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Abstract

In this paper we present an equilibrium value based framework for solving SDPs via the multiplica-
tive weight update method which is different from the one in Kale’s thesis [Kal07]. One of the main
advantages of the new framework is that we can guarantee the convertibility from approximate to exact
feasibility in a much more general class of SDPs than previous result. Another advantage is the design of
the oracle which is necessary for applying the multiplicative weight update method is much simplified in
general cases. This leads to an alternative and easier solutions to the SDPs used in the previous results
QIP(2)⊆PSPACE [JUW09] and QMAM=PSPACE [JJUW09]. Furthermore, we provide a generic form of
SDPs which can be solved in the similar way. By parallelizing every step in our solution, we are able to
solve a class of SDPs in NC. Although our motivation is from quantum computing, our result will also
apply directly to any SDP which satisfies our conditions.

In addition to the new framework for solving SDPs, we also provide a novel framework which im-
proves the range of equilibrium value problems that can be solved via the multiplicative weight update
method. Before this work we are only able to calculate the equilibrium value where one of the two convex
sets needs to be the set of density operators. Our work demonstrates that in the case when one set is the set
of density operators with further linear constraints, we are still able to approximate the equilibrium value
to high precision via the multiplicative weight update method.

∗The work was completed when the author was visiting the Institute for Quantum Computing , University of Waterloo.
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1 Introduction

Semidefinite programming (SDP) is a relatively new field of optimization which grew up in the 1990s [Ali95,
BV04, Lov03, VB96, dK02]. Despite of the short time since its introduction, SDP has proved useful in many
different contexts. Especially, there are many applications of SDPs in the field of theoretical computer sci-
ence, like the design of approximation algorithm [Vaz01] and the recent application to Unique Game Con-
jecture [Ste10, Rag08] and simulating quantum complexity classes [Gut05, GW05, GW07, JJUW09, JUW09,
KW00, Wat09b].

SDPs are in fact a special case of conic programming and there exists polynomial algorithms to solve
any SDP instance (like the interior point method [Ali95, dK02]). Thus, any problem which can be mod-
eled or approximated as a SDP is considered to have efficient solutions. However, on the other side, our
understanding of SDPs is far less than our understanding of Linear programming(LP), another typical op-
timization method used a lot in practice. One thing is about the running time : although any SDP instance
can be solved in polynomial time theoretically, it is much slower than LP’s solution in practice. Moreover,
the generic algorithm for SDP are always used as a black box. Hence it is rarely seen that we can employ
the duality or the structure of SDPs while the duality of LPs inspires lots of new algorithm designs.

A generic primal-dual method for SDP problem (under certain conditions) was introduced by Arora
et.al. [AHK05a, AHK05b, AK07] to overcome the difficulties mentioned above. The generic method exploits
a generic framework (or meta-algorithm) called the multiplicative weight update method. Similar frameworks
were studied [Fle00, FS99, GK98, PST91, Kha04, WK06, You95] for different purposes before. This new
generic method turns out to be very useful and successful in several contexts. In the paper [AK07] (see
also Kale’s Phd thesis [Kal07]) where it was originally proposed, this generic method improves the upper
bounds of running time of many approximation algorithms. In addition to that, this generic method was in-
troduced by Watrous et. al. to the field of quantum computation and successfully proved QIP(2)⊆PSPACE [JUW09]
and QIP=PSPACE [JJUW09].

A semidefinite program over X and Y (shown below) is specified by a triple (Ψ, A, B) where Ψ : L (X ) →
L (Y) is a Hermiticity preserving super-operator and A ∈ Herm (X ) and B ∈ Herm (Y). This form which
was obtained in [Wat08] is somehow different from but equivalent to the standard form. Let α, β be the
optimum values of the primal and dual programs respectively. One important property of the semidefinite
program, called the duality, implies that α ≤ β and the equality will hold in some situation.

Primal problem

maximize: 〈A, X〉
subject to: Ψ(X) ≤ B,

X ∈ Pos (X ) .

Dual problem

minimize: 〈B, Y〉
subject to: Ψ∗(Y) ≥ A,

Y ∈ Pos (Y) .

In practice we usually consider the SDPs whose optimum values are within a small range. For those
SDPs, instead of directly calculating the optimum value, we usually consider the feasibility problem first.
Once the feasibility problem is solved, we could use the binary search in that range to find the optimum
value. For any instance of SDP and a guess value c , the feasibility problem is defined to be

Feasibility Problem

ask whether: 〈A, X〉 ≥ c

subject to: Ψ(X) ≤ B,

X ∈ Pos (X ) .

Intuitively, the primal-dual method in Kale’s Thesis [Kal07] for the feasibility problem contains the fol-
lowing three ingredients. First, update via the multiplicative weight update method. Second, the existence
of an efficient width-bounded oracle O1. Finally, this method will generate an approximately feasible solution
Y to the dual problem such that 〈B, Y〉 ≤ c . By approximate feasibility, we mean

∀ρ ∈ D (X ) , 〈Ψ∗(Y)− A, ρ〉 ≥ −ǫ (1)
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where the D (X ) denotes the set of density operators over the space X and ǫ is some small constant. In
order to solve the feasibility problem, we need to get an exact dual feasible solution Ỹ such that

〈

B, Ỹ
〉

≤
(1 + ε)c from this. We will refer this as the convertibility from approximate to exact feasibility. After executing
a combination of those three ingredients, this method will either return a feasible solution X̃ to the primal
problem with object function value at least c or a feasible solution Ỹ such that

〈

B, Ỹ
〉

≤ (1 + ε)c. The latter
case will imply α ≤ β ≤ (1 + ǫ)c by the duality of SDPs. A detailed description of this procedure can be
found in Appendix A.3.

Another important value which can be calculated via the multiplicative weight update method is the
equilibrium value of zero-sum games [vN28] and its generalizations (like, [Haz06]). Particulary, we consider
the value λ,

λ = min
x∈X

max
y∈Y

f (x, y) = max
y∈Y

min
x∈X

f (x, y)

for some convex-concave function f (see definition in Appendix A.3) over X × Y where X, Y are convex
compact sets. Again, this method involves the update via the multiplicative weight update method and an
efficient width-bounded but functionally different oracle O2 as main ingredients. However, for equilibrium
value, there is no requirement for the convertibility from approximate to exact feasibility. Under several
other conditions as well (see details in Theorem 2 and Appendix A.3), such value λ can be approximated
to high precision efficiently. It should be noted here the multiplicative weight update method plays a quite
different role from the one in the solution to SDPs above. This difference has led to an alternative and easier
proof of QIP=PSPACE [Wu10]. It was also applied to the proof of QRG(1)⊆PSPACE [JW09].

One important advantage of the solutions to SDPs or equilibrium value based on the multiplicative
weight update method is that we can easily implement the algorithm in parallel. Precisely, this is because
the fundamental operations of matrices and singular value decomposition of matrices [Gat93] can be im-
plemented with high accuracy in NC. This trick was widely exploited in the recent progress of quantum
complexity theory [Wu10, JJUW09, JUW09, JW09].

In this paper we will demonstrate how the equilibrium value can be related to the feasibility problem
(then, SDPs). It will then suffice to make use of the solution to the equilibrium value to solve the feasibility
problem. Following this idea, we will provide an alternative and easier solution to the SDPs used for
QIP(2) [JUW09] and QMAM [JJUW09]. Moreover, we provide a generic form and conditions under which
any feasibility problem can be solved in the same way. By parallelizing each step in the solution, we are able
to show any feasibility problem can be solved in NC as well. Precisely, we consider the feasibility problem
as follows.

Feasibility Problem

ask whether: 〈A, X〉 ≥ c

subject to: Ψ(X) ≤ B,

X ∈ D (X ) .

This feasibility problem is very similar to the most general version above. The only difference is we
replace the condition X ∈ Pos (X ) by X ∈ D (X ). This change corresponds to the trace bound Tr X = R for
some const R which commonly appears in applications of SDPs. Under certain conditions our constraint
on X ∈ D (X ) is equivalent to the trace bound Tr X ≤ R. This implies the feasibility problem in our consid-
eration is very general and could cover many instances in practical use. Although our original motivation
is from quantum computation, our result also works well for any SDPs which can be converted to the form
in our consideration.

The concept of equilibrium values will be related if we imagine a two-player game to solve the feasibility
problem. Assume there is a primal player who wants to provide you a feasible solution X to prove the
original problem is feasible. On the contrary, the dual player who wants to disprove the feasibility will try
to find where the constraints on X are violated. This is different from Kale’s method where the disproof of
the feasibility is by getting some feasible solution to the dual problem and then making use of the duality
of SDPs. Precisely, we define the following convex-concave function f to capture the two-player game.
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Framework 1. Let function f be

f (X, Π) =

〈(

c − 〈A, X〉
Ψ(X)− B

)

, Π

〉

(2)

over the set D (X )× T where T = {Π : 0 ≤ Π ≤ 1Y⊕C}. Let the equilibrium value λ⋆ be

λ⋆ = min
X∈D(X)

max
Π∈T

f (X, Π) = max
Π∈T

min
X∈D(X)

f (X, Π)

The relation between the equilibrium value λ⋆ and the feasibility of the original problem is captured by
the following theorem.

Theorem 1. The original problem is feasible if and only if λ⋆ ≤ 0.

This formulation is inspired by similar formulations [Haz06] used for convex optimization and Theo-
rem 1 follows easily from the argument in [Haz06]. Given the fact that equilibrium value λ⋆ can only be
calculated approximately, we still need to do the conversion from approximately to exactly feasible solu-
tions. Due to this reason, we make an important change to the old formulation in [Haz06]. Namely, we
choose T to be {Π : 0 ≤ Π ≤ 1Y⊕C} rather than the set of density operators over the space Y ⊕ C. As-
sume we approximate λ⋆ to precision ǫ and the return value implies λ⋆ is in an interval containing 0. Or
equivalently, we encounter the situation

∀ Π ∈ T,

〈(

c − 〈A, X〉
Ψ(X)− B

)

, Π

〉

≤ ǫ (3)

and we want to convert X into some exact feasible solution without changing the object function a lot. This
is very similar to the situation captured by Equation [1]. However, the difficulty in making this conversion
happen is different. By applying the approximate feasible result in Equation [1], we can only expect to solve
the problems [JUW09, JJUW09] when A = 1X efficiently in general. This is because the density operator
ρ in Equation [1] implies the approximate feasibility only holds in term of L∞ norm. On the other side, in
order to remain the object function which is a inner product almost unchanged, the approximate feasibility
needs to hold in a stronger sense like L1 norm. Otherwise only trivial cases like A = 1X can be solved.

Our new approximate feasibility result in Equation [3] overcomes such difficulty and provides a method
to do the conversion from the approximate to exact feasibility in much more general cases. Especially we
will demonstrate when the super-operator Ψ is partial trace or its generalizations, our approximate feasi-
bility result works very well to make the conversion happen. This kind of constraints is very powerful
because it is the only type of constraints we need in many SDPs in quantum computation. In addition to
that, we still have the freedom to choose T in order to meet the requirement of new types of constraints.
Such freedom is a huge advantage over the primal-dual method since Equation [1] is the only result can be
expected from the primal-dual method.

Another advantage of the Framework 1 is that the oracle O2 which will be required to compute the
equilibrium value λ⋆ can be easily designed. Precisely, since T = {Π : 0 ≤ Π ≤ 1Y⊕C}, we can simply
get the other part’s spectral decomposition and let T be the projection onto the positive eigenspace of it.
Finally, under the conditions of Theorem 2, we can implement the whole algorithm in NC.

Besides the application to the feasibility problem, the idea of Framework 1 can also improve our ability
on calculating equilibrium over some non-density operator set. Consider some convex-concave function h
over X ×Y where X is the set of density operators but with some constraint Φ. Precisely,

Framework 2. If we consider the equilibrium value µ,

µ = min
x∈X

max
y∈Y

h(x, y) = max
y∈Y

min
x∈X

h(x, y)

where X = {ρ : ρ ∈ D (X ) , Φ(ρ) ≤ B} and Y is any other compact convex set. It will be useful to consider the
equilibrium value µ′ as follows

µ′ = min
x∈X′

max
{y,Π}∈Y′

h(x, y) + α 〈Φ(ρ)− B, Π〉 = max
{y,Π}∈Y′

min
x∈X′

h(x, y) + α 〈Φ(ρ)− B, Π〉

where X = D (X ) , Y′ = Y × T (T = {Π : 0 ≤ Π ≤ 1}) and α is any factor.
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It is easy to see that the idea of Framework 2 or especially the term 〈Φ(ρ)− B, Π〉 is to penalize when ρ
does not satisfy the constraint Φ(ρ) ≤ B. Furthermore, the penalization is weighted according to the factor
α. By using the game value of one restricted model of one-round quantum refereed game as an example,
we can demonstrate when there are two promise values of µ with large gap, such gap can be transferred
to the new value µ′. Thus, it will be sufficient to calculate the value of µ′ in order to distinguish between
two promises of the original value µ. This improves the range of problems which can be solved by the
multiplicative weight update method since so far we can only calculate the equilibrium value when X is
the set of density operators (up to a factor). This will also give a binary search method for calculating the
equilibrium value to some precision by artificially assuming two promise values.

The rest of the paper is organized as follows. Most of the preliminaries can be found in Appendix A. We
also leave the lemmas and theorems which will be directly used in Section 2. The two examples for Frame-
work 1 will be demonstrated in Section 3 (QIP(2)) and in Appendix B (QMAM) respectively. One restricted
version of one-round quantum refereed game will be discussed in Section 4 to demonstrate the power of
Framework 2. We will conclude the paper with further discussions and open problems in Section 5.

There are two points to make clear before the readers move on to the next section. First, when we
consider the feasibility problem or equilibrium value directly, we always refer the size of the SDP or the
function with equilibrium value as the input size. However, when we consider the quantum complexity
classes, the SDP or the function with equilibrium value will have exponential size in term of its actual input
size |x|. Second, we will not take care of the precision issues with the NC implementation in the main part
of this paper. Instead, we will assume such implementation can be made exactly and deal with them in
Appendix C.

2 Preliminaries

In order to make this paper self-contained, we try to provide brief surveys on each topic related to our paper.
However, most of them will be put in the appendix due to limited space. Precisely, we will introduce the
fundamentals of quantum information in Appendix A.1. Useful facts on NC and parallel matrix operations
are stated in Appendix A.2. The multiplicative weight update method and its application to calculating the
equilibrium value and SDPs (the primal-dual method) are surveyed in Appendix A.3.

2.1 Useful Lemma and Facts in Quantum Information

The following are some important lemmas about purification and fidelity which are useful in our proof
later. The proofs of following results are put in Appendix A.1.

Lemma 1. Given any two density operators ρ1, ρ2 over the space A, and another density operator σ1 over the space
A ⊗ B such that TrB σ1 = ρ1, then there exists another density operator σ2 over the space A ⊗ B for which that
TrB σ2 = ρ2 and F (ρ1, ρ2) = F (σ1, σ2).

Lemma 2. In addition to the result in Lemma 1, we can compute the classical representation of σ2 as required above
given the classical representations of ρ1, ρ2 and σ1 in NC where the input size refers to the size of the matrices.

Lemma 3. Given two density operators ρ1, ρ2 ∈ D (A), and their purifications σ1, σ2 ∈ D (A⊗B) in space A⊗B
respectively, for which F (ρ1, ρ2) = F (σ1, σ2), let

s =
1

2
‖ρ1 − ρ2‖1 and t =

1

2
‖σ1 − σ2‖1

Then we have the following inequalities

1 − s ≤
√

1 − t2 and 1 − t ≤
√

1 − s2

Lemma 4. Given two density operators ρ1, ρ2 ∈ D (A⊗B) where ρ1 represents a pure state, there exists an admiss-
able quantum channel Φ : L (A) → L (A) such that Φ ⊗ 1L(B)(ρ1) = ρ2 if and only if TrA(ρ1) = TrA(ρ2).
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1. Let ε = δ
4r and T =

⌈

16r2 ln D
δ2

⌉

. Also let W(1) = 1X , D = dim (X ).

2. Repeat for each t = 1, . . . , T:

(a) Let ρ(t) = W(t)/ Tr W(t) and let Π(t) be the projection onto the positive eigenspace of S(ρ(t)).

(b) Let M(t) = (N(Π(t)) + r1X )/2r and update the weight matrix as follows:

W(t+1) = exp(−ε
t

∑
τ=1

M(τ))

3. Choose ρ̄ = 1
T ∑

T
τ=1 ρ(t) and let Π̄ be the projection onto the positive eigenspace of S(ρ̄). Return (ρ̄, Π̄)

as the approximate equilibrium point and 〈S(ρ̄), Π̄〉 as the approximate equilibrium value.

Figure 1: An algorithm that computes the approximate value and point to precision δ.

Lemma 5. Given any Hermitian operator A such that Tr A = 0, then we have

max
Π:0≤Π≤1

〈A, Π〉 = 1

2
‖A‖1 and min

Π:0≤Π≤1
〈A, Π〉 = −1

2
‖A‖1

2.2 Multiplicative Weights Update Method

The detailed discussion of the multiplicative weight update method is provided in Appendix A.3. However,
we will demonstrate the particular algorithm to calculate the equilibrium value in the form of Equation [2]
in this section. Precisely, we consider the

λ⋆ = min
ρ∈D(X )

max
Π∈T

〈(

c − 〈A, ρ〉
Ψ(ρ)− B

)

, Π

〉

(4)

The existence of the equilibrium value is implied before. Thus we only need to see when a NC algorithm
will exist to calculate the λ approximately to high precision. To ease the description of the algorithm, let
S(ρ) defined to be

S(ρ) =

(

c − 〈A, ρ〉
Ψ(ρ)− B

)

for any ρ ∈ D (X ). Choose N(Π) to be the raw loss matrix such that for any ρ ∈ D (X ) and Π =
(

p
P

)

∈ T, we have

〈S(ρ), Π〉 = 〈ρ, N(Π)〉 (5)

It is easy to see that we can choose N(Π) to be

N(Π) = −pA + Ψ∗(P) + (pc − 〈B, P〉)1X (6)

Theorem 2. Let the input size, denoted by |x|, be the size of any instance in Equation [4]. If for any Π ∈ T the
N(Π) defined above satisfies ‖N(Π)‖∞ ≤ r where r = O(polylog(|x|)) and Ψ(ρ) can be calculated in NC for
any ρ ∈ D (X ), then by using the algorithm in Figure 1, we can approximate the equilibrium value to precision
δ = Ω(polylog(|x|)) in NC.

We will leave the proof of Theorem 2 in Appendix A.3.
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3 QIP(2) Case

Now it is our turn to consider a real instance of semidefinite program and apply our framework to solve
it. Our first candidate is the quantum interactive proof system with two-messages. In this system, after the
input x is given, the polynomial-time bounded quantum verifier will send one quantum message to an all
powerful quantum prover and get another quantum message back. Then the verifier will decide whether to
accept or to reject based on the message sent back from the prover and the qubits kept at his side. The only
constraint on the all powerful quantum prover is that the prover must operate an admissable quantum
operation on the quantum message sent to him. The complexity class QIP(2) denotes all the languages
which can be recognized by the procedure above. Precisely, we have

Definition 1. Any language L is inside QIP(2) if and only if

• If x ∈ L, there exists a prover such that the verifier will accept with probability at least c(|x|).
• If x /∈ L, for any prover the verifier will accept with probability at most s(|x|).

where c(|x|)− s(|x|) = Ω(1/poly(|x|)).
It is known that QIP(2)⊆PSPACE [JUW09] by following Kale’s way [Kal07] to solve SDPs. By contrast,

we will demonstrate here how our Framework 1 can be applied to this problem. Namely, we provide an al-
ternative proof of the result QIP(2)⊆PSPACE. The main difference between our approach and the previous
approach is that we formulate the problem using the density operators instead of quantum channels and
we solve the semidefinite program using the new framework.

Let M denote the message’s space between the prover and the verifier and V denote the verifier’s
private space. Let us assume the input x is fixed for the following discussion. Without lost of generality, let
the pure state ρ1 ∈ D (M⊗V) be the initial state for the input x, namely the state that the verifier prepares
given input x. The prover will then operate an admissable quantum channel Φ : L (M) → L (M) on part
of the state ρ1 and it will result another state ρ2 = Φ ⊗ 1L(V)(ρ1). The verifier will performance a POVM
measurement on ρ2 to decide whether to accept or to reject. Let R be the POVM which corresponds to
the case where the verifier accepts. In order to decide whether x ∈ L, it suffices to solve the optimization
problem

max
Φ

〈R, ρ2〉 s.t. ρ2 = Φ ⊗ 1L(V)(ρ1)

where the optimum value is the maximum probability that the verifier accepts given the input x.
Because of Lemma 4, we have ρ1 and ρ2 are connected by an admissable quantum operation if and only

if TrM ρ1 = TrM ρ2. Thus the above optimization problem is equivalent to the following SDP, denoted by
SDP (I).

SDP Problem

maximize: 〈R, ρ2〉
subject to: TrM(ρ2) ≤ TrM(ρ1),

ρ2 ∈ D (M⊗V) .

Feasibility Problem

ask whether: 〈R, ρ2〉 ≥ c

subject to: TrM(ρ2) ≤ TrM(ρ1),

ρ2 ∈ D (M⊗V) .

3.1 Solution to the Feasibility Problem

Following the Framework 1, we consider the feasibility problem above. Precisely, we define

f1(ρ, Π) =

〈(

c − 〈R, ρ〉
TrM(ρ)− TrM(ρ1)

)

, Π

〉

(7)

where ρ ∈ T1 = D (M⊗V) and Π ∈ T2 = {Π : 0 ≤ Π ≤ 1M⊕C}. Let λ⋆

1 be the equilibrium value of
function f1, namely,

λ⋆

1 = min
ρ∈T1

max
Π∈T2

f1(ρ, Π) = max
Π∈T2

min
ρ∈T1

f1(ρ, Π)

7



Base on Theorem 1, the value of λ⋆

1 will imply whether the original problem is feasible. In addition to
that, we will demonstrate how to convert any approximately feasible solution to exactly feasible solution
without changing the value of the object function a lot.

Lemma 6. Assume we can calculate the approximate equilibrium value and point of the function f1 to the precision
δ. Let the λ̄1 and {ρ̄, Π̄} be the approximate equilibrium value and point returned by algorithm in Figure 1, λ⋆

1 be the
actual equilibrium value. Then we have

• if λ̄1 > δ, then the original problem is infeasible.

• if λ̄1 ≤ δ, then there exists a feasible solution ρ̃ such that 〈R, ρ̃〉 ≥ c −
√

2δ − δ2.

Proof. • If λ̄1 > δ, namely, λ⋆

1 ≥ λ̄1 − δ > 0, then due to Theorem 1, the original problem is feasible.

• Otherwise, due to Lemma 5, we have

h1(ρ̄, P̄) = max{c − 〈R, ρ̄〉 , 0}+ 1

2
‖TrM(ρ̄)− TrM(ρ1)‖1 ≤ δ (8)

By Lemma 1 and 2, we can compute ρ̃ such that F (TrM(ρ̄), TrM(ρ1)) = F (ρ̃, ρ1) and TrM(ρ̃) =

TrM(ρ1). Let s = 1
2‖TrM(ρ̄)− TrM(ρ1)‖1 and t = 1

2‖ ρ̃ − ρ̄‖1. Then we have

〈R, ρ̃〉 − c = 〈R, ρ̄〉+ 〈R, ρ̃ − ρ̄〉 − c

≥ 1

2
‖TrM(ρ̄)− TrM(ρ1)‖1 − δ − 1

2
‖ ρ̃ − ρ̄‖1

= s − t − δ ≥ s −
√

2s − s2 − δ

≥ δ −
√

2δ − δ2 − δ = −
√

2δ − δ2

where the first inequality is due to Equation [8] and Lemma 5 and the second inequality comes from

Lemma 3. The last inequality is because s −
√

2s − s2 is decreasing when 0 ≤ s ≤ 0.2 and by Equation
[8] s ≤ δ.

Theorem 3. For any guess c (0 ≤ c ≤ 1) for the feasibility problem, and let the input size denoted by |x| be the size
of function f1, there is a NC algorithm to solve the feasibility problem by returning either case in Lemma 6.

Proof. The algorithm basically follows the Theorem 2 and Lemma 6. Since the particular feasibility problem
in our consideration has Ψ(·) = TrM(·) and A = R, B = TrM(ρ1), we have

N(Π) = −pR + 1M ⊗ P + (pc − 〈TrM(ρ1), P〉)1M⊗V

according to the definition in Equation [6] where Π =

(

p
P

)

∈ T2 in our problem. It is easy to see that

‖N(Π)‖∞ ≤ ‖−pR‖∞ + ‖1M ⊗ P‖∞ + ‖(pc − 〈TrM(ρ1), P〉)1M⊗V ‖∞ ≤ 1 + 1 + 1 = 3

for any Π ∈ T2 and Ψ(ρ) = TrM(ρ) can be calculated in NC for any ρ ∈ T1. Thus, by Theorem 2, we can
compute the approximate equilibrium value and point in Lemma 6 to precision δ = Ω(1/polylog(|x|)) in
NC. Based on the two cases discussed in Lemma 6, we can either claim the original problem is infeasible or
calculate the ρ̃ by a NC algorithm according to Lemma 2. Compose all the NC circuits above, then we have
a NC algorithm for the feasibility problem.
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3.2 Solution to the Promised Version and General Case

We are ready to apply the result of Theorem 3 to simulate QIP(2) or more general cases. Recall the definition
of QIP(2), there will be two promises with gap ∆ = c(|x|)− s(|x|) = Ω(1/poly(|x|)). Thus,

Corollary 1. QIP(2) ⊆ PSPACE

Proof. For any input x, we simply compose the following circuits.

• For any specific x, compute the corresponding initial state ρ1 and the function f1. This can be done
in NC(poly) because it only involves the computation of the product of a polynomial number of
exponential-size matrices that corresponds to the quantum circuits used by the verifier.

• Choose the guess value c = 1
2 (c(|x|) + s(|x|)) and precision δ = 1

18 ∆2. Then use the NC algorithm
implied by Theorem 3 to calculate the equilibrium value λ⋆

1 to the precision δ.

• Finally, based on the two cases in Lemma 6, we can claim either the optimum value of the SDP is less

than c or at least c −
√

2δ − δ2 ≥ c − 1
3 ∆. Then we are able to tell whether x ∈ L.

Due to the facts in Appendix A.2, all the circuits can be composed in NC(poly). Because of the fact
NC(poly)=PSPACE [Bor77], we have QIP(2)⊆PSPACE.

Furthermore, for the case where no such promise exists we can develop a binary search to approximate
the optimum value to high precision.

Theorem 4. Let x be any instance of SDP (I) and α be the optimum value of SDP (I). There exists a NC algorithm
which can calculate α to precision δ = Ω(1/polylog(|x|)). Furthermore, there is a NC algorithm to compute ρ2

such that 〈R, ρ2〉 ≥ α − δ.

Proof. The proof follows from the binary search based on Lemma 6. Start with guess value c, by Theorem 3,
we have a NC algorithm to claim either α < c or α ≥ c − δ. Thus, by using binary search, we can calculate
α to precision δ. Since δ = Ω(1/polylog(|x|)), there will be at most polynomial-logarithm iterations in the
binary search. Therefore, all the circuits above can be composed in NC.

4 One-round Product QRG

In this section, we demonstrate how the Framework 2 can be applied to real problems. Here we consider
the simplified version of quantum refereed game with one round (two turns). The upper bound of the
complexity class recognized by the latter model, denoted by QRG(2), becomes more and more interesting
after the proof QIP=PSPACE [JJUW09, Wu10]. Particular, it is interesting to see whether QRG(2)=PSPACE
while its classical counterpart RG(2) equals PSPACE [FK97].

The general one-round quantum refereed game works as follows. After receiving some input x, the
verifier then prepares some quantum messages and send them to both Yes and No provers. After both
provers reply with quantum messages, the verifier will base on all the quantum states at his hand to decide
whether to accept x or not. Now, let us consider a simplified case where the messages sent to the Yes prover
and No prover are product states. We denote all the languages recognized by this procedure by product-
QRG(2). At the first sight, this might seem to be a very restricted complexity class. However, by using the
techniques from the recent result [BSW10], we can prove the product-QRG(2) contains all the languages
which can recognized by the most general model of one-round quantum refereed game except the message
sent to Yes prover is only of poly-logarithm size.

Let us formulate the product one-round quantum refereed game in the following way. Since the mes-
sages sent to both provers are product states, let VY denote the verifier’s private space when interacts
with the Yes prover and Y denote the message space between the verifier and the Yes prover. Similarly,
let VN denote the verifier’s private space when interacts with the No prover and N denote the message
space between the verifier and the No prover. Without lose of generality, we can assume the pure states
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ρY ∈ D (VY ⊗Y) , ρN ∈ D (VN ⊗N ) are the initial states of the verifier given some input x. We will assume
the input x is fixed in the following discussion. Then the Yes and No provers will apply some admissable
quantum operations ΦYes, ΦNo respectively on part of the density operators ρY, ρN. The resultant states will
be σY = ΦYes ⊗ 1L(VY)

(ρY), σN = ΦNo ⊗ 1L(VN)(ρN). Finally, the verifier will make some POVM measure-
ment on σY ⊗ σN to decide whether to accept or reject. Let R (0 ≤ R ≤ 1) be the POVM which corresponds
to the case where Yes prover wins, then Game Value GV(R) is defined to be

GV(R) = max
σY∈T1

min
σN∈T2

〈R, σY ⊗ σN〉 = min
σN∈T2

max
σY∈T1

〈R, σY ⊗ σN〉

where
T1 = {σ ∈ D (VY ⊗ Y) : ∃ admissable ΦYes : L (Y) → L (Y) , σ = ΦYes ⊗ 1L(VY)

(ρY)}
and

T2 = {σ ∈ D (VN ⊗N ) : ∃ admissable ΦNo : L (N ) → L (N ) , σ = ΦNo ⊗ 1L(VN)(ρN)}
Since ρY, ρN are pure states, by Lemma 4, we can simplify the definition of T1, T2 to

T1 = {σY ∈ D (VY ⊗ Y) : TrY (σY) = TrY (ρY)} , T2 = {σN ∈ D (VN ⊗N ) : TrN (σN) = TrN (ρN)}

Definition 2. Any language L is inside this product-QRG(2) if and only if for any input x,

• If x ∈ L, then GV(R) ≥ c(|x|)
• If x /∈ L, then GV(R) ≤ s(|x|)

where c(|x|)− s(|x|) = Ω(1/poly(|x|)).

Let b = 1
2 (c(|x|) + s(|x|)) and ∆ = c(|x|)− s(|x|). By applying Framework 2, we define the convex-

concave function h1 as follows.

h1({σY, Π}, σN) = 〈R, σY ⊗ σN〉 − b +
2

∆
〈Π, TrN (σN)− TrN (ρN)〉

where Π comes from the set T = {Π : 0 ≤ Π ≤ 1VN
}. The function h1 is actually the weighted sum where

the factor α is chosen to be 2/∆ . Then we will consider the new equilibrium value of function h1 instead.
Precisely, we define

µ⋆ = max
{σY,Π}∈T1×T

min
σN∈D(VN⊗N)

h1({σY, Π}, σN) = min
σN∈D(VN⊗N)

max
{σY,Π}∈T1×T

h1({σY, Π}, σN)

Then we are ready to show the gap between two promises in Definition 2 can be transferred to the equilib-
rium value µ⋆.

Theorem 5. Given the two promises in the Definition 2, we have for any input x,

• If x ∈ L, then µ⋆ ≥ 1
4 ∆

• If x /∈ L, then µ⋆ ≤ − 1
2 ∆

Proof. • If x ∈ L, choose ({σ⋆

Y, Π⋆}, σ⋆

N) to be the equilibrium point. By Lemma 5, we have

µ⋆ = 〈R, σ⋆

Y ⊗ σ⋆

N〉 − b +
1

∆
‖TrN (σ⋆

N)− TrN (ρN)‖1

10



By Lemma 3, there exists some σ̃N such that TrN (σ̃N) = TrN (ρN) and F (σ̃N, σ⋆

N) = F (TrN (σ⋆

N), TrN (ρN)).

Let s = 1
2‖σ̃N − σ⋆

N‖1 and t = 1
2‖TrN (σ⋆

N)− TrN (ρN)‖1 , thus

µ⋆ = 〈R, σ⋆

Y ⊗ σ̃N〉 − b + 〈R, σ⋆

Y ⊗ (σ⋆

N − σ̃N)〉+
1

∆
‖TrN (σ⋆

N)− TrN (ρN)‖1

≥ 1

2
∆ − 1

2
‖σ⋆

N − σ̃N‖1 +
1

∆
‖TrN (σ⋆

N)− TrN (ρN)‖1 =
∆

2
− s +

2

∆
t

≥ ∆

2
− s +

2

∆
(1 −

√

1 − s2) ≥ ∆

2
+

2

∆
−

√

1 +
4

∆2

=
∆

2
+

1 −
√

1 + (∆
2 )

2

∆
2

≥ 1

4
∆

where the first inequality comes from Lemma 5 and the second inequality is due to Lemma 3. The

third inequality is due to the fact that min0≤s≤1
1
x − s − 1

x

√
1 − s2 = 1

x −
√

1 + 1
x2 . The last inequality

comes from the fact 1 −
√

1 + x2 ≥ − 1
2 x2 for any 0 ≤ x ≤ 1.

• If x /∈ L, by Definition 2 , there exists a σ̃N satisfying TrN (σ̃N) ≤ TrN (ρN) and for any σY ∈ T1, we

have 〈R, σY ⊗ σ̃N〉 − b ≤ −∆
2 . Thus,

µ⋆ ≤ max
{σY ,Π}∈S1×T

h1({σY, Π}, σ̃N) ≤ −∆

2

Thus in order to tell whether x is inside L, it suffices to compute the value of µ⋆ and make the decision
according to Theorem 5. In the following proof, we will implicitly make use of the result in Theorem 4
recursively at each iteration as the solution to the oracle.

Corollary 2. product-QRG(2)⊆ PSPACE

Proof. The proof of this corollary is quite similar to Corollary 1. Whenever an input x is given, we can
calculate R in NC(poly) and approximate the equilibrium value µ⋆. By composing all these circuits, we
prove the whole circuit is in NC(poly) and thus in PSPACE.

The only difference is the function h1 is not in the same form as we discussed in Theorem 2. However,
by applying the general framework for the equilibrium value (see Appendix A.3), we are able to calculate

equilibrium value µ⋆ to high precision in NC as well. Particularly, for each σ
(t)
N generated, we will choose

σ
(t)
Y to be the return value by Theorem 4 where the POVM for SDP (I) is TrVN⊗N((1VY⊗Y ⊗

√

σ
(t)
N )R(1VY⊗Y ⊗

√

σ
(t)
N )). Furthermore, we will choose Π(t) to be the projection onto the positive eignspace of TrN (σ

(t)
N )−

TrN (ρN). Similarly to the algorithm in Figure 1, we will choose

N(σY, Π) = TrVY⊗Y((
√

σY ⊗ 1VN⊗N)R(
√

σY ⊗ 1VN⊗N)) +
2

∆
Π ⊗ 1N − (

2

∆
〈Π, TrN (ρN)〉+ b)1VN⊗N

Since ∆ = Ω(1/poly(|x|)), we have ‖N(σY, Π)‖∞ is always bounded by O(poly(|x|)). Thus the whole
algorithm can be accomplished in NC(poly).

5 Conclusions and Open Problems

In this paper we demonstrate how the Framework 1 can be used to solve a class of SDPs. Moreover, by the
examples of QIP(2) and QMAM, we demonstrate how the conversion from approximate to exact feasibility
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can be done in our framework. The generic form in Theorem 2 also illustrates the potential of our frame-
work to solve other SDPs. In addition, our example of product-QRG(2) illustrates how the Framework 2
can be used to calculate the equilibrium value of more complicated form.

However, there are several limits and unknown facts about our two frameworks. As mentioned in [JJUW09],
it might be impossible to solve any SDPs in NC. Thus, we cannot hope to include all possible SDPs into
our framework. Understanding what kind of constraints for SDPs can be solved via our framework is a
major open problem. So far, we have positive results when the constraints are partial trace and its simple
combination. It can be easily verified that the constraint Ψ = TrA(U · U∗) for some unitary U can also be
solved in the similar way.

Another open problem is whether any generalization of the multiplicative weight update method can
be found to improve the results based on the multiplicative weight update method. The recent survey
paper [Haz10] could provide some insights into that.

Finally, it is still open whether QRG(2)=PSPACE while its classical counterpart RG(2)=PSPACE.
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A Extended Preliminaries

A.1 Fundamentals of Quantum Information

In this section, we will provide a summary of the fundamental notations and facts in quantum information.
We assume the readers are familiar with these knowledge, and most part of this section is meant to make
clear the terminology and well-known facts used in this paper. For those readers who are not familiar
with these concepts, we recommend them to refer to [Bha97, KSV02, NC00, Wat08]. Our notation basically
follows the notation in Watrous’s lecture notes [Wat08].

A quantum register refers to a collection of qubits, usually represented by a complex Euclidean spaces of
the form X = CΣ where Σ refers to some finite non-empty set of the possible states.
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For any two complex Euclidean spaces X ,Y , let L (X ,Y) denote the space of all linear mappings(or
operators) from X to Y (L (X ) short for L (X ,X )). An operator A ∈ L (X ,Y) is a linear isometry if A∗A = 1X
where A∗ denotes the adjoint(or conjugate transpose) of A. The set of linear isometries is denoted by
U (X ,Y) then.

An operator A ∈ L (X ) is Hermitian, the set of which is denoted by Herm (X ), if A = A∗. The eigenval-
ues of a Hermitian operator are always real. For n = dimX , we write λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) to
denote the eigenvalues of A sorted from largest to smallest. An operator P ∈ L (X ) is positive semidefinite,
the set of which is denoted by Pos (X ), if P is Hermitian and all of its eigenvalues are nonnegative, namely
λn(P) ≥ 0. An operator ρ ∈ Pos (X ) is a density operator, the set of which is denoted by D (X ), if it has
trace equal to 1. A density operator ρ ∈ D (X ) is said to be pure if it has rank equal to one. An operator
Π ∈ Pos (X ) is a projection if Π projects onto some subspace of X . Furthermore, such operators only have
eigenvalues of 0 or 1.

The Hilbert-Schmidt inner product on L (X ) is defined by

〈A, B〉 = Tr A∗B

for all A, B ∈ L (X ).
A super-operator(or quantum channel) is a linear mapping of the form

Ψ : L (X ) → L (Y)

A super-operator Ψ is said to be positive if Ψ(X) ∈ Pos (Y) for any choice of X ∈ Pos (X ), and is completely
positive if Ψ ⊗ 1L(Z) is positive for any choice of a complex vector space Z . The super-operator Ψ is said to

be trace-preserving if Tr Ψ(X) = Tr X for all X ∈ L (X ). A super-operator Ψ is admissable if it is completely
positive and trace-preserving. Admissable super-operators represent the discrete-time changes in quantum
systems that, in principle, can be physically realized.

We refer to measurements, or precisely POVM-type measurements as a collection of positive semidefinite
operators

{Pa : a ∈ Σ} ⊂ Pos (X )

satisfying the constraint ∑a∈Σ Pa = 1X . Here Σ refers to a finite, nonempty set of measurement outcomes. If a
quantum state represented by ρ ∈ D (X ) is measured with respect to this measurement, then each outcome
a ∈ Σ will be observed with probability 〈Pa, ρ〉.

The trace norm of an operator A ∈ L (X ) is denoted by ‖A‖1 and defined to be

‖A‖1 = Tr
√

A∗A

When A is Hermitian, we have

‖A‖1 = max{〈P0 − P1, A〉 : P0, P1 ∈ Pos (X ) , P0 + P1 = 1X } (9)

The spectral norm of an operator A ∈ L (X ) is defined to be

‖A‖∞ = max{‖Au‖ : u ∈ X , ‖u‖ = 1}
Given two positive semidefinite operators P, Q ∈ Pos (X ), we define the fidelity between P and Q as

F (P, Q) = ‖
√

P
√

Q‖1

When P, Q are density operators, due to Fuchs-van de Graaf inequality, we have

1 − 1

2
‖P − Q‖1 ≤ F (P, Q) ≤

√

1 − 1

4
‖P − Q‖2

1 (10)

Suppose ρ ∈ D (X ) is a density operator, the purification of ρ in X ⊗ Y is any pure density operator
uu∗ ∈ D (X ⊗ Y) for which TrY (uu∗) = ρ.

The following contains the proof of lemmas shown in Section 2.1
Proof of Lemma 1 (Please note that this lemma was originally proved in many places. The following
proof follows the one in [JUW09]. The only reason to include this proof is because we will use it to prove
Lemma 2.)
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Proof. First, by the monotonicity of the fidelity function under partial trace, we have for any σ2 ∈ D (A⊗ B)
such that TrB σ2 = ρ2 the inequality F (ρ1, ρ2) ≥ F (σ1, σ2) always holds. Thus, it suffices to show that
equality can be achieved.

Let V ∈ U (A) such that
√

ρ1
√

ρ2V is positive semidefinite. Since for fidelity function we have F (ρ1, ρ2) =
‖√ρ1

√
ρ2‖1, then for such a V it holds that F (ρ1, ρ2) = Tr(

√
ρ1
√

ρ2V). Now let C = A⊗ B and |u1〉 ∈
A⊗ B ⊗ C be the purification of σ1, in particular, |u1〉 is chosen to be

|u1〉 = vec(
√

σ1)

By rearranging the coefficients we can find a X ∈ L (B ⊗ C ,A) such that vec(X) = |u1〉. Since |u1〉 is also a
purification of ρ1, there must exist a linear isometry U ∈ U (A,B ⊗ C) such that,

X =
√

ρ1U∗

Finally, let |u2〉 = vec(
√

ρ2VU∗) ∈ A⊗ B ⊗ C where V, U are obtained above respectively. It is easy to
see that |u2〉 is a purification of ρ2 in the space A⊗ B ⊗ C . Thus, we choose σ2 = TrC(|u2〉 〈u2 |) and it will
hold that

F (σ1, σ2) ≥ | 〈vec(
√

ρ1U∗), vec(
√

ρ2VU∗)〉 | = | 〈√ρ1U∗,
√

ρ2VU∗〉 | = Tr(
√

ρ1
√

ρ2V) = F (ρ1, ρ2)

Proof of Lemma 2

Proof. The proof of the Lemma 1 actually gives you a way to construct such a σ2 given ρ1, ρ2, σ1. Let us
review the important steps in the proof again with more attention to the computation of each intermediate
quantity.

In the first step, we need to calculate a V ∈ U (A) such that
√

ρ1
√

ρ2V is positive semidefinite. This
can be done by calculating the singular value decomposition of

√
ρ1
√

ρ2 and let V = 1 − 2P where P is the
projection onto the subspace with negative singular values.

The second step calculates X such that vec(X) = |u1〉 = vec(
√

σ1). This can be done by simply rear-
ranging the coefficients in the entries of

√
σ1. In order to get U ∈ U (A,B ⊗ C), we can calculate the singular

value decomposition of
√

ρ1 and get the inverse( or pseudo-inverse) of
√

ρ1. Then U = X∗(
√

ρ1
−1)∗.

Once we have U and V, we can easily calculate σ2 by using the formula

σ2 = TrC(vec(
√

ρ2VU∗) vec(
√

ρ2VU∗)∗)

Due to the fact that fundamental operations of matrix and the singular value decomposition can be done in
NC(see Fact 1 and Fact 3) and the fact we can compose these NC circuits easily, then we can conclude that
σ2 can be calculated in NC given the classical representations of ρ1, ρ1 and σ1 as input.

Proof of Lemma 3

Proof. This is only a simple application of the Fuchs-van de Graaf Inequalities(Eq[10]). Namely, we have

1 − s ≤ F (ρ1, ρ2) ≤
√

1 − s2 and 1 − t ≤ F (σ1, σ2) ≤
√

1 − t2

Given the fact F (ρ1, ρ2) = F (σ1, σ2), it easily follows that

1 − s ≤
√

1 − t2 and 1 − t ≤
√

1 − s2

Proof of Lemma 4

Proof. This lemma is a standard fundamental fact of quantum information that follows from the unitary
equivalence of purifications and the fact ρ1 is a pure state.
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Proof of Lemma 5

Proof. Given the fact about the trace norm of any Hermitian operator A in Equation 9, we have

‖A‖1 = max
Π:0≤Π≤1

〈A, Π − (1 − Π)〉

= max
Π:0≤Π≤1

2 〈A, Π〉 − Tr(A)

= max
Π:0≤Π≤1

2 〈A, Π〉

Thus,

max
Π:0≤Π≤1

〈A, Π〉 = 1

2
‖A‖1

For the other equation, choose A′ = −A, and apply the equation above, we have

max
Π:0≤Π≤1

〈

A′, Π
〉

= max
Π:0≤Π≤1

〈−A, Π〉 = 1

2
‖A′‖1 =

1

2
‖A‖1

Thus

min
Π:0≤Π≤1

〈A, Π〉 = −1

2
‖A‖1

A.2 Facts on NC and parallel matrix computations

We denote by NC the class of promise problems computed by the logarithmic-space uniform Boolean cir-
cuits with poly-logarithmic depth. Furthermore, we denote by NC(poly) the class of promise problems
computed by the polynomial-space uniform Boolean circuits with polynomial depth. Since it holds that
NC(poly)= PSPACE [Bor77], thus in order to simulate the algorithm above in PSPACE, it suffices to prove
that we can simulate the algorithm in NC(poly).

There are a few facts about these classes which are useful in our discussion. The first fact is the functions
in these classes compose nicely. It is clear that if f ∈ NC(poly) and g ∈ NC, then their composition g ◦ f
is in NC(poly), which follows from the most obvious way of composing the families of circuits. Another
useful fact is that many computations involving matrices can be performed by NC algorithms (Please refer
to the survey [Gat93] which describes NC algorithms for these tasks). Especially, we will make use of the
fact that matrix exponentials and singular value decompositions can be approximated to high precision in
NC. We will directly cite the well-prepared form of these facts in [JJUW09].

Fact 1. Fundamental operations like addition, multiplication of matrices can be done in NC

Fact 2. Matrix exponentials: there exists NC algorithms such that

Input: An n × n matrix M, a positive rational number η, and an integer k expressed in unary notation
(i.e., 1k).

Promise: ‖M‖ ≤ k.
Output: An n × n matrix X such that ‖exp(M)− X‖ < η.

Fact 3. Singular value decompositions: there exists NC algorithms such that

Input: An m × n matrix M and a positive rational number η.
Output: An m × m unitary matrix U ,n × n unitary matrix V and an m × n real diagonal matrix Λ such

that
‖M − UΛV∗‖ < η.
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1. Initialization: Pick a fixed ε ≤ 1
2 , and let W(1) = 1X ∈ L (X ), D = dimX .

2. Repeat for each t = 1, . . . , T:

(a) Let the density operator ρ(t) = W(t)/ Tr W(t)

(b) Observe the loss matrix M(t) ∈ L (X ) which satisfies −1X ≤ M(t) ≤ 0 or 0 ≤ M(t) ≤ 1X , update
the weight matrix as follows:

W(t+1) = exp(−ε
t

∑
τ=1

M(τ))

Figure 2: The Matrix Multiplicative Weights Update method.

A.3 Multiplicative Weights Update Method

The multiplicative weights update method introduced in Section 1 is a framework for algorithm design(or meta-
algorithm) that works as the one shown in Fig 2. This kind of framework involves lots of technical details
and we refer the curious reader to the survey and the PhD thesis [Kal07] mentioned in the introduction.
However, for the sake of completeness, we provide the main result which will be useful in our proof. It

should be noticed that {M(t)} is the freedom we have in this framework.

Theorem 6. Assume 0 ≤ M(t) ≤ 1 for all t, after T rounds, the algorithm in Fig 2 guarantees that, for any
ρ∗ ∈ D (X ), we have

(1 − ǫ)
T

∑
t=1

〈

ρ(t), M(t)
〉

≤
〈

ρ∗,
T

∑
t=1

M(t)

〉

+
lnD

ǫ
(11)

The proof can be found in Kale’s thesis [Kal07] or the appendix of [Wu10]. We will then discuss how
this method can used to solve the feasibility problem and equilibrium value following the way in Kale’s
thesis [Kal07] with more details.

In order to solve any feasibility problem of general form, the primal-dual method will generate a series

of candidate solutions X(1), X(2), · · · , X(T) for T rounds. For any X(t) in the round t, we require an oracle
O1 to solve the following problem

find Y(t) s.t.
〈

Ψ∗(Y(t))− A, X(t)
〉

≥ 0,
〈

B, Y(t)
〉

≤ c, Y(t) ∈ Pos (Y) (12)

The oracle O1 will return such a Y(t) or claim such a Y(t) does not exist. If such a Y(t) exists, the primal-

dual method will generate the X(t+1) via the multiplicative weight update method by choosing M(t) to be a

renormalized version of Ψ∗(Y(t))− A. Otherwise, it stops to claim the rescaled X(t) is feasible to the primal

problem and
〈

A, X(t)
〉

≥ c. If the method does not stop for T rounds, the multiplicative weight update

method will generate an approximate dual feasible solution Y. Under certain conditions, such a Y can be
converted into exact dual feasible solution Ỹ such that

〈

B, Ỹ
〉

≤ (1 + ǫ)c. Due to the duality of SDPs, this
implies that α ≤ β ≤ (1 + ǫ)c.

In addition to the convertibility from approximate to exact feasibility, another difficulty in applying this
generic method is the design of the oracle O1 . Efficient solution to the oracle O1 is necessary to guarantee
an efficient algorithm for the feasibility problem. We will refer this requirement as the efficient solvability. In

addition, we need the spectrum of Ψ∗(Y(t))− A of the oracle O1 is bounded within a small range. We will
refer this requirement as width-boundness.

The generic framework to calculate the equilibrium value is different in the sense of the design of the
oracle and the use of Theorem 6. Consider the value λ,

λ = min
x∈X

max
y∈Y

f (x, y) = max
y∈Y

min
x∈X

f (x, y)
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for some convex-concave function over X × Y where X, Y are convex compact sets. By convex-concave, we
mean

Definition 3. A function f on X × Y is convex-concave if for every y ∈ Y the function ∀x ∈ X, fy(x) , f (x, y)

is convex on X and for every x ∈ X the function ∀y ∈ Y, fx(y) , f (x, y) is concave on Y.

Consider the case when X is the set of density operators up to some factor. Again, we will generate a

series of x(1), x(2), · · · , x(T) ∈ X for T rounds. For each x(t) in the round t, we require another oracle O2 to

find approximate solution, denoted by y(t), to the following optimization problem,

max
y∈Y

f (x(t), y) (13)

Then x(t+1) will be generated via the multiplicative weight update method. After T rounds, we can claim
1
T ∑

T
t=1 f (x(t), y(t)) is the approximate value for λ. Similarly, the oracle O2 is required to be efficient solvable

and width-bounded. By the efficient solvability, we mean the oracle O2 can be solved efficiently. By the

width-boundness, we mean the L∞ norm of y(t) is bounded in some sense.
We will conclude this section with the proof of Theorem 2.

Proof of Theorem 2

Proof. First note that ‖N(t)‖∞ ≤ r for any 1 ≤ t ≤ T. Thus,

0 ≤ M(t) = (N(t) + r1X )/2r ≤ 1X

Then it is easy to see this is a typical multiplicative weights update method. Due to the Theorem 6, we
have:

(1 − ε)
T

∑
τ=1

〈

ρ(τ), M(τ)
〉

≤
〈

ρ∗,
T

∑
τ=1

M(τ)

〉

+
ln D

ε
(14)

for any density operator ρ∗ ∈ D (X ). Substitute M(t) = (N(t)+ r1X )/2r into Equation [14] and divide both

side by T, note that
〈

ρ(t), M(t)
〉

≤ 1, then we have

1

T

T

∑
τ=1

〈

ρ(τ), N(τ)
〉

≤ 1

T

〈

ρ∗,
T

∑
τ=1

N(τ)

〉

+ 2rε +
2r ln D

εT
(15)

By choosing ε = δ
4r and T =

⌈

16r2 ln D
δ2

⌉

, we have

1

T

T

∑
τ=1

〈

ρ(τ), N(τ)
〉

≤ 1

T

〈

ρ∗,
T

∑
τ=1

N(τ)

〉

+ δ

According to the definition of N(t), 1 ≤ t ≤ T, we have

1

T

T

∑
τ=1

〈

S(ρ(t)), Π(t)
〉

≤ 1

T

T

∑
τ=1

〈

S(ρ∗), Π(t)
〉

+ δ (16)

Choose (ρ⋆, Π⋆) to be the equilibrium point and substitute ρ⋆ into Equation [16], we have

1

T

T

∑
τ=1

〈

S(ρ(t)), Π(t)
〉

≤ 1

T

T

∑
τ=1

〈

S(ρ⋆), Π(t)
〉

+ δ ≤ λ⋆ + δ (17)

where the last inequality comes from Equation [4].
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Since ρ̄ = 1
T ∑

T
τ=1 ρ(τ) and by definition of Π̄, we have

〈ρ̄, Π̄〉 = 1

T

T

∑
τ=1

〈

ρ(τ), Π̄
〉

≤ 1

T

T

∑
τ=1

〈

ρ(τ), Π(τ)
〉

≤ λ⋆ + δ

where the first inequality is due to the definition of Π(t) and the second inequality comes from Equation
[16]. On the other side, 〈ρ̄, Π̄〉 ≥ λ⋆ by the definition of Π̄ and Equation [4]. Thus, we have

λ⋆ ≤ 〈ρ̄, Π̄〉 ≤ λ⋆ + δ

Finally we need to show that this algorithm can actually run in NC if δ2 = O(1/polylog(|x|)). Consider
every iteration of the algorithm. The only operations involved are the fundamental operation of matrices,
the singular value decomposition and the exponentials of matrices. Due to the Fact 1,2,3, they all can
be computed in NC and the circuits for the computation can be easily composed. Since there are only

T =
⌈

16r2 ln N
δ2

⌉

iterations and r = O(polylog(|x|)), δ = O(1/polylog(|x|)), thus there will be at most poly-

logarithm iterations respect to the input size. Therefore, the whole circuit will be NC.

B QMAM case

In this section, we will demonstrate how the Framework 1 can be applied to the SDP of QMAM. Due to
space limit, we will directly describe the SDP used in [JJUW09] and denote it by SDP (II).

SDP Problem

maximize: 〈R, ρ〉

subject to: TrY (ρ) ≤
1

2
1A ⊗ σ,

ρ ∈ D (A⊗X ⊗ Y) , σ ∈ D (X )

Feasibility Problem

ask whether: 〈R, ρ〉 ≥ c

subject to: TrY (ρ) ≤
1

2
1A ⊗ σ,

ρ ∈ D (A⊗X ⊗ Y) , σ ∈ D (X )

where R (0 ≤ R ≤ 1X ) is a POVM measurement and the space A is of dimension 2. We need to design an
algorithm to distinguish between the following two promises. Let α be the optimum value of the SDP (II).

Definition 4. Any language L is inside QMAM if and only if

• If x ∈ L, α ≥ c(|x|).
• If x /∈ L, α ≤ s(|x|).

where c(|x|)− s(|x|) = Ω(1/poly(|x|)).
Following the Framework 1, we consider the feasibility problem above. Precisely, we define

f2({ρ, σ}, Π) =

〈(

c − 〈R, ρ〉
TrY (ρ)− 1

2 1A ⊗ σ

)

, Π

〉

(18)

where {ρ, σ} ∈ T1 = D (A⊗X ⊗Y) × D (X ) and Π ∈ T2 = {Π : 0 ≤ Π ≤ 1A⊗X⊕C}. Let λ⋆

2 be the
equilibrium value of function f2, namely,

λ⋆

2 = min
{ρ,σ}∈T1

max
Π∈T2

f2({ρ, σ}, Π) = max
Π∈T2

min
{ρ,σ}∈T1

f2({ρ, σ}, Π)

Base on the Theorem 1, the value of λ⋆

1 will imply whether the original problem is feasible. In order to tell

the two promises in Definition 4, we will choose the guess value c = 1
2 (c(|x|) + s(|x|)).

Lemma 7. Given the two promises in Definition 4, we have

• If x ∈ L, then λ⋆

2 ≤ 0.
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• If x /∈ L, then λ⋆

2 ≥ 1
8 ∆2.

where ∆ = c(|x|)− s(|x|).
Proof. • If x ∈ L, then there exists a ρ ∈ D (A⊗X ⊗Y) , σ ∈ D (X ) such that 〈ρ, R〉 ≥ c and TrY (ρ) ≤

1
2 1A ⊗ σ. This implies λ⋆

2 ≤ 0.

• Otherwise, let ({ρ⋆, σ⋆}, Π⋆) be the equilibrium point. Due to Lemma 5, we have

λ⋆

2 = f2({ρ⋆, σ⋆}, Π⋆) = max{c − 〈R, ρ⋆〉 , 0}+ 1

2
‖TrY (ρ

⋆)− 1

2
1A ⊗ σ‖1 (19)

By Lemma 1, there exists a ρ̃ ∈ D (A⊗X ⊗ Y) such that F ( 1
21A ⊗ σ, TrY (ρ⋆)) = F (ρ̃, ρ⋆) and

TrY (ρ̃) = 1
2 1A ⊗ σ. Let s = 1

2‖TrY (ρ⋆) − 1
2 1A ⊗ σ‖1 and t = 1

2‖ ρ̃ − ρ⋆‖1. Then if t ≤ 1
2 ∆, we

have

λ⋆

2 ≥ c − 〈R, ρ̃〉+ 〈R, ρ̃ − ρ⋆〉+ s

≥ 1

2
∆ − t + s

≥ 1

2
∆ − t + 1 −

√

1 − t2

≥ 1

2
∆ − 1

2
∆ + 1 −

√

1 − 1

4
∆2 ≥ 1

8
∆2

where the first inequality is due to Equation [19], the second inequality comes from Lemma 5 and the

third inequality comes from Lemma 3. The last inequality is because t +
√

1 − t2 is increasing when

0 < t < 1
2 and 1 −

√
1 − x2 ≥ 1

2 x2 for any 0 < x < 1. On the other side, if t ≥ 1
2 ∆, by Equation [19],

λ⋆

2 ≥ s ≥ 1 −
√

1 − t2 ≥ 1

2
t2 ≥ 1

8
∆2

Finally, we have λ⋆

2 ≥ 1
8 ∆2 in this case.

The only part left is to prove that we can calculate the equilibrium value λ⋆

2 to high precision in NC. As
the readers might notice, the set T1 is no longer a simple set of density operators but a cross product of two
sets of density operators. However, we are still able to use a modified version of the algorithm in Figure 1
to solve the problem.

Precisely, we claim the algorithm in Figure 3 will be able to calculate λ⋆

2 to precision δ in NC. The proof

is almost the same as the proof for Theorem 2. The only difference is that we need to update ρ(t), σ(t)

independently and get two inequalities from each update. Then we combine them to get the final result.
This can be done because

f2({ρ, σ}, Π) = 〈S1(ρ), Π〉+ 〈S2(σ), Π〉
where

S1(ρ) =

(

c − 〈R, ρ〉 0
0 TrY (ρ)

)

and S2(σ) =

(

0 0

0 − 1
2 1A ⊗ σ

)

Let Π =

(

p
P

)

again, we can choose

N1(Π) = −pR + P ⊗ 1Y + pc1A⊗X⊗Y and N2(Π) = −1

2
TrA P

It is easy to verify that ‖N1(Π)‖∞, ‖N2(Π)‖∞ is bounded by 3. Thus given the gap of the equilibrium value
λ⋆

2 between two promises in Lemma 7, we can distinguish them in NC(poly) namely PSPACE.
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1. Let ε = δ
4r and T =

⌈

16r2 ln D
δ2

⌉

. Also let W(1) = 1A⊗X⊗Y , V(1) = 1X .

2. Repeat for each t = 1, . . . , T:

(a) Let ρ(t) = W(t)/ Tr W(t), σ(t) = V(t)/ Tr V(t) and let Π(t) be the projection onto the positive

eigenspace of S1(ρ
(t)) + S2(σ

(t)).

(b) Let M
(t)
1 = (N1(Π

(t)) + r1A⊗X⊗Y)/2r, M
(t)
2 = (N2(Π

(t)) + r1X )/2r and update the weight
matrix as follows:

W(t+1) = exp(−ε
t

∑
τ=1

M
(τ)
1 )

V(t+1) = exp(−ε
t

∑
τ=1

M
(τ)
2 )

3. Return 1
T ∑

T
τ=1

〈

S1(ρ
(t)) + S2(σ

(t)), Π(t)
〉

as the approximate equilibrium value of λ⋆

2 .

Figure 3: An algorithm that computes the approximate value of λ⋆

2 to precision δ.

C Precision Issue

The discussions on precision issue about the parallel implementations in our paper are quite similar to
the arguments used in [JJUW09, JUW09, JW09, Wu10]. Again, we will make use the three facts in Ap-
pendix A.2 and truncate the computation to sufficient precision for each step. It should be noticed that
because of our new framework we will only use three types of operations of matrices (namely, the three
facts in Appendix A.2). The analysis of the precision issue in our paper then should be easier than the one
in [JJUW09] since the latter one involves other types of operations, like the inversion of matrices.
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