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Error probability analysis in quantum tomography: a tool for evaluating experiments
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We expand the scope of the statistical notion of error probability, i.e., how often large deviations
are observed in an experiment, in order to make it directly applicable to quantum tomography. We
verify that the error probability can decrease at most exponentially in the number of trials, derive
the explicit rate that bounds this decrease, and show that a maximum likelihood estimator achieves
this bound. We also show that the statistical notion of identifiability coincides with the tomographic
notion of informational completeness. Our result implies that two quantum tomographic apparatuses
that have the same risk function, (e.g. variance), can have different error probability, and thus
by combining these two approaches we can evaluate, in a reconstruction independent way, the
performance of such experiments more discerningly.

PACS numbers: 03.65.Wj, 03.67.-a, 02.50.Tt, 06.20.Dk

I. INTRODUCTION

Many applications that make use of “quantumness” in
order to outperform their classical counterparts have re-
cently been proposed, especially in the field of quantum
information. One of the main reasons for this increase has
been the dramatic development of experimental technolo-
gies, and many of the proposals have already given rise
to experimentally realizable applications [1]. To confirm
whether or not an apparatus constructed for an applica-
tion works well, we need to compare its performance to a
theoretical model. The standard method used for a thor-
ough such comparison is called quantum tomography [2].
This paper is concerned mainly with the question of how
to evaluate measurement apparatuses used in quantum
tomography.
The theory of quantum tomography consists of ex-

perimental design methods and reconstruction schemes.
Known parts of the experimental apparatus in a quantum
tomographic experiment, (or at least those parts assumed
to be known), are together called the tester. Experimen-
tal design methods are concerned with how good (or bad)
the tester is for estimating the mathematical representa-
tion of the tomographic object (e.g. a quantum state, or
a process). Usually the goodness of the tester is evaluated
by the error of the estimation result from its experimen-
tal data set. In real experiments, we cannot perform an
infinite number trials – we need to estimate the true to-
mographic object from a finite number. This estimation
procedure is called an estimator in statistical estimation
theory and a reconstruction scheme in quantum tomog-
raphy. The error of the estimation result depends upon
the reconstruction scheme, and when evaluating a tester’s

∗ sugiyama@eve.phys.s.u-tokyo.ac.jp
† turner@phys.s.u-tokyo.ac.jp
‡ murao@phys.s.u-tokyo.ac.jp

performance, we usually focus upon the error in the case
where the best reconstruction scheme is used.

Evaluating estimation errors on the reconstructed ob-
ject is a problem of statistical estimation theory. There
are two main approaches; one is to use a risk function
and the other is to use error probability. We measure the
difference between the true object and the estimate by
a loss function. A risk function is the average value of
the loss function. As the number of independent, iden-
tically distributed (iid) trials increases, it is known that
the error, given by the risk function, of any unbiased es-
timator can decrease by at most the Cramér-Rao bound,
and a maximum likelihood estimator achieves the bound
asymptotically [3]. The application of the Cramér-Rao
inequality to quantum tomography is studied in [4–7].
On the other hand, an error probability is the probabil-
ity that large deviations of the loss function are observed.
It has been shown that the error probability can decrease
at most exponentially [8], and under some conditions, the
bound is achieved (asymptotically) by a maximum like-
lihood estimator [9]. However, the explicit form of this
bound has not been shown except for the case where the
estimation setting can be reduced to one parameter esti-
mation or the loss function is a Euclidean norm [10–13].
In general, the estimated object has multiple parameters,
and the choice of the loss function depends upon the pur-
pose of the experiment. A mean squared error can be
unsuitable for some situations, especially those arising
in quantum tomography. In order to be more useful in
practice, the explicit form of the bound is needed in more
generality.

In this paper, by using Sanov’s theorem [14, 15] from
large deviation theory, we derive the error probability in-
equality bounding general loss functions on a finite mul-
tiparameter space. We prove that a maximum likelihood
estimator achieves the equality under some conditions
– that are satisfied in quantum tomography – and give
the explicit form of the lower bound. Our result indi-
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cates that two testers with same value of their risk func-
tions can be different from an error probability viewpoint,
which allows for more discerning comparisons of testers
in quantum tomography. We also show that the required
conditions for our inequality hold not only for tomogra-
phy of quantum states, but also for that of quantum in-
struments [16], which includes process and measurement
tomography as specific cases.
In section II, we overview the theory of quantum to-

mography using state tomography as an example. In
section III, we review classical statistical estimation the-
ory, introducing the necessary aspects of error probabil-
ity theory. In section IV, we give the main theorem and
some analysis – the proof of the theorem is given in the
Appendix. In section V, we discuss some open problems,
and conclude with a summary in section VI.

II. OVERVIEW OF QUANTUM TOMOGRAPHY

Quantum tomography is classified by the tomographic
object to be reconstructed: state tomography [17–19]
treats density operators, which describe states of quan-
tum systems; process tomography [20–24] treats linear,
trace-preserving, and completely positive maps, which
describe deterministic state transitions; POVM tomog-
raphy [25, 26] treats positive operator-valued measures
(POVMs), which are sets of positive-semidefinite oper-
ators describing the probability distributions obtained
by measurements; instrument tomography [16] treats
quantum instruments, which are sets of linear, trace-
decreasing, completely positive maps describing both
probability distributions and state transitions caused by
measurements. Here we briefly overview the theory of
quantum state tomography, for simplicity.
The purpose of quantum state tomography is to iden-

tify the density operator characterizing the state of the
quantum system of interest. Let H and S(H) denote the
Hilbert space corresponding to the system and the set of
all density operators on H, respectively. We assume that
the dimension d = dimH is finite. A density operator
ρ̂ on H can be linearly and bijectively parametrized by
d2 − 1 independent real variables [27, 28], i.e. ρ̂ = ρ̂(s),

where s is in Rd2−1. Let us define the set of all param-

eters S := {s ∈ Rd2−1| ρ̂(s) ∈ S(H)}. Identifying the
true density operator ρ̂ ∈ S(H) is equivalent to identify-

ing the true parameter s ∈ S. Let Π = {Π̂x}x∈Ω denote
the POVM characterizing the tester used in the tomo-
graphic experiment [29], where Ω := {1, . . . ,M}. When
the true density operator is ρ̂(s), the probability distri-
bution ps describing the tomographic experiment is given
by

ps(x) = Tr[ρ̂(s)Π̂x], x ∈ Ω, (1)

where Tr denotes the trace operation with respect to H.
(Note that in subsection IVC a different trace operation,
tr, is introduced.) Suppose that we perform N measure-
ment trials and obtain a data set xN = (x1, . . . , xN ),

where xi ∈ Ω is the outcome observed in the i-th trial.
Let Nx denote the number of times that outcome x oc-
curs in xN , then fN(x) := Nx/N is the relative frequency
of x for the data set xN . In the limit of N = ∞,
the relative frequency is equal to the true probability
ps(x). A tester is called informationally complete if

Tr[ρ̂(s)Π̂x)] = Tr[ρ̂Π̂x] has a unique solution ρ̂ for ar-
bitrary ρ̂(s) ∈ S(H) [30]. This condition is equivalent
to that of the tester POVM Π being a basis for the set
of all Hermitian matrices on H. For finite N , the rela-
tive frequency and true probability are generally not the
same, i.e., there is unavoidable statistical error, and we
need to choose an estimation procedure that takes the
experimental result xN to a density operator, i.e., a re-
construction scheme.
Reconstruction schemes are concerned with how best

to derive the mathematical representation of the tomo-
graphic object from the obtained experimental data, and
are called estimators in statistical estimation theory,
where the analysis of the estimation precision (or esti-
mation error) is very important. In actual experiments,
there are two sources of imprecision: statistical errors and
systematic errors. As mentioned above, statistical error
is caused by the finiteness of the total number of measure-
ment trials, and is unavoidable in principle. Systematic
error is caused by our lack of knowledge about the tester,
that is, the difference between the true tester and what
we believe to be the true tester. Usually, the effect of the
systematic error is approximated by introducing a model,
and is assumed to be known. Therefore, the analysis of
the estimation error is usually reduced to that of the sta-
tistical error. To date at least five reconstruction schemes
have been proposed, namely linear [16, 17, 20, 21, 25],
maximum likelihood [18, 23, 26], Bayesian [31–33], max-
imum entropy [34], and norm minimization [35]. The
effect of statistical errors on the reconstructed object de-
pends upon the scheme used, hence the main problem is
how to quantify the effect of the statistical error on the
reconstructed object, and how to do so as rigorously as
possible.
It is natural to consider a linear reconstruction scheme,

which demands that we find a d× d matrix ρ̂l satisfying

Tr[ρ̂lΠ̂x] = fN (x), x ∈ Ω. (2)

However, Eq.(2) does not always have a solution, and
even when it does, although the solution is Hermitian
and normalized, it is not guaranteed that ρ̂l is posi-
tive semidefinite. A maximum likelihood reconstruction
scheme addresses these problems. The estimated matrix
ρ̂ml is defined as

ρ̂ml := argmaxρ̂∈S(H)

N
∏

i=1

Tr[ρ̂Π̂xi
]. (3)

It can be shown that when ρ̂l ∈ S(H), ρ̂l = ρ̂ml holds.
We will concern ourselves with maximum likelihood re-
constructions here, as we will see that they are optimal
in the sense that they can saturate the bounds we are
considering.
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III. OVERVIEW OF CLASSICAL STATISTICAL

ESTIMATION

In this section, we introduce the notation and termi-
nology of classical statistical estimation theory that we
use to arrive at our main results. We also review the
necessary aspects of error probability. For the reader fa-
miliar with quantum estimation theory, we justify our
use of classical estimation theory in subsection VD.
Let (Ω,B, P ) be a probability space, denoting a sam-

ple space, a Borel algebra of subsets of the sample space,
and a measure that assigns probabilities to those sub-
sets, respectively (the Borel structure simply assures that
combinations of subsets of events get assigned probabili-
ties in a sensible fashion, e.g. P (Y ∪ Z) = P (Y ) + P (Z)
for disjoint Y and Z). Define the N -fold direct product
ΩN := Ω × · · · × Ω as the space of sequences of events.
Let xN = {x1, · · · , xN}, xi ∈ Ω, be a sequence of iid
observations of the sample space Ω. We assume that
the sample space is finite, (see subsection VB for a dis-
cussion of infinite spaces). Suppose that the probability
space admits a statistical model PΘ = {Pθ; θ ∈ Θ} that
assigns a valid probability measure to each parameter θ
in Θ which is an subset of the k-dimensional Euclidean
space Rk, the closure Θ̄ is compact, and the interior Θo

is open. The quantum state parameter space S from the
last section is an example of such a Θ, where the sta-
tistical model is given by Eq.(1). We assume that each
measure Pθ has a probability distribution {pθ(x)}x∈Ω sat-
isfying Pθ(Y ) =

∑

x∈Y pθ(x) where Y ∈ B. A probabil-
ity measure Pθ and the probability distribution pθ have
a one-to-one correspondence for any θ ∈ Θ, and we do
not distinguish between PΘ and {pθ; θ ∈ Θ}. Let P(Ω)
denote the set of all probability distributions with the

sample space Ω, then PΘ ⊆ P(Ω). Let P
(N)
θ denote the

N -fold product probability measure Pθ × · · · × Pθ.
Let g denote a map from the parameter space Θ to

a metric space Γ. An estimator of g(θ) is a set of maps
ϕ = {ϕ1, ϕ2, . . .}, (one for each number of trials N), from
observation results xN to Γ. Each ϕN (xN ) is called the
estimate of xN . A maximum likelihood estimator θml =
{θml

1 , θml
2 , . . .} of θ is defined as

θml
N (xN ) = argsupθ∈ΘP

(N)
θ ({xN}). (4)

A map D from Γ×Γ to R is called a loss function on Γ
when D satisfies the following two conditions: (i) ∀a, b ∈
Γ, D(a, b) ≥ 0, (ii) ∀a ∈ Γ, D(a, a) = 0. We introduce
three additional conditions: (iii) ∀a, b ∈ Γ, D(a, b) =
D(b, a), (iv) ∀a, b, c ∈ Γ, D(a, b) ≤ D(a, c) +D(c, b), (v)
∀a, b ∈ Γ, D(a, b) = 0 ⇒ a = b. A loss function satisfy-
ing conditions (iii) and (iv) is called a semi-distance, and
a semi-distance satisfying condition (v) is called a dis-
tance. For example, let us define a function g from Θ toR
as g(θ) = ‖θ‖, θ ∈ Θ, where ‖·‖ is the Euclidean norm on
Rk. Then |g(θ)−g(θ′)| is a semi-distance on Θ (θ, θ′ ∈ Θ)
and |a − b| is a distance on R (a, b ∈ R). In general, a
loss function is not necessarily a distance. A loss func-
tion satisfying condition (v) is called a pseudo-distance

[36]. The Kullback-Leibler divergence introduced below
is an example of pseudo-distance that is not also a dis-
tance. If a loss function D on Rk is sufficiently smooth
and it can be approximated by the Hesse matrix Ha up
to second order, then Ha is positive semidefinite for all
a ∈ Rk from condition (i), and if the loss function D
is a pseudo-distance, then Ha is positive definite for all
a ∈ Rk.
There are at least two methods to evaluate an estima-

tion error by using loss function. One is a method using
risk functions. An N -trial risk function D̄(N) is defined
as the expectation value of the loss function between an
estimate and the true object, given by θ;

D̄(N) := E
(N)
θ [D(ϕN (xN ), g(θ))], (5)

where E
(N)
θ [f(xN)] =

∑

xN∈ΩN pθ(x
N )f(xN ) is the ex-

pectation value of a function f on ΩN . When Γ = Rl,

for any unbiased estimator (ϕ satisfying E
(N)
θ [ϕN (xN )] =

g(θ) for any N and θ ∈ Θ),

E
(N)
θ [(ϕN (xN )− g(θ))(ϕN (xN )− g(θ))T ]

≥ 1

N

∂g

∂θ

T

F−1
θ

∂g

∂θ
(6)

holds under some regularity conditions, where
(

∂g
∂θ

)

αβ
:=

∂gβ
∂θα

(α = 1, . . . , k;β = 1, . . . , l) is the Jacobian and

F−1
θ is the generalized inverse of the Fisher matrix

Fθ :=
∑

x∈Ω pθ(x)[∇θ log pθ(x)][∇θ log pθ(x)]
T . Asymp-

totically a maximum likelihood estimator achieves the
equality under some conditions [3].
The other is a method using error probabilities. We

call

P (N)
ǫ (θ) : = P

(N)
θ (D(ϕN (xN ), g(θ)) > ǫ) (7)

= P
(N)
θ ({xN ∈ ΩN ;D(ϕN (xN ), g(θ)) > ǫ})(8)

an error probability with a threshold ǫ > 0. An estimator
ϕ is called (weakly) consistent in the loss function D if

P (N)
ǫ (θ) → 0 as N → ∞ (9)

holds for any ǫ > 0. The conditions under which a maxi-
mum likelihood estimator is consistent includes the iden-
tifiability condition [37] on a statistical model PΘ: for any
θ ∈ Θo and θ′ ∈ Θ, if θ 6= θ′, then there exists at least
one outcome x ∈ Ω satisfying pθ(x) 6= pθ′(x) [10, 11]. Let
us define

Rǫ(θ) := inf
θ′∈Θ

{K(pθ′‖pθ);D(g(θ′), g(θ)) > ǫ}, (10)

where K(q‖p) =
∑

x∈Ω q(x) log q(x)
p(x) is called the

Kullback-Leibler divergence (also known as the relative
entropy). When g is injective and D is a distance, for
any weakly consistent estimator in D,

lim
N→∞

1

N
logP (N)

ǫ (θ) ≥ −Rǫ(θ) (11)
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holds [8]. It is known that in general the lower bound
of Eq.(11) is not attainable by any estimate [38]. If we
consider the limit ǫ → 0, under some conditions (includ-
ing the identifiability condition), a maximum likelihood
estimator achieves the equality, that is,

lim
ǫ→0

lim
N→∞

1

ǫuN
logP (N)

ǫ (θ) = −r(θ), (12)

where u is a real number suitable for D and r(θ) :=

limǫ→0
Rǫ(θ)
ǫu

. The explicit forms of the rate are known
for two specific cases. The first is the case where Γ = R
and D is the absolute value. In this case, the order u is
2 and the explicit form of the lower bound is known to
be [10, 11]

r(θ) =
1

2∇θg(θ) · F−1
θ ∇θg(θ)

. (13)

The second is the case where Γ = Rk, D is the Euclidean
distance on Rk, and the order u is again 2; the explicit
form is [13]

r(θ) =
1

2
inf

a∈Rk;‖a‖=1
a · Fθa. (14)

For more general Γ or D, however, the explicit form of
the lower bound is not known. Quantum state tomogra-

phy corresponds to the case where Γ = Rd2−1, and the
standard loss function is the square of the fidelity dis-

tance DF (ρ̂, ρ̂
′) := 1 − Tr[

√√
ρ̂ρ̂′

√
ρ̂]2 or the square of

the trace distanceDT (ρ̂, ρ̂
′) := Tr[|ρ̂−ρ̂′|]2. In this paper,

we extend the above results to multiparameter spaces and
more general loss functions such as these that are directly
applicable to quantum tomography, and give the explicit
form of the lower bound. We also give quantum tomogra-
phy conditions equivalent to the identifiability condition
in classical estimation theory.

IV. MAIN RESULT AND ANALYSIS

A. Main theorem

For simplicity we consider quantum state tomography.
Suppose that we use a loss function D on S(H). Let us
define a loss function ∆ on S as ∆(s, s′) := D(ρ̂(s), ρ̂(s′))
∀s, s′ ∈ S. Assume that ∆ is sufficiently smooth. Let So

denote the interior of S. We define a same point Hesse
matrix Hs for a two variable function f on S × S as
∇s∇sf(s, s

′)|s=s′ = [∂sα∂sβf(s, s
′)|s=s′ ].

Theorem 1 Suppose that ∆ is a pseudo-distance on S
with a non-zero same point Hesse matrix Hs. If s ∈ So,
for an arbitrary consistent estimator sest, the following
inequality holds:

lim
ǫ→0

lim
N→∞

1

ǫN
logP (N)

s (∆(sestN , s) > ǫ)

≥ −1/σ1(
√

HsF
−1
s

√

Hs), (15)

where σ1(A) is the maximal eigenvalue of an Hermitian
matrix A. Furthermore, when the tester is information-
ally complete, a maximum likelihood estimator sml is con-
sistent and achieves the equality in Eq.(15),i.e.,

lim
ǫ→0

lim
N→∞

1

ǫN
logP (N)

s (∆(sml
N , s) > ǫ)

= −1/σ1(
√

HsF
−1
s

√

Hs) (16)

holds.

The detailed proof of Theorem 1 appears in the Ap-
pendix – here we give an outline. The proof is divided
into six parts. For parts one through five, we do not
assume that the probability distributions are quantum
mechanical; we only assume that they are sufficiently
differentiable and that the parameter space is compact.
Only in the sixth part does quantum mechanics arise. In
Lemma 1, by using the same logic as the proof of Eq.(11)
in [8], we show that Eq.(11) holds for any estimator con-
sistent not only in distances but also in pseudo-distances.
Lemma 2 is introduced in order to calculate the infimum
in Eq.(10) directly. We use this in Lemma 3, where we
obtain the explicit form of the bound on the rate, and ob-
tain Eq.(15). Next we introduce Sanov’s theorem, a large
deviation theorem that, roughly speaking, gives the rate
of the probability of observing a relative frequency that
differs from the true probability distribution. Lemma 4
uses the compactness of the parameter space and Sanov’s
theorem to prove that the error probability of a maxi-
mum likelihood estimator decreases exponentially if the
identifiability condition is satisfied. Then, the maximum
likelihood estimator is consistent and satisfies Eq.(15). In
Lemma 5, we calculate the rate of decrease of the maxi-
mum likelihood estimator directly by using Sanov’s theo-
rem and Lemma 3, and show that the rate coincides with
the lower bound in Eq.(15). Hence, we obtain Eq.(16),
subject to the identifiability condition. Finally, we prove
that in quantum state tomography the identifiability con-
dition is equivalent to the informational completeness of
the tester, which we present as Lemma 6. Together these
lemmas prove Theorem 1.

Note that in the proof we assume the compactness of
the parameter space (in Lemmas 1 to 5) and the linear
parametrizability of probability distributions (in Lemma
6). These assumptions hold for any quantum operator.
Also, the concept of identifiability applies to the tomo-
graphic completeness of states equally well as it does to
the informational completeness of measurements, which
can be shown using the same logic as that of Lemma 6.
Thus theorem 1 holds for all types of quantum tomogra-
phy. The dimension of the parameter space k depends
upon the type of quantum tomography: k = d2 − 1 and
d4 − d2 for state and process tomography, respectively.
For POVM and instrument tomography, k = (M − 1)d2

and Md4−d2 respectively, where M denotes the number
of measurement outcomes.
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B. Meaning of the lower bound

Theorem 1 indicates that in quantum tomography, if
we have a sufficiently large data set, the error probability
of any consistent estimator with a small threshold can de-
crease at most exponentially, and the rate is bounded by
an estimator-independent function 1/σ1(

√
HsF

−1
s

√
Hs).

Also, the bound is achievable by a maximum likelihood
estimator. Therefore, from the error probability view-
point, if we can perform a large number of measurement
trials, a maximum likelihood reconstruction scheme is op-
timal. We can evaluate the performance of a given tester
by the size of the maximal eigenvalue of the matrix

Gs :=
√

HsF
−1
s

√

Hs. (17)

Testers with smaller maximal eigenvalues are better.
The inverse Fisher matrix F−1

s
alone characterizes the

parameter-identifiability of the tester with respect to the
Euclidean distance because the Hesse matix of the square
of the Euclidean distance ∆E(s, s

′) := ‖s − s′‖2 is 2I,
and we obtain

1

σ1(Gs)
=

1

2σ1(F
−1
s )

(18)

=
1

2
σk(Fs) (19)

=
1

2
inf

a∈Rk;‖a‖=1
a · Fsa, (20)

where σk(A) is the minimal eigenvalue of an Hermitian
matrix A. This result coincides with the known result of
Eq.(14). The loss function ∆ characterizes the purpose
of the estimation (what we want to know), and the same
point Hesse matrix Hs modifies the inverse Fisher matrix
from the Euclidean distance to the loss function ∆ on
S. Therefore the matrix Gs characterizes the parameter-
identifiability of the tester with a modification according
to our estimation purpose.

C. Relation to risk functions

If we assume sufficient smoothness of a loss function ∆
on S and informational completeness on the tester, a gen-
eralized Cramér-Rao inequality can be derived, i.e., for
any unbiased estimator, the following inequality holds:

∆̄(N) ≥ tr[HsF
−1
s ]

2N
+ o(

1

N
), (21)

where tr denotes the trace operation with respect to the
parameter space [4]. Eq.(21) indicates that for suffi-
ciently large N , the risk function can decrease at most
inverse-proportionally to N , and the rate is characterized
by tr[HsF

−1
s ]. We can rewrite this as

tr[HsF
−1
s ] = tr[

√
HsF

−1
s

√
Hs] (22)

=
∑k

α=1 σα(Gs), (23)

where σα(A) is the α-th eigenvalue of a symmetric k× k
matrix A arranged in decreasing order. Therefore, the
rates of decrease of error probability and risk function are
both characterized by, respectively, the maximal eigen-
value and the sum of all the eigenvalues of a common
matrix Gs. The rates’ properties depend upon the choice
of the loss function. For example, when we choose the
Kullback-Leibler divergence, i.e., ∆(s, s′) = K(ps‖ps′),
we obtain Hs = Fs and therefore σ1(Gs) = 1 and
∑k

a=1 σa(Gs) = k. In this case the rates of decrease do
not depend upon the true parameter or the tester, but in
general the rates depend upon both.

The Cramér-Rao inequality holds only for unbiased es-
timators, and the bound can be broken by biased esti-
mators. On the other hand, the error probability in-
equality holds for any consistent estimator. A maximum
likelihood estimator is consistent under some conditions
(including the identifiability condition), and is not unbi-
ased in general but achieves the lower bound of Eq.(21)
asymptotically. When we use a maximum likelihood re-
construction scheme in quantum tomography, the perfor-

mance of the tester is evaluated by
∑k

α=1 σα(Gs) from
the risk function viewpoint. When we have two testers

with the same value of
∑k

α=1 σα(Gs) at a s ∈ S, their
performances are equivalent in the risk function sense,
but if the maximal eigenvalues σ1(Gs) are different, their
error probability performances are different. Thus we can
evaluate the performance of testers more discerningly by
considering error probabilities than we can by consider-
ing only risk functions, using the same set of eigenvalues
– that of the matrix Gs.

D. Extension to more general quantum estimation

problem

A loss function used in quantum state tomography is
usually a distance on S (or S(H)). This is because the
purpose of quantum state tomography is to identify the
true parameter (or true density operator). There are,
however, cases where exact identifiability is not required,
for example, estimations of the average value of an Her-
mitian operator, the purity of an unknown state, or the
value of an entanglement measure. These examples cor-
respond to the case where g is a map from S to R. More
generally, we can consider g : S → Rl, l ≤ k = d2 − 1.
Theorem 1 can be generalized to this case by modifying
the identifiability condition (see Appendix) and changing
the meaning of the superscript −1 from the inverse ma-
trix to the generalized inverse matrix. Specifically, when
l = 1 and the loss function ∆ is the squared absolute
value, i.e., g : S → R and ∆(s, s′) = |g(s) − g(s′)|2, we
can obtain

Hs = 2(∇sg)(∇sg)
T , (24)

1

σ1(Gs)
=

1

2∇sg · F−1
s ∇sg

. (25)
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This result exactly coincides with the known result of
Eq.(13).
When the parameter space is 1-dimensional, the rates

of decrease of the two evaluation methods are character-
ized by the same function, but when the parameter space
is more than 2-dimensional, the rates can be character-
ized differently. The most simple tomographic object,
a 1-qubit state, has a 3-dimensional parameter space,
therefore even in the simplest type of quantum tomogra-
phy, if two given testers have the same rate of decrease
of a risk function, their rates of decrease of error proba-
bility can be different, i.e., the testers can have different
quantum tomographic performance.

V. DISCUSSION

A. Evaluating tester performance

Our result shows that when the true parameter is s,
the rate of decrease of the error probability is character-
ized by σ1(Gs). In real experiments of course, we do not
know the true parameter, which is the reason we per-
form tomography in the first place. We explain three
approaches to evaluating tester performance below.
The first is to use a parameter which we expect as the

true parameter. In many experiments, quantum state to-
mography is performed not for estimating a state but for
proving an experimental realization of a specific quantum
state, for example, a maximally entangled state. By us-
ing the parameter corresponding to the quantum state we
want to realize, we can evaluate the tester’s performance
in achieving that state. Of course the disadvantage of
this method is that this evaluation result can be differ-
ent from the true performance in the experiment, because
the true parameter can be different from the parameter
which we expect.
The second is to consider the average performance. Let

µ denote a measure on the parameter space S. We de-
fine the average performance of the error probability with
respect to a measure µ as

∫

S

dµ(s)σ1(Gs). (26)

In this approach, a tester with smaller average rate of de-
crease is better. The average performance can be calcu-
lated without knowing the true parameter, but of course
it is not guaranteed that the average value is equivalent to
the true performance in the experiment. Since this eval-
uation results depend upon the choice of the measure µ,
we need to ascertain the validity of the choice.
The third is to consider the worst case performance.

We define the worst case performance of a tester as

max
s∈S

σ1(Gs). (27)

This can be calculated without the true parameter, and
it is guaranteed that the true performance is necessar-
ily better or equal to the value. The disadvantage of

this method is that we might evaluate the tester’s per-
formance much lower than the true performance in the
experiment.

B. Extension to infinite sample space

Theorem 1 holds for a finite sample space. For a spe-
cific case (g : S → R and ∆ is the squared absolute
value), it is known that Eq.(11) also holds for infinite
sample space under some regularity conditions [10, 11].
We can prove that Theorem 1 holds for infinite sam-
ple space under some conditions by combining the proof
in [10, 11] with Sanov’s theorem and using the linear
parametrizability of probability distributions in quantum
mechanics. Therefore, Theorem 1 holds not only for fi-
nite, but also infinite sample spaces. However, any real
experiments will have finite detector resolution, and so
finite sample spaces suffice.

C. Effect of parameter space boundary

In Theorem 1, the true parameter is limited to the inte-
rior So. Hence it cannot be applied to parameters on the
boundary ∂S := S\So which corresponds to the set of all
non full rank density operators, including all pure states.
This limitation can be overlooked by invoking decoher-
ence: in real experiments the system of interest is uncon-
trollably affected by the enviroment, leading to full rank
states parametrized in the interior. The reason behind
the limitation is very technical, stemming from the fact
that in our proof we assume the invariance of the support
of probability distribution, differentibility, and openness
at each point of the parameter space. Such regularity
conditions are assumed in standard classical statistical
estimation theory. Statistical models that do not satisfy
the regularity conditions are called non-regular, and it is
known that they can behave very differently from regular
statistical models [39]. The analysis of risk functions and
error probabilities at ∂S is an open problem.

D. Relation to quantum estimation theory

Our goal in this paper has been to adapt some classi-
cal statistical estimation theory to quantum tomography
(or, speaking mathematically, to large deviations with
more general loss functions on a multiparameter space).
It should be pointed out that this is not the same thing as
quantum statistical estimation theory [40], which can be
viewed as the generalisation of classical statistical estima-
tion theory to density matrices instead of probability dis-
tributions. There the focus is strictly on quantum states,
and one of the main topics is to derive similar estimation
bounds for all experimental setups, including collective
or adaptive schemes (see [29]). Since our focus here is to
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evaluate the performance of a fixed experimental appa-
ratus (tester), quantum statistical estimation is ill suited
to our purpose. Furthermore, any quantum statistical
estimation results that can be made for state estimation
would have to be drastically modified for anything other
than state tomography. Here we are interested in more
general types of quantum tomography.

VI. SUMMARY

In this paper, we proved a large deviation inequality for
consistent estimators in quantum tomography by using
classical statistical estimation techniques. The inequality
shows that, under some conditions, the error probability
of any consistent estimator can decrease at most expo-
nentially with respect to the total number of measure-
ment trials, and there is a bound of the rate of decrease
which is achievable by a maximum likelihood estimator
under the informational completeness of the tester. We
also derived the explicit form of the bound and proved
that known quantum tomography conditions are equiva-
lent to the identifiability condition in classical estimation
theory.

From our results, it is shown that a risk function and
error probability measured by the same loss function are
characterized by a common matrix, the inverse Fisher
matrix modified by the loss function. The rate of de-
crease (with respect to the number of trials) of the risk
function is characterized by the sum of the eigenvalues
of this matrix, and that of the error probability by the
maximal eigenvalue. The Cramér-Rao inequality, which
is a known risk function inequality, holds only for unbi-
ased estimators, and the bound can be broken by biased
estimators. On the other hand, the error probability in-
equality holds for any consistent estimator which gives us
the true object in the limit of infinite trials. Therefore,
the lower bound of the error probability characterizes the
performance of the given apparatus, independently of the
choice of estimator. The explicit form of the bound makes
it possible to quantify the performance of the apparatus
for the estimation purpose in the error probability sense.
By combining our error probability approach with a risk
function approach, we can evaluate the performance more
discerningly than we can by considering only risk func-
tions.

Appendix: Proof of main theorem

We give the detailed proof of Theorem 1, using classical
statistical estimation theory. We divide the proof into six
parts in order to clarify the role of each condition, as well
as to isolate the role of quantum mechanics in the main
result.

1. Six lemmas

We first consider the setup described in section III,
that is, we do not assume the statistical model given by
Eq.(1). Suppose that the parameter space Θ is a closed
compact subset of Rk. Let ∂Θ denote the boundary of
Θ, that is, ∂Θ := Θ \ Θo and assume that Θo is open
and nonempty. We also assume that pθ(x) is a thrice
differentiable function with respect to θ ∈ Θ for any x ∈
Ω. Note that these assumptions are satisfied in quantum
mechanics for finite dimensional systems.
First, we prove that Eq.(11) holds for any estima-

tor consistent not only in distances, but also in pseudo-
distances.

Lemma 1 Suppose that ∆ is a pseudo-distance on Θ. If
θ ∈ Θo, for an arbitrary consistent estimator θest in ∆,
the following inequality holds:

lim
N→∞

1

N
logP

(N)
θ (∆(θestN , θ) > ǫ)

≥ − inf
θ′∈Θ

{K(pθ′‖pθ);∆(θ′, θ) > ǫ} (A.1)

Proof: This is a straightforward generalizations of the
proof in [8], so we omit it here. �
From Lemma 1, we obtain

lim
ǫ→0

lim
N→∞

1

ǫN
logP

(N)
θ (∆(θestN , θ) > ǫ)

≥ − lim
ǫ→0

1

ǫ
inf
θ′∈Θ

{K(pθ′‖pθ);∆(θ′, θ) > ǫ}. (A.2)

Second, we introduce a lemma for calculating the
R.H.S. of Eq.(A.2).

Lemma 2 Let A and B be k × k real, positive-
semidefinite matrices. If suppA ⊇ suppB holds, then

inf
a∈suppB

{a ·Aa
a · Ba

} =
1

σ1(
√
BA−1

√
B)

. (A.3)

holds.

Proof: We define C−1 as the generalized inverse of a ma-
trix C. Let suppC denote the support of C and IC denote
the identity matrix on suppC, then C−1C = CC−1 = IC .
Let us define b :=

√
Ba/‖

√
Ba‖. We can assume that

a ∈ suppB i.e. a = IBa holds. Then,

inf
a
{a ·Aa
a · Ba

} = inf
b;‖b‖=1

{b ·
√
B

−1
A
√
B

−1
b} (A.4)

= σmin(
√
B

−1
A
√
B

−1
) (A.5)

= 1/σ1([
√
B

−1
A
√
B

−1
]−1) (A.6)

= 1/σ1(
√
BA−1

√
B), (A.7)

where σmin(C) is the minimal non-zero eigenvalue of C
and coincides with σk(C) if C is full rank. �
Third, we calculate the infimum on the R.H.S. of

Eq.(A.2).
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Lemma 3 Suppose that ∆ is a sufficient smooth pseudo-
distance with a non-zero same point Hesse matrix Hθ.
Then

lim
ǫ→0

1

ǫ
inf
θ′∈Θ

{K(pθ′‖pθ);∆(θ′, θ) > ǫ}

=
1

σ1

(√
HθF

−1
θ

√
Hθ

) . (A.8)

holds.

Proof: Let us define B(θ′, θ) := 2 ∆(θ′,θ)
‖θ′−θ‖2 . Then

B(θ′, θ) =
(θ′ − θ)

‖θ′ − θ‖ ·Hθ

(θ′ − θ)

‖θ′ − θ‖ +O(‖θ′ − θ‖),(A.9)

and the first term is independent of ‖θ′ − θ‖. Then, for
sufficiently small ǫ,

1

ǫ
inf
θ′∈Θ

{K(pθ′‖pθ);∆(θ′, θ) > ǫ}

=
1

ǫ
inf
θ′∈Θ

{K(pθ′‖pθ); ‖θ′ − θ‖ >

√

2ǫ

B(θ′, θ)
}

=
1

ǫ
inf
θ′∈Θ

{1
2
(θ′ − θ)Fθ(θ

′ − θ) +O(‖θ′ − θ‖3);

‖θ′ − θ‖ >

√

2ǫ

B(θ′, θ)
} (A.10)

= inf
a∈suppHθ

{ a · Fθa

a ·Hθa
; ‖a‖ = 1} (A.11)

=
1

σ1

(√
HθF

−1
θ

√
Hθ

) , (A.12)

where we used Lemma 2 in the last line. Note that
E.(A.8) holds not only for the linit superior limǫ→0, but
also for the limit inferior limǫ→0. �
From Lemma 1 and Lemma 3, we obtain the following

inequality for any estimator consistent in a sufficiently
smooth pseudo-distance with the Hesse matrix Hθ:

lim
ǫ→0

lim
N→∞

1

ǫN
logP

(N)
θ (∆(θestN , θ) > ǫ)

≥ − 1

σ1

(√
HθF

−1
θ

√
Hθ

) . (A.13)

Fourth, we prove that if the identifiability condition is
satisfied, then a maximum likelihood estimator is con-
sistent in the pseudo-distance ∆. In preparation, we
introduce empirical measures. Given a finite sequence
xN = {x1, . . . , xN} and Y ∈ B, the empirical measure

Lx
N

N induced by the sequence is defined as

Lx
N

N (Y ) :=
∑

y∈Y

1

N

N
∑

i=1

δy,xi
, (A.14)

where δy,x is Kronecker’s delta. Then the value of the
empirical measure on an elemental set {x} ∈ B is equiv-
alent to the relative frequency of x for the data xN , i.e.,

fN (x) = Lx
N

N ({x}). We identify Lx
N

N and fN below.

Now we introduce Sanov’s theorem for empirical mea-
sures. Let Pp denote a probability measure on B with
a probability distribution p. When p ∈ PΘ, we have

Pp = Pθ. We use a notation P
(N)
p (LXN

N ∈ A) :=

P
(N)
p ({xN ∈ ΩN ;Lx

N

N ∈ A}), where A is a given set
of probability distributions.

Theorem (Sanov) For every set A of probability dis-
tributions in P(Ω),

− inf
p′∈Ao

K(p′‖p) ≤ lim
N→∞

1

N
logP (N)

p (LXN

N ∈ A)(A.15)

≤ lim
N→∞

1

N
logP (N)

p (LXN

N ∈ A)(A.16)

≤ − inf
p′∈A

K(p′‖p), (A.17)

where Ao is the interior of A considered as a subset of
P(Ω) and K is the Kullback-Leibler divergence [14, 15].

We are now in a position to prove the following lemma.

Lemma 4 If the identifiability condition is satisfied,
then

lim
N→∞

P
(N)
θ (∆(θml

N , θ) > ǫ) = 0 (A.18)

holds for any ǫ > 0. That is, a maximum likelihood esti-
mator is consistent in a pseudo-distance ∆ on Θ.

Proof: A maximum likelihood estimate θml
N can be re-

defined by using the Kullback-Leibler divergence and the
relative frequency as follows:

θml
N : = argmaxθ∈Θ

∏N
i=1 pθ(xi) (A.19)

= argminθ∈ΘK(fN‖pθ). (A.20)

Let us define

θp := argminθ∈ΘK(p‖pθ). (A.21)

Then θml
N = θfN . When analyzing a maximum likelihood

estimate θml
N , we need to be careful to check whether θml

N

is included in Θo or ∂Θ. Let us introduce four sets of
probability distributions A1, A2, A3, and Dθ,ǫ as

A1 : = {p ∈ PΘ; θp ∈ Θo}, (A.22)

A2 : = {p ∈ PΘ; θp ∈ ∂Θ}, (A.23)

A3 : = P(Ω) \ PΘ, (A.24)

Dθ,ǫ : = {p ∈ P(Ω); ∆(θp, θ) > ǫ}. (A.25)

If fN ∈ A1 ∪ A2(= PΘ), then pθml

N
= fN . If fN ∈ A3,

then pθml

N
∈ A2 and pθml

N
6= fN . Since P(Ω) = A1 ∪ A2 ∪

A3 and these sets are disjoint, we can rewrite the error
probability as

P
(N)
θ (∆(θml

N , θ) > ǫ) = P
(N)
θ (fN ∈ Dθ,ǫ) (A.26)

= P
(N)
θ (fN ∈ A1 ∩ Dθ,ǫ)

+P
(N)
θ (fN ∈ A2 ∩Dθ,ǫ)

+P
(N)
θ (fN ∈ A3 ∩Dθ,ǫ).(A.27)
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Because Θ is compact and Θo is not empty, from
Sanov’s theorem, we can obtain

lim
n→∞

1

N
logP

(N)
θ (fN ∈ Aj ∩Dθ,ǫ)

= − inf
p∈Aj∩Dθ,ǫ

K(p‖pθ), j = 1, 2, 3. (A.28)

From the identifiability condition,

inf
p∈Aj∩Dθ,ǫ

K(p‖pθ) > 0, j = 1, 2, 3. (A.29)

Therefore, for sufficiently large N , there exists ν, 0 <
ν < 1, such that

P
(N)
θ (∆(θml

N , θ) > ǫ) < νN (A.30)

holds for any ǫ > 0. So, a maximum likelihood estimator
is consistent in ∆ under the identifiability condition. �
Fifth, we prove that if the identifiability condition is

satisfied, a maximum likelihood estimator achieves the
equality in Eq.(A.13).

Lemma 5 Suppose that ∆ is a sufficiently smooth
pseudo-distance on Θ with a non-zero same point Hesse
matrix Hθ. If the identifiability condition is satisfied,
then

lim
ǫ→0

lim
N→∞

1

ǫN
logP

(N)
θ (∆(θml

N , θ) > ǫ)

= − 1

σ1(
√
HθF

−1
θ

√
Hθ)

(A.31)

holds.

Proof: From the continuity of K and the openness of
So, for arbitrary θ ∈ Θo, there exists ǫ0 > 0 such that

inf
p∈A1∩Dθ,ǫ

K(p‖pθ) < inf
p∈Aj∩Dθ,ǫ

K(p‖pθ), (A.32)

hold for j = 2, 3 and for any ǫ satisfying 0 < ǫ < ǫ0 [41].
Hence, for sufficiently large N and sufficiently small ǫ,

P
(N)
θ (fN ∈ A1 ∩ Dθ,ǫ) > P

(N)
θ (fN ∈ Aj ∩ Dθ,ǫ),(A.33)

hold for j = 2, 3, and we have

lim
ǫ→0

lim
N→∞

1

ǫN
logP

(N)
θ (∆(θml

N , θ) > ǫ)

= lim
ǫ→0

lim
N→∞

1

ǫN
log

[

P
(N)
θ (fN ∈ A1 ∩Dθ,ǫ)

+P
(N)
θ (fN ∈ A2 ∩ Dθ,ǫ)

+P
(N)
θ (fN ∈ A3 ∩ Dθ,ǫ)

]

(A.34)

= lim
ǫ→0

lim
N→∞

1

ǫN
logP

(N)
θ (fN ∈ A1 ∩ Dθ,ǫ) (A.35)

= lim
ǫ→0

1

ǫ

[

− inf
p∈A1∩Dθ,ǫ

K(p‖pθ)
]

(A.36)

= − lim
ǫ→0

1

ǫ
inf

θ′∈Θo
{K(pθ′‖pθ);∆(θ′, θ) > ǫ} (A.37)

= − 1

σ1(
√
HθF

−1
θ

√
Hθ)

, (A.38)

where we used Lemma 3 in the last line. Because a
maximum likelihood estimator satisfies both Eqs.(A.13)
and (A.38), it achieves the equality in Eq.(A.13), and
Eq.(A.31) holds. �
The final lemma relates the identifiability condition

in classical statistical estimation theory to informational
completeness in quantum tomography. We assume now
that the probability distributions are given by quantum
mechanics, Eq.(1), for finite dimensional systems.

Lemma 6 Let ρ̂ = ρ̂(s) denote a density operator
parametrized by a vector s ∈ S. We assume that the
parametrization is one-to-one. Suppose that we perform
quantum state tomography with a POVM Π = {Π̂x}x∈Ω.
Then the following statements are equivalent.

1. The probability distribution describing the tomo-
graphic experiment satisfies the identifiability con-
dition.

2. The Fisher matrix Fs is full rank for any s ∈ So.

3. The POVM is informationally complete.

Proof: First we show that it is sufficient to prove the
equivalence of the three conditions in Lemma 6 for a lin-
ear parametrization. In quantum mechanics, for a finite
dimensional system, any probability distribution is lin-
early one-to-one parametrizable, and we can assume that
the probability distribution has the form

ps(x) = v(x) + s ·w(x), (A.39)

where v(x) ∈ R and w(x) ∈ Rd2−1 satisfy
∑

x∈Ω ps(x) =
1 for any s ∈ S. If the probability distribution is one-
to-one (but not necessarily linearly) parametrized by a

different parameter t ∈ Rd2−1, then we have

p̃t(x) = ps(t)(x), (A.40)

∇̃tp̃t(x) =
∂s

∂t
∇sps(x). (A.41)

Condition 1 for s and condition 1 for t are equivalent
because both parametrizations are one-to-one. Condition
2 for s and condition 2 for t are equivalent because the
Fisher matrices satisfy the equation

F̃t =
∂s

∂t
Fs

∂s

∂t

T

, (A.42)

and the Jacobian ∂s
∂t

is full rank. Condition 3 is indepen-
dent of state parametrization. Therefore if condition 1,
2, and 3 are equivalent for a linear parametrization, then
they are also equivalent for a general parametrization.
Next we prove the equivalence of conditions 1 and 2.

As in the above discussion, without loss of generality, we
can assume that s is the fixed parameter such that Fs is
diagonalized because this is a linear transformation of a
general parameter. Under this assumption, condition 1
is equivalent to the condition that for any s ∈ So and for
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all α = 1, . . . , d2 − 1, there exists at least one x ∈ Ω such
that

∂αps(x) 6= 0, (A.43)

where ∂α := ∂
∂sα

. On the other hand, the diagonal ele-
ments of the Fisher matrix are

Fs,αα =
∑

x∈Ω

(∂αps(x))
2

ps(x)
, α = 1, . . . , d2 − 1.(A.44)

Therefore the full rankness of the Fisher matrix is equiv-
alent to Eq.(A.43), and condition 1 and condition 2 are
equivalent.

Third we prove the equivalence between condition 2
and 3. We choose the generalized Bloch parametrization
of density operators [27, 28]; any density operator ρ̂ can
be represented as

ρ̂(s) =
1

d
Î +

1

2
s · σ̂, (A.45)

where Î is the identity operator on H and σ̂α are gen-
erators of SU(d) satisfying σ̂α = σ̂†

α, Tr[σ̂α] = 0, and
Tr[σ̂ασ̂β ] = 2δα,β (α, β = 1, . . . , d2−1). To determine the
representation uniquely, we need more additional condi-
tions on σ̂, but the additional conditions are not used
in the following discussion. Each element of the tester
POVM can be represented as

Π̂x = v(x)Î +w(x) · σ̂, x ∈ Ω, (A.46)

where v(x) and w(x) should satisfy
∑

x∈Ω v(x) = 1,
∑

x∈Ωw(x) = 0, and Π̂x ≥ 0 for any x ∈ Ω. Then,
the probability distribution describing the tomographic
experiment is represented as Eq.(A.39), and the Fisher
matrix is

Fs =
∑

x∈Ω

ps(x)∇s log ps(x)∇s log ps(x)
T (A.47)

=
∑

x∈Ω

w(x)w(x)T

ps(x)
. (A.48)

Therefore the full rankness of the Fisher matrix is equiv-

alent to the condition that {w(x)}x∈Ω spans Rd2−1, and
this implies that the tester POVM Π is informationally
complete. �

2. A more general theorem

From Eq.(A.13) and Eq.(A.31), we obtain the following
theorem.

Theorem 2 Suppose that ∆ on Θ is a sufficiently
smooth pseudo-distance with a non-zero same point Hesse

matrix Hθ. If θ ∈ Θo, for an arbitrary consistent esti-
mator θest, the following inequality holds:

lim
ǫ→0

lim
N→∞

1

ǫN
logP

(N)
θ (∆(θestN , θ) > ǫ)

≥ −1/σ1(
√

HθF
−1
θ

√

Hθ). (A.49)
Furthermore, when the identifiability condition is satis-
fied, a maximum likelihood estimator θml is consistent
and achieves the equality in Eq.(A.49), i.e.,

lim
ǫ→0

lim
N→∞

1

ǫN
logP

(N)
θ (∆(θml

N , θ) > ǫ)

= −1/σ1(
√

HθF
−1
θ

√

Hθ) (A.50)

holds.

Theorem 2 is in fact more general than Theorem 1, since
identifiability is more general than informational com-
pleteness. Hence, the properties that the error probabil-
ities of consistent estimators can decrease at most expo-
nentially, the rate of decrease is bounded by the maximal
eigenvalue of a matrix, and the bound is achievable by
a maximum-likelihood estimator are common to a larger
class of probability distributions than those of quantum
mechanics.
By applying Theorem 2 to quantum state tomography

and using Lemma 6, we can obtain Theorem 1. Theorem
2 is applicable to the other types of quantum tomogra-
phy. The conditions corresponding to the identifiability
condition are different, and can be derived in the same
way as in the proof of Lemma 6. For example, let us
consider ancilla-unassisted quantum process tomography.
To identify an unknown quantum process described by a
linear, completely-positive, and trace-preserving map κ
on S(H), we prepare a set of input states ρ = {ρ̂n}Ns

n=1

where ρ̂n ∈ S(H) and a measurement described by a

POVM Π = {Π̂x}x∈Ω on H. The set {ρ,Π} is the tester
for ancilla-unassisted process tomography. When ρ spans
S(H), it is called tomographically complete. In ancilla-
unassisted process tomography, the informational com-
pleteness of Π and the tomographical completeness of ρ
both are required. We can prove that these conditions
are equivalent to the identifiability condition in the same
way as in lemma 6.
For the case where the same point Hesse matrix of the

loss function is positive semidefinite, as mentioned in sub-
section IVD, the identifiability condition is modified as
follows: for any θ ∈ Θo and θ′ ∈ Θ, if g(θ) 6= g(θ′), then
there exists at least one single outcome x ∈ Ω satisfying
pθ(x) 6= pθ′(x). Theorem 2 holds for this modification.
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