))·Xj
B∗(w); the logical and between a value known only by A ∗ (i.e., r⊕

X
j
A ∗(w)) and a value known only by B∗ (i.e., X

j
B∗(w)).

r ⊕Xj

A∗ (w) //

and-box

// α

Xj

B∗ (w) // // β

Fig. 5. α ⊕ β = (r ⊕ X
j
A ∗(w)) ·

X
j
B∗ (w) from an and-box.

To get back to an additive sharing, A ∗ and
B∗ can simply call the and-box once with
inputs r ⊕ X

j
A ∗(w) and X

j
B∗(w) respectively

as depicted in Fig. 5. After this, A ∗ and
B∗ share a proper encryption of the result-
ing state. The new encryption key for A ∗’s
wire w becomes:

R : Kj+1
A ∗ (w) := (r ⊕Xj

A ∗(w), r
′ ⊕ α⊕ Zj

A ∗(w)⊕Xj
A ∗(w)) ,

K
j+1
B∗ (w) := (s⊕Xj

B∗(w), s
′ ⊕ β ⊕ Zj

B∗(w)⊕Xj
B∗(w)) .

5.4 On the Necessity of Swapping Privately

One may ask whether relying upon SWAP is necessary for the protocol to be pri-
vate against specious adversaries. For instance, what would happen if one party
announces the encryption keys before the other party? We now show that as soon
as one party gets the other party’s decryption key before having announced its
own, a specious adversary can break privacy.

Consider the protocol for a quantum circuit made out of one single CNOT-
gate. Suppose that A ∗ holds the control wire w while B∗ holds the target wire w′.

Suppose also the key-releasing phase first asks B∗ to announce the encryption
keys K

B∗(w) before A ∗ announces K
A ∗(w′). Suppose Ã ’s input state is |0〉.

The adversary Ã can now act as follows. Ã runs the protocol for CNOT

without performing the Bell measurement until she receives the encryption key
bz from B∗. Clearly, Ã ’s behavior is specious up to that point since she could
re-produce the honest state by just applying the Bell measurement on her input
state stored in register A0. However, given bz she could also in principle compute
the CNOT upon any input state of her choice. This means that the state she
holds after bz has been announced and before applying her Bell measurement
contains information about B∗’s input. On the one hand, when Ã ’s input state
is |0〉 no information whatsoever on B∗’s input state should be available to her
(i.e., in this case CNOT behaves like the identity). On the other hand, had her
input state been |−〉, information about B∗’s state would have become available
since the control and target wires exchange their roles when the input states are
in the Hadamard basis. However, when Ã ’s input state is |0〉, any simulation of
her view can only call the ideal functionality with input state |0〉. It follows that
no simulator can reproduce Ã ’s state right after the announcement of bz.

6 Main Result and Open Questions

Putting Lemma E.1 and Lemma E.2 together gives the desired result:

Theorem 6.1 (Main Result). Protocol PO
U is statistically private against any

statistically specious quantum adversary and for any U ∈ U(A0⊗B0). If U is in
the Clifford group then the only non-trivial oracle call in O is one call to an ideal
SWAP. If U is not in the Clifford group then O contains an additional oracle
call to and-box for each R-gate in the circuit for U .

It should be mentioned that it is not too difficult to modify our protocol in
order to privately evaluate quantum operations rather than only unitary trans-
forms. Classical two party computation together with the fact that quantum
operations can be viewed as unitaries acting in larger spaces can be used to
achieve this extra functionality. Privacy can be preserved by keeping these extra
registers encrypted after the execution of the protocol. We leave this discussion
to the full version of the paper.

A few interesting questions remain open:

– It would be interesting to know whether there exists a unitary transform that
can act as a universal primitive for private two-party evaluation of unitaries.
This would allow to determine whether classical cryptographic assumptions
are required for this task.

– Finally, is there a way to compile quantum protocols secure against specious
adversaries into protocols secure against arbitrary quantum adversaries? An
affirmative answer would allow to simplify greatly the design of quantum
protocols. Are extra assumptions needed to preserve privacy against any
adversary?

7 Acknowledgements

The authors would like to thank the referees for their comments and suggestions.
We would also like to thank Thomas Pedersen for numerous helpful discussions
in the early stage of this work.

References

1. Physical Review Letters, volume 78, April 1997.

2. D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant
error. In 29th Annual ACM Symposium on Theory of Computing (STOC), pages
176–188, 1997.

3. Andris Ambainis, Michele Mosca, Alain Tapp, and Ronald de Wolf. Private quan-
tum channels. In 41st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 547–553, 2000.

4. Michael Ben-Or, Claude Crépeau, Daniel Gottesman, Avinatan Hassidim, and
Adam Smith. Secure multiparty quantum computation with (only) a strict honest
majority. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 249–260, 2006.

5. Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres,
andWilliam K. Wootters. Teleporting an unknown quantum state via dual classical
and einstein-podolsky-rosen channels. Physical Review Letters, 68(21):1895–1899,
March 1993.

6. Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum
computation, December 2009. available at http://arxiv.org/abs/0807.4154.

7. Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, 2000.

8. Claude Crépeau, Daniel Gottesman, and Adam Smith. Secure multi-party quan-
tum computation. In 34th Annual ACM Symposium on Theory of Computing
(STOC), pages 643–652, 2002.

9. Ivan B. Damg̊ard, Serge Fehr, Carolin Lunemann, Louis Salvail, and Chris-
tian Schaffner. Improving the security of quantum protocols via commit-and-
open. In Advances in Cryptology—CRYPTO ’09, volume 5677 of Lecture Notes
in Computer Science, pages 408–427. Springer, 2009. Full version available at:
http://arxiv.org/abs/0902.3918.

10. Daniel Gottesman and Isaac L. Chuang. Demonstrating the viability of universal
quantum computation using teleportation and single-qubit operations. Nature,
402:390–393, November 1999.

11. Daniel Gottesman and Isaac L. Chuang. Quantum teleportation is a universal
computational primitive. http://arxiv.org/abs/quant-ph/9908010, August 1999.

12. G. Gutoski and J. Watrous. Quantum interactive proofs with competing provers.
In 22nd Annual Symposium on Theoretical Aspects of Computer Science (STACS),
volume 3404 of Lecture Notes in Computer Science, pages 605–616. Springer, March
2005.

13. Joe Kilian. Founding cryptography on oblivious transfer. In 20th Annual ACM
Symposium on Theory of Computing (STOC), pages 20–31, 1988.

14. Hoi-Kwong Lo. Insecurity of quantum secure computations. Physical Review A,
56(2):1154–1162, 1997.

15. Hoi-Kwong Lo and Hoi Fung Chau. Is quantum bit commitment really possible?
In Physical Review Letters [1], pages 3410–3413.

16. Dominic Mayers. Unconditionally secure quantum bit commitment is impossible.
In Physical Review Letters [1], pages 3414–3417.

17. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge university press, 2000.

18. Sandu Popescu and Daniel Rohrlich. Quantum nonlocality as an axiom. Founda-
tions of Physics, 24(3):379–385, 1994.

19. Sandu Popescu and Daniel Rohrlich. Causality and nonlocality as axioms
for quantum mechanics. In symposium on Causality and Locality in Mod-
ern Physics and Astronomy: Open Questions and Possible Solutions, 1997.
http://arxiv.org/abs/quant-ph/9709026.

20. Renato Renner and Robert König. Universally composable privacy amplification
against quantum adversaries. In Theory of Cryptography Conference (TCC), vol-
ume 3378 of Lecture Notes in Computer Science, pages 407–425. Springer, 2005.

21. Louis Salvail, Miroslava Sotáková, and Christian Schaffner. On the power of two-
party quantum cryptography. In Advances in Cryptology—ASIACRYPT 2009,
volume 5912 of Lecture Notes in Computer Science, pages 70–87. Springer, 2009.

22. Peter W. Shor. Fault-tolerant quantum computation. In 37th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 56–65, 1996.

23. Adam Smith. Techniques for secure distributed computing with quantum data.
Presented at the Field’s institute Quantum Cryptography and Computing work-
shop, October, 2006.

24. John Watrous. Limits on the power of quantum statistical zero-knowledge. In 43rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
459–468, 2002.

25. Stefan Wolf and Jürg Wullschleger. Oblivious transfer and quantum non-locality.
In International Symposium on Information Theory (ISIT 2005), pages 1745–1748,
2005.

26. Andrew Yao. How to generate and exchange secrets. In 27th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), 1986.

A Commutations Rules

X =

[
0 1
1 0

]
, Y =

[
0 −1
1 0

]
, Z =

[
1 0
0 −1

]
,

P =

[
1 0
0 i

]
, H =

1√
2

[
1 1
1 −1

]
, R =

[
1 0

0 eiπ/4

]
,

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

B Classical Definition of a Specious Adversary

In this section we briefly discuss the definition of an specious adversary and the
definition of security against such an adversary, and we compare it to the notion
of a semi-honest classical adversary to illustrate the difference.

X H = H Z

(a) HX = ZH

X P = P Y

(b) PX = Y P

X R = R P Y

(c) RX = e−iπ/4Y PR

X • = • X

�������� �������� X

(d) CNOT (X ⊗ I) = (X ⊗
X)CNOT

• = •

X �������� �������� X

(e) CNOT (I ⊗ X) = (I ⊗
X)CNOT

Fig. 6. Commutation relations for X.

B.1 Specious Adversary

As usual we let an n-party function (y1, . . . , yn) = f(x1, . . . , xn) define n func-
tions yi = fi(x1, . . . , xn).

For our purpose, an n-party protocol π = (π1, . . . , πn) consists of n parties
πi connected by secure channels. If the protocol is for the h-hybrid model, for an
n-party function h, there are additionally some designated rounds where each
πi must specify an input ai to h. Then (b1, . . . , bn) = h(a1, . . . , an) is computed
and each πi is given back bi. A receiving point in a protocol is a point where the
parties just exchanged messages or just received outputs bi from h.

For an n-party protocol π and for H ⊂ {1, . . . , n} we denote by πH the set
{πi}i∈H of parties indexed by i ∈ H .

For an n-party protocol π and for C ⊂ {1, . . . , n} we denote by π̃C an adver-
sary for π acting on behalf of parties indexed by i ∈ C. It receives the inputs,
randomness and messages of all parties indexed by i ∈ C and decides what
messages they should send. By(πC̄ , π̃C) we mean the protocol consisting of the
parties πi, i 6∈ C, running with the adversary π̃C .

We use the following notation for vectors. We sometimes identify a vector
v = (v1, . . . , vn) with the set {(i, vi)}i∈{1,...,n}. For S ⊂ {1, . . . , n} we let vS be
the vector v restricted to indices in S, formally vS = {(i, vi)}i∈S . For S1, S2 ⊂
{1, . . . , n} with S1 ∩ S2 = ∅ we let (vS1

, vS2
) = vS1

∪ vS2
.

Definition B.1 (execution of (corrupted) protocol). For an n-party proto-
col π and input x = (x1, . . . , xn), the distribution π(x) is defined as follows: sam-
ple r = (r1, . . . , rn) uniformly at random. Run π on input x and randomness r.
Let y = (y1, . . . , yn), where yi is the output of party πi, and let π(x) = (x, y). For

Z H = H X

(a) HZ = XH

Z P = P Z

(b) PZ = ZP

Z R = R Z

(c) RZ = ZR

Z • = • Z

�������� ��������

(d) CNOT (Z ⊗ I) = (Z ⊗
I)CNOT

• = • Z

Z �������� �������� Z

(e) CNOT (I ⊗ Z) = (Z ⊗
Z)CNOT

Fig. 7. Commutation relations for Z.

an n-party protocol π, input (x1, . . . , xn), subset C ⊂ {1, . . . , n}, adversary π̃C
and π̃ = (πC̄ , π̃C), the distribution π̃(x) is defined as follows: Sample r̃i, i ∈ C,
uniformly at random. Sample ri, i 6∈ C, uniformly at random. Let π̃ = (πC̄ , π̃C).
Run π̃ on input x and randomness (rC̄ , r̃C). Let ỹC be the output of the adver-
sary, let yC̄ be the outputs of the parties πC̄ , and let π̃(x) = (x, (yC̄ , ỹC)).

Definition B.2 (specious adversary). Let π be an n-party protocol, let C ⊂
{1, . . . , n}, let π̃C be an adversary, let π̃ = (πC̄ , π̃C). We say that π̃C is specious
in π if there exists a poly-time view simulator V such that for all inputs x =
(x1, . . . , xn) and for all receiving points p in π̃ it holds that D(p) and D̃(p) have
the same distribution, where the distribution D(p) is defined as follows: sample
r = (r1, . . . , rn) uniformly at random. Run π on input x and randomness r until
receiving point p. Let M = (M1, . . . ,Mn), where Mi is the messages sent and
received by party πi, and let D(p) = (x, r,M). The distribution D̃(p) is defined
as follows: Sample ri, i 6∈ C, uniformly at random. Sample r̃i, i ∈ C, uniformly
at random. Run π̃ on input x and randomness (rC̄ , r̃C) until receiving point p.
Let M̃C be the messages sent and received by the adversary π̃C , let MC̄ be the
messages sent and received by parties πC̄ , let (rC ,MC) = V (p, xC , r̃C , M̃C), and
let D̃(p) = (x, (rC , rC̄), (MC ,MC̄)).

Definition B.3 (specious security). Let π be an n-party protocol and let f
be an n-party function. By δf we denote the dummy protocol for f : it runs in the
f -hybrid model and party δfi on input xi sends xi to f , waits for the output yi
from f , outputs yi and terminates. We say that π is a specious implementation
of f against corruptions from adversary structure C if for all C ∈ C and all

adversaries π̃C which are specious in π there exists an adversary δ̃
f
C which is

specious in δf such that (πC̄ , π̃C)(x) = (δf
C̄
, δ̃
f
C)(x).

The adversary δ̃fC is also called the simulator. It gets the input xC and can
then choose alternative inputs x′C . Then it receives y′C , where y

′ = f(xC̄ , x
′
C),

and outputs some ỹC . In the dummy protocol, there is only one receiving point,
namely after the ideal evaluation of f . So, for δ̃fC to be specious in δf it needs
only be able to compute the correct view at this point. The correct view is yC
for y = f(x), so a specious δ̃fC (in δf) can by definition compute yC from xC , x

′
C

and y′C (and its own randomness if it is randomized). In words, being specious
in the ideal process means that for all inputs x you give an alternative input to
f which allows to reconstruct the right output.

Note that if we consider an n-party function f where all parties receive the
same output, fi = fj , then it is clear that for δ̃fC to be specious it should hold
that f(xC̄ , x̃C) = f(x) for all inputs x, as f(xC̄ , x̃C) is included in the messages

received by δf
C̄
. In words, for a function f with common output, being specious

in the ideal process means that for all inputs x you give an alternative input to f
which makes f give the right output; You can therefore only make insignificant
changes to your true input.

B.2 Specious Adversaries can be Stronger than Semi-Honest
Adversaries

In some settings a specious adversary is strictly stronger than a semi-honest ad-
versary. We demonstrate this by first giving a protocol for one-out-of-two obliv-
ious transfer (OT) which is secure against a poly-time semi-honest adversary,
but insecure against a poly-time specious adversary. We then show that there
exists a function f and a protocol π which is a perfectly secure implementation
of f against an unbounded semi-honest adversary in the OT-hybrid model, but
insecure against even a poly-time specious adversary. The first example exploits
that a specious adversary can prepare its randomness in any way it wants. The
second example exploits that a specious adversary can provide any input it wants
to ideal functionalities (in our case the OT’s of the OT-hybrid model) as long
as it can later make it look as if it gave the right input.

Theorem B.4. Under the computational assumption given below, there exists a
protocol which is a secure implementation of oblivious transfer against a static,
poly-time semi-honest adversary but which is insecure against a static, poly-time
specious adversary.

Assume that we have a family of trapdoor permutations, where the descrip-
tion of a random permutation is a random string. More formally:

– on input n ∈ N the generator G outputs (i, t), where i is uniformly random
in some {0, 1}ℓ, and G runs in poly-time in n.

– Each index i ∈ {0, 1}ℓ defines a permutation pi : {0, 1}n → {0, 1}n. Given
i ∈ {0, 1}ℓ and x ∈ {0, 1}n one can compute y = pi(x) in poly-time in n.

– Given t, where (i, t) ← G(n) and y ∈ {0, 1}n one can compute x = p−1
i (y)

in poly-time in n.
– It holds for all poly-time algorithms A that the probability that it outputs

p−1
i (y) on input (i, y), where (i, t) ← G(n) and y

$∈ {0, 1}n, is negligible in
n.

On security parameter n the protocol runs as follows:

1. The sender S has input two messages m0,m1 ∈ {0, 1}.
2. The receiver R has input a choice bit c ∈ {0, 1}.
3. R samples (ic, tc)← G(n) and i1−c

$∈ {0, 1}|ic| and sends (i0, i1) to S.

4. S samples x0, x1
$∈ {0, 1}n and sends (pi0(x0), H(x0)⊕m0) and (pi1(x1), H(x1)⊕

m1), where H is a (possibly randomized) hard-core bit for p.
5. R uses tc to compute mc = H(p−1

ic
(pic(xc)))⊕ (H(xc)⊕mc).

It is straight-forward to prove that this protocol is computationally secure
against a static semi-honest adversary in the stand-alone model[7]: The security
for the receiver is perfect, and the receiver picks i1−c as to not learn t1−c and
hence H(x1−c)⊕m1−c hides m1−c in the sense of semantic security.

On the other hand it is clear that the protocol is not secure against a specious
adversary: A specious adversary runs the protocol honestly, except that it pre-
pares i1−c by sampling (i1−c, t1−c) ← G(n) and then uses t1−c to learn m1−c.
The view simulator V adds i1−c to the random string r such that an execution

of R on r samples the uniformly random i1−c
$∈ {0, 1}ℓ.

Theorem B.5. There exists a function f and a protocol π such that π is a per-
fectly secure implementation of f in the OT hybrid model against a static, un-
bounded semi-honest adversary, but insecure against a static, poly-time specious
adversary.

Proof. We look at a function (a, b) 7→ (x, y). Let a be a bit, let b = (b0, b1) be
two bits, and let x = ba and y = ǫ. Consider the following protocol π: it contains
two applications of OT, where in both B will offer input (b0, b1) and where in
both A will input a. At the end A outputs ba.

It is trivial that π is perfectly secure against a semi-honest adversary. It is,
on the other hand, also clear that π is not secure against a specious adversary,
as Ã can use selection bit 1−a in the second OT to learn b1−a and then output
(b0, b1). In the transcript α of received messages the view simulator V simply
replaces b1−a by ba as the message received from the second OT, so Ã is indeed
specious. It is also clear that no simulator for the ideal model (even if it was
allowed active corruptions) can always output both b0 and b1. ⊓⊔

C Proof of Theorem 4.1

Suppose that there exists an ε-correct, ε-private protocol in the bare model for
SWAP for sufficiently small ε; we will show that this implies that one of the

two players must lose information upon receiving a message, which is clearly
impossible.

We will consider the following particular pure input state: |ϕ〉 := |Ψ0,0〉A0RA⊗
|Ψ0,0〉B0RB , a maximally entangled state between A0 ⊗ B0 and the reference
system RA ⊗ RB that is broken down into two subsystems for convenience.
Furthermore, we will consider the “purified” versions of the honest players for
this protocol; in other words, we will assume that the super-operators A1, . . . ,An

and B1, . . . ,Bn are in fact linear isometries and that therefore the players never
discard any information unless they have to send it to the other party. The global
state ρi(ϕ) after step i is therefore a pure state on Ai ⊗ Bi ⊗RA ⊗RB.

After step i of the protocol (i.e., after the ith message has been sent), Alice’s
state must either depend only on her own original input (if qi = 0 for her
simulator), or on Bob’s original input (if qi = 1). More precisely, by the definition
of privacy (Definition 3.4), we have that

∆ (νi(A , ϕ), trBi
[ρi(ϕ)]) ≤ ε ,

where νi(A , ϕ) is A ’s simulated view after step i and ρi(ϕ) is the global state
in the real protocol after step i. Now, suppose that qi = 0, and let |ξ〉 ∈ Ai ⊗
RA ⊗R′

B ⊗Z be a purification of νi(A , ϕ) with Z being the purifying system,

and RB renamed for upcoming technical reasons. The pure state |ξ〉⊗|Ψ0,0〉RBB0

has the same reduced density matrix as νi(A , ϕ) on Ai ⊗RA ⊗RB. Hence, by
Uhlmann’s theorem, there exists a linear isometry V : Bi → B0 ⊗ Z ⊗R′

B such
that

V νi(A , ϕ)V † = |ξ〉〈ξ| ⊗ |Ψ0,0〉〈Ψ0,0|B0RB

and hence

∆
(
V ρi(ϕ)V

†, |ξ〉〈ξ| ⊗ |Ψ0,0〉〈Ψ0,0|B0RB

)
≤
√
2ε .

This means that if qi = 0, then Bob is still capable of reconstructing his own
input state after step i by applying V to his working register. Clearly, this means
that q′i = 0 (i.e., Bob’s simulator must also not call SWAP), and therefore, by
the same argument, Alice must also be able to reconstruct her own input with
an isometry VA : Ai → B0 ⊗ Z ⊗R′

A. The same argument also holds if qi = 1:
we then conclude that q′i = 1 and that Alice and Bob must have each other’s
inputs; no intermediate situation is possible. We conclude that, at every step i
of the protocol, qi = q′i.

Now, before the protocol starts, Alice must have her input, and Bob must
have his, hence, q0 = q′0 = 0. At the end, the two inputs must have been swapped,
which means that qn = q′n = 1; there must therefore be a step k in the protocol
after which the two inputs are swapped but not before, meaning that qk = 1 and
qk−1 = 0. But at each step, only one player receives information, which means
that at this step k, the player who received the message must lose the ability to
reconstruct his own input, which is clearly impossible. ⊓⊔

D The Rushing Lemma

Specious adversaries are guaranteed to get the correct output state after the
execution of a correct protocol. This implies that at the end of the protocol, any
extra working registers (used to implement its attack) of any specious adversary
are independent of the joint input state of the computation. In other words, no
extra information is available to the adversary at the very end of the protocol. If
the adversary can break the privacy of a protocol for the two party evaluation of
unitaries then it must do so before the last step. The adversary must therefore
rush to break privacy before the protocol ends.

Lemma D.1 (Rushing Lemma). Let ΠO
U = (A ,B, n) be a correct protocol

for the two party evaluation of U . Let Ã be any ε–specious adversary in ΠO
U .

Then, there exist an isometry T : Ãn → An ⊗ Â and a mixed state ˜̺ ∈ D(Â)
such that for all joint input states ρin ∈ D(A0 ⊗ B0 ⊗R),

∆
(
(T ⊗ 11Bn⊗R)

(
[Ã ⊛ B](ρin)

)
(V † ⊗ 11Bn⊗R), ˜̺⊗ (U ⊗ 11R)ρin(U

† ⊗ 11R)
)
≤ 12

√
2ε.

(7)
The same also applies to any ε–specious adversary B̃: there exists a T : B̃n →
Bn ⊗ B̂ and a ˜̺∈ D(B̂) such that

∆
(
(T ⊗ 11An⊗R)

(
[A ⊛ B̃](ρin)

)
(V † ⊗ 11An⊗R), ˜̺⊗ (U ⊗ 11R)ρin(U

† ⊗ 11R)
)
≤ 12

√
2ε,

(8)
for every ρin.

Proof. We shall only prove the statement for an ε–specious Ã ; the statement for
an ε–specious B̃ is identical. Furthermore, by convexity, it is sufficient to prove
the theorem for pure ρin.

Consider any pair of pure input states |ψ1〉 and |ψ2〉 in A0⊗B0⊗R. Now, let
R′ := R ⊗R2, where R2 = span{|1〉, |2〉} represents a single qubit, and define
the state |ψ〉 := 1√

2
(|ψ1〉|1〉+ |ψ2〉|2〉) ∈ A0 ⊗B0 ⊗R′. Note that trR2

(|ψ〉〈ψ|) =
1
2 |ψ1〉〈ψ1|+ 1

2 |ψ2〉〈ψ2|. Due to the correctness of the protocol and to the specious-

ness of Ã , there exists a quantum operation Tn : L(Ãn)→ L(An) such that

∆
(
(Tn ⊗ 11L(Bn⊗R′))([Ã ⊛ B](|ψ〉〈ψ|)), (U ⊗ 11R′)|ψ〉〈ψ|(U ⊗ 11R′)†

)
≤ 2ε.

Now, consider any isometry T : Ãn → An ⊗ Â such that Tn(σ) = trÂ(TσT
†)

for every σ ∈ L(Ãn) — in other words, any operation that implements Tn while

keeping any information that would otherwise be destroyed in Â. By Uhlmann’s
theorem, there must exist a state ˜̺∈ D(Â) such that

∆
(
(T ⊗ 11Bn⊗R′)

(
[Ã ⊛ B](|ψ〉〈ψ|)

)
(T † ⊗ 11Bn⊗R′), ˜̺⊗ (U ⊗ 11R′)|ψ〉〈ψ|(U † ⊗ 11R′)

)
≤ 2
√
2ε.

Now, the trace distance is monotonous under completely positive, trace non-
increasing maps. In particular, we can apply the projector P1 = 11L(An⊗Bn⊗R)⊗

|1〉〈1| to both states in the above trace distance and the inequality will still hold.
In other words, we project both states onto |1〉 on R2, thereby turning |ψ〉〈ψ|
into 1

2 |ψ1〉〈ψ1|. Factoring out the 1
2 , we get that

∆
(
(T ⊗ 11Bn⊗R)

(
[Ã ⊛ B](|ψ1〉〈ψ1|)

)
(T ⊗ 11Bn⊗R)†, ˜̺⊗ (U ⊗ 11R)|ψ1〉〈ψ1|(U † ⊗ 11R)

)
≤ 4
√
2ε.

Likewise, projecting onto |2〉 yields

∆
(
(T ⊗ 11Bn⊗R)

(
[Ã ⊛ B](|ψ2〉〈ψ2|)

)
(T ⊗ 11Bn⊗R)†, ˜̺⊗ (U ⊗ 11R)|ψ2〉〈ψ2|(U † ⊗ 11R)

)
≤ 4
√
2ε.

Our only problem at this point is that ˜̺ in principle depends on |ψ1〉 and |ψ2〉.
However, repeating the above argument with |ψ1〉 and |ψ3〉 for any |ψ3〉 will yield
a ˜̺′ with

∆
(
(T ⊗ 11Bn⊗R)

(
[Ã ⊛ B](|ψ1〉〈ψ1|)

)
(T⊗11Bn⊗R)†, ˜̺′ ⊗ (U ⊗ 11R)|ψ1〉〈ψ1|(U † ⊗ 11R)

)
≤ 4
√
2ε

and hence, by the triangle inequality, ∆(˜̺, ˜̺′) ≤ 8
√
2ε. Therefore, for any state

|ϕ〉 ∈ A0 ⊗ B0 ⊗R, there exists a state ρ̃ ∈ Â with ∆(ρ̃, ˜̺) ≤ 8
√
2ε such that

∆
(
(T ⊗ 11Bn⊗R)

(
[Ã ⊛ B](|ϕ〉〈ϕ|)

)
(T ⊗ 11Bn⊗R)†, ρ̃⊗ (U ⊗ 11R)|ϕ〉〈ϕ|(U † ⊗ 11R)

)
≤ 4
√
2ε.

The lemma then follows by the triangle inequality:

∆
(
(T ⊗ 11Bn⊗R)

(
[Ã ⊛ B](|ϕ〉〈ϕ|)

)
(T ⊗ 11Bn⊗R)†, ˜̺⊗ (U ⊗ 11R)|ϕ〉〈ϕ|(U † ⊗ 11R)

)

≤ ∆
(
(T ⊗ 11Bn⊗R)

(
[Ã ⊛ B](|ϕ〉〈ϕ|)

)
(T ⊗ 11Bn⊗R)†, ρ̃⊗ (U ⊗ 11R)|ϕ〉〈ϕ|(U † ⊗ 11R)

)
+∆(ρ̃, ˜̺)

≤ 4
√
2ε+ 8

√
2ε = 12

√
2ε

⊓⊔

E Proof of Privacy

In the following we prove the privacy PO
U = (A ∗,B∗, nU + 1) against specious

quantum adversaries and that for any unitary U ∈ U(A0⊗B0) represented by a
quantum circuit CU with u gates in UG. We provide families of simulators S

Ã

and S
B̃

for any specious quantum adversaries Ã and B̃ respectively. Since the
protocol has nU oracle calls, it is sufficient to provide simulators for each of these
nU steps since the final quantum operations (i.e., AnU+1 and BnU+1) are local.
No simulator for a round occurring before the start of the key-releasing phase
needs to call the ideal functionality for U . The output of these simulators will
be shown identical to the adversary’s view (i.e., the simulation is perfect) even
if the adversary is arbitrarily malicious. Only the last simulator of each family
needs to call to the ideal functionality for U . The last simulation produces a
state that is essentially

√
ε–close to adversary’s view provided it is ε–specious.

First, we show privacy of the evaluation phase before addressing privacy of
the key-releasing phase. Privacy of the entire protocol will then follow.

E.1 Privacy of the Evaluation Phase

We start by showing privacy of protocol PO
U = (A ∗,B∗, nU + 1) at all steps

1 ≤ i ≤ nU − 1 occurring during the evaluation phase of quantum circuit CU
implementing U with u gates in UG. The last step of the evaluation phase is
nU − 1 since only one oracle call is left to complete the execution. This phase
is the easy part of the simulation since all transmissions are independent of the
joint input state ρin ∈ D(A0 ⊗ B0 ⊗R). The theorem below provides a perfect
simulation of any adversary’s view generated during the evaluation of any gate
in CU . No call to the ideal functionality for U is required.

Theorem E.1 (Privacy of the Evaluation). PO
U = (A ∗,B∗, nU +1) admits

simulators S (Ã) and S (B̃) that do not call the ideal functionality for U ∈
U(A0 ⊗ B0) such that for any joint input state ρin ∈ D(A0 ⊗ B0 ⊗ R), every
1 ≤ i ≤ nU − 1:

∆
(
νi(Ã , ρin), trBi

(
ρ̃i(Ã , ρin)

))
= 0 and ∆

(
νi(B̃, ρin), trAi

(
ρ̃i(B̃, ρin)

))
= 0,

(9)
This holds against any adversaries Ã and B̃, not necessarily specious.

Proof (Sketch). Without loss of generality, we prove privacy only against ad-
versary Ã . The protocol being symmetric, privacy against B̃ follows. The proof
proceeds by induction on the current gate Gj in the circuit CU := GuGu−1 . . .G1

evaluated in PO
U . We provide simulators S ∗

j producing Ã ’s view after the evalua-

tion of Gj . During the execution of Gj , Ã may receive at most one message from
B and may call the ideal and-box at most once (when Gj = R). It means that
during the evaluation of Gj , no, one, or two simulations will be needed since it
consists in no, one or two oracle calls out of which at most one is non-trivial. Let
s[j] ∈ {0, 1, 2} for 1 ≤ j ≤ u be the number of steps to be simulated during the
evaluation of Gj . Let i[0] := 0 and i[j] = s[j]+i[j−1] for 1 ≤ j ≤ u be all steps to
simulate for the evaluation of GjGj−1 · · ·G1. In order to fulfill privacy as defined

in Definition 3.3, each simulator S ∗
j must be converted into Si[j−1]+1 ∈ S (Ã)

if i[j] = i[j−1]+1 (i.e., Gj requires only one step to be simulated and this step is

a message from B∗) and into {Si[j−1]+1,Si[j−1]+2} ⊆ S (Ã) if i[j] = i[j−1]+2
(i.e., Gj = R and therefore requires two simulation steps: one message from B∗

and one call to and-box). This conversion is performed the following way. We let
Si[j−1]+1 run S ∗

j until the i[j−1]+1–th step is reached. This step is necessarily

a message transmitted from B∗ to Ã . If i[j] = i[j−1]+2 then Si[j] := S ∗
j which

corresponds to the simulation of Ã ’s view after the call to and-box. We now
provide S ∗

j for each gate Gj in CU . Notice that we do not explicitly simulates a

communication from Ã to B∗ since simulating this step can be performed from
the simulation of the previous step together with Ã quantum operations at the
current step.

S ∗
1 works as follows. It runs Ã on her part of the joint input state ρin ∈

D(A0 ⊗B0⊗R) until the first message from the other party is expected. If gate

G1 does not involve any transmission from B∗ then the simulation of gate G1 is
over (i.e., G1 is in {X,Y, Z,H,P} or a CNOT applied on local wires). Otherwise,
it prepares the first message sent from B∗. Of course, this message depends on
G1. We have the following three cases to address:

CNOT-gate: Ã holds the target wire while B∗ holds the control wire. This case
is the only one where Ã receives something from B∗ during the computation
of a CNOT-gate. S ∗

1 then works the obvious way in order to generate the
first transmission from B∗ to Ã :
– S ∗

1 prepares |ξ〉 = (112 ⊗ CNOT ⊗ 112)|Ψ0,0〉W ⊗ |Ψ0,0〉A
O

1 where W is a
new working register for the simulator. S ∗

1 then sends register AO
1 to

Ã . This simulates B∗’s transmission to Ã .
– The transmission prepared by S ∗

1 is in the same state as when Ã inter-
acts with B∗ upon any input state ρin. It follows that the output of S ∗

1

satisfies:
∆
(
ν1(Ã , ρin), trB1

(
ρ̃1(Ã , ρin)

))
= 0,

for all input states ρin ∈ D(A0 ⊗ B0 ⊗R).
R-gate: Ã holds the register upon which the gate is executed. In this case, S ∗

1

provides Ã with B∗’s as follows:
– S ∗

1 prepares and sends 112 ∈ D(AO
1) to Ã .

– S ∗
1 then call the ideal and-box with a random input bit. Notice that

Ã cannot distinguish this behavior from B∗’s since an AND-box is non-
signaling and can therefore not be used by one party to extract any
information about the other party’s input state (i.e., the output of one
party can be generated before the input of the other party has been
provided to the box).

– As in the case where Ã interacts with B∗, the first message received
from S ∗

1 is in state 112 and Ã ’s output of and-box is independent of
B’s view. It follows that,

∆
(
ν1(Ã , ρin), trB1

(
ρ̃1(Ã , ρin)

))
= 0,

for all input states ρin ∈ D(A0 ⊗ B0 ⊗R).
R-gate: B∗ holds the register upon which the gate is executed. S ∗

1 provides Ã

with B∗’s first transmission the same way than in the previous case:
– S ∗

1 prepares and sends 112 ∈ D(AO
1) to Ã . This simulates B∗ transmis-

sion to Ã .
– S ∗

1 provides the and-box with a fresh random bit as for in the previous
case.

– As in the case where Ã interacts with B∗, the first message received
from S ∗

1 is in state 112 and Ã ’s output of and-box is independent of
B∗’s view. It follows that,

∆
(
ν1(Ã , ρin), trB1

(
ρ̃1(Ã , ρin)

))
= 0,

for all input states ρin ∈ D(A0 ⊗ B0 ⊗R).

Since the three cases above exhaust all possibilities for a transmission from B

to Ã , S ∗
1 satisfies (9).

Now, suppose by the induction hypothesis that S ∗
j−1 simulates perfectly up

to and including the j − 1-th step of the adversary Ã for 2 ≤ j ≤ nU − 1. We
now show how to construct S ∗

j simulating perfectly up to an including gate

Gj . We construct S ∗
j the obvious way. S ∗

j runs S ∗
j−1 and then simulates Ã

until B∗’s next transmission occurring during the evaluation of Gj . If no such
message occurs during the evaluation of Gj then S ∗

j is done. Otherwise, the

same three cases described above have to be considered. S ∗
j provides Ã with

B∗’s transmission exactly the same way than for S ∗
1 . The result follows easily.

⊓⊔

E.2 Privacy of the Key-Releasing Phase

In order to conclude the privacyof PO
U , families S

Ã
and S

B̃
need one more

simulator each: SnU
∈ S (Ã) and S ′

nU
∈ S (B̃) corresponding to the sim-

ulation of the key-releasing phase. This time, these simulators need to query
the ideal functionality for U and also need the adversary to be specious. We
show that privacy of the key-releasing phase follows from the “Rushing Lemma”
(Lemma D.1). The lemma tells us that as soon as the output is available to the
honest player, it is too late for specious adversaries to break privacy. This is the
role of the ideal SWAP to make sure that before the adversary gets the output
of the computation, the information needed by the honest player to recover its
own output has been given away by the adversary.

It should be mentioned that we’re not explicitly simulating the final state of
the adversary since simulating the SWAP allows also to get Ã ’s final state by
simply adding Ã ’s last quantum operation to the simulated view. We therefore
set step nU in PO

U to be the step reached after the call to SWAP. This abuses

the notation a bit since after SWAP, Ã and B∗ must each apply a final quan-
tum operation with no more oracle call. We’ll denote by ÃnU+1 and B∗

nU+1

these last operations allowing to reconstruct the output of the computation (no
comunication).

Lemma E.2. For any ε-specious quantum adversaries Ã and B̃ against PO
U =

(A ∗,B∗, nU + 1), there exist simulators SnU
∈ S (Ã) and S ′

nU
∈ S (B̃) such

that for all ρin ∈ D(A0 ⊗ B0 ⊗R),

∆
(
νnU

(Ã , ρin), trBnU

(
ρ̃nU

(Ã , ρin)
))
≤ 24

√
2ε and

∆
(
νnU

(B̃, ρin), trAnU

(
ρ̃nU

(B̃, ρin)
))
≤ 24

√
2ε .

(10)

Simulators SnU
and S ′

nU
call the ideal functionality for U and imply the simu-

lations of step nU + 1 as well.

Proof (sketch). Once again, we only prove privacy against adversary Ã . The
privacy against B̃ follows directly since the key-releasing phase is completely
symmetric. The idea behind the proof is to run Ã and B∗ upon a dummy joint
input state until the end of the protocol. Since the adversary is specious, it can
re-produce the honest state at the end. The Rushing Lemma tells us that at this
point, the output of the computation is essentially in tensor product with all the
other registers. Moreover, the state of all other registers is independent of the
input state upon which the protocol is executed. The dummy output can then
be replaced by the output of the ideal functionality for U before Ã goes back
to the stage reached just after SWAP.

More formally, we define a simulator SnU
∈ S (Ã) producing Ã ’s view just

after the call to SWAP. Let ÃSWAP ∈ L(A0, ÃnU
) and B∗

SWAP
∈ L(B0, B̃nU

) be

the quantum operations run by Ã and B∗ respectively until SWAP is executed.
Notice that at this point, Ã ’s and B∗’s registers do not have any further oracle
registers since no more communication or oracle call will take place. Let ÃnU

∈
L(ÃnU

, ÃnU+1 ⊗Z) be the isometry implementing Ã ’s last quantum operation
taking place after the call to SWAP (and producing the outcome) and let BnU

∈
L(BnU

,BnU+1⊗W) be the isometry implementing B∗’s last quantum operation.
Finally, let T ∈ L(ÃnU+1,AnU+1 ⊗ Â) be the isometry implementing TnU+1 as
defined in Lemma D.1 (i.e., the transcript produced at the very end of the
protocol). As usual , let ρin ∈ D(A0 ⊗ B0 ⊗ R) be the joint input state of PO

U .
The simulator SnU

performs the following operations:

1. SnU
generates the quantum state σ(φ∗) = [ÃSWAP ⊛ B∗

SWAP
](|φ∗〉〈φ∗|) ∈

D(ÃnU
⊗BnU

) implementing Ã interacting with B∗ until SWAP is applied.
The execution is performed upon a predetermined (dummy) arbitrary input
state |φ∗〉 ∈ A0 ⊗ B0.

2. SnU
sets σ′(φ∗) = (T ÃnU

⊗BnU
) ·σ(φ∗) ∈ D(AnU+1⊗BnU+1⊗Z⊗Â⊗W).

3. SnU
replaces register AnU+1 ≈ A0 by A ∗’s output of the ideal functionality

for U evaluated upon ρin. That is, SnU
generates the state σ′(ρin) = (U ⊗

11R)ρin(U ⊗ 11R)† ⊗ trAnU+1BnU+1
(σ′(φ∗)) ∈ D(AnU+1 ⊗ BnU+1 ⊗ R ⊗ Z ⊗

Â ⊗W).
4. SnU

finally sets νnU
(Ã , ρin) = trBnU

W((T ÃnU
⊗ 11BnU+1R)† · σ′(ρin)) ∈

D(ÃnU
⊗R).

Notice that execution of the ideal SWAP ensures that the keys swapped are
independent of each other and of the joint input state ρin. This is because for
any input state, all these keys are uniformly distributed bits if they are outcomes
of Bell measurements and otherwise are set to 0. By the Rushing Lemma D.1
and the fact that Ã is ε–specious, we have:

∆
(
trZÂW (σ′(φ∗)) , ˜̺⊗ U |φ∗〉〈φ∗|U †) ≤ 12

√
2ε and

∆
(
(TnU+1 ⊗ 11L(BnU+1))

(
[Ã ⊛ B

∗](ρin)
)
, ˜̺⊗ UρinU †

)
≤ 12

√
2ε.

It follows using the triangle inequality that,

∆
(
(TnU+1 ⊗ 11L(BnU+1))

(
[Ã ⊛ B

∗](ρin)
)
, trZÂW (σ′(ρin))

)
≤ 24

√
2ε. (11)

Using the fact that isometries cannot increase the trace-norm distance and that
(T ÃnU

)† allows Ã to go back from the end of the protocol to the step reached
after SWAP, we get from (11) that:

∆
(
νnU

(Ã , ρin), trBnU

(
ρ̃nU

(Ã , ρin)
))

= ∆
(
(TnU+1 ⊗ 11L(BnU+1))

(
[Ã ⊛ B

∗](ρin)
)
, trZÂW (σ′(ρin))

)

≤ 24
√
2ε.

The statement follows. ⊓⊔

Theorem E.1 and Lemma E.2 imply the privacy of PO
U against specious ad-

versaries and that for any U ∈ U(A0 ⊗ B0) as stated in our main Theorem 6.1.
When U is in the Clifford group, one call to an ideal SWAP is sufficient to en-
sure privacy. Unitaries in the Clifford group are, to some extent, the easy ones
since although an ideal functionality is required for privacy, that functionality is
unitary and belongs to the Clifford group rather than a classical cryptographic
primitive. If U is not in the Clifford group however, one additional call to a
classical and-box is required for each R-gate. This is reminiscent to classical
circuits with and gates where oblivious transfer is required to be able to eval-
uate them privately. In order to implement a classical and-box, commitments
and quantum communication are sufficient and necessary [9, 14].

