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Abstract

Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction

performance than block codes of equivalent encoding complexity, and are expected to find important

applications in reliable quantum communication where a continuous stream of qubits is transmitted.

Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a “pearl-necklace

encoder.” Despite their theoretical significance as a neat way of representing quantum convolutional codes,

they are not well-suited to practical realization. In fact, there is no straightforward way to implement any

given pearl-necklace structure. This paper closes the gap between theoretical representation and practical

implementation. In our previous work, we presented an efficient algorithm for finding a minimal-memory

realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work

extends our previous work and presents an algorithm for turning a pearl-necklace encoder for a general

(non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that

a minimal-memory realization depends on the commutativity relations between the gate strings in the

pearl-necklace encoder. We find a realization by means of a weighted graph which details the non-

commutative paths through the pearl-necklace. The weight of the longest path in this graph is equal to

the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time

complexity in the number of gate strings in the pearl-necklace encoder.

Quantum error correction codes are used to protect quantum information from decoherence and operational

errors [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Depending on their approach to error control, error correcting codes

can be divided into two general classes: block codes and convolutional codes. In the case of a block code,

the original state is first divided into a finite number of blocks of fixed length. Each block is then encoded

separately and the encoding is independent of the other blocks. On the other hand, a quantum convolutional

code [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] encodes an incoming stream of quantum information

into an outgoing stream. Fast decoding algorithms exist for quantum convolutional codes [26] and in general,

they are preferable in terms of their performance-complexity tradeoff [18].

The encoder for a quantum convolutional code has a representation as a convolutional encoder or as

a pearl-necklace encoder. The convolutional encoder [12, 13], [26] consists of a single unitary repeatedly

applied to a stream of quantum data (see Figure 1(a)). On the other hand, the pearl-necklace encoder (see

Figure 1(b)) consists of several strings of the same unitary applied to the quantum data stream. Grassl

and Rötteler [14] proposed an algorithm for encoding any quantum convolutional code with a pearl-necklace
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Figure 1: Two different representations of the encoder for a quantum convolutional code. (a) Representation

of the encoder as a convolutional encoder. (b) Representation of the encoder as a pearl-necklace encoder [1].

encoders. The algorithm consists of a sequence of elementary encoding operations. Each of these elementary

encoding operations corresponds to a gate string in the pearl-necklace encoder.

The amount of required memory plays a key role for implementation of any encoder, since this amount will

result in overhead in the implementation of communication protocols. Hence any reduction in the required

amount of memory will help in practical implementation of quantum computer.

It is trivial to determine the amount of memory required for implementation of a convolutional encoder:

it is equal to the number of qubits that are fed back into the next iteration of the unitary that acts on the

stream. For example, the convolutional encoders in the Figures 1(a), 2(c) and 4(b) require two, one and four

frames of memory qubits, respectively.

In contrast, the practical realization of a pearl-necklace encoder is not explicitly clear. To make it realiz-

able, one should rearrange the gate strings in the pearl-necklace encoder so that it becomes a convolutional

encoder. In [1] we proposed an algorithm for finding the minimal-memory realization of a pearl necklace

encoder for the CSS class of convolutional codes. This kind of encoder consists of CNOT gate strings only

[27].

In this paper we extend our work to find the minimal-memory realization of a pearl-necklace encoder

for a general (non-CSS) convolutional code. A general case includes all gate strings that are in the shift-

invariant Clifford group [14]: Hadamard gates, phase gates, controlled-phase gate string, finite-depth and

infinite-depth [23, 25] CNOT operations. We show that there are many realization for a given pearl-necklace

encoder which are obtained considering non-commutativity relations of gate strings in the pearl-necklace

encoder. Then for finding the minimal-memory realization a specific graph, called non-commutativity graph

is introduced. Each vertex in the non-commutativity graph, corresponds to a gate string in the pearl-necklace

encoder. The graph features a directed edge from one vertex to another if the two corresponding gate strings

do not commute. The weight of a directed edge depends on the degrees of the two corresponding gate strings

and their type of non-commutativity. The weight of the longest path in the graph is equal to the minimal

memory requirement for the pearl-necklace encoder. The complexity for constructing this graph is quadratic

in the number of gate strings in the encoder.

The paper is organized as follows. In Section 1, we introduce some definitions and notation that are used

in the rest of paper. In Section 2, we define three different types of non-commutativity and then propose an

algorithm to find the minimal memory requirements in a general case. In Section 3, we will summarize the

contribution of this paper.
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1 Definitions and notation

We first provide some definitions and notation which are useful for our analysis later on. The gate strings in

the pearl-necklace encoder and the gates in the convolutional encoder are numbered from left to right. We

denote the ith gate string in the pearl-necklace encoder, U i, and the ith gate in the convolutional encoder,

Ui.

Let U , without any index specified, denote a particular infinitely repeated sequence of U gates, where

the sequence contains the same U gate for every frame of qubits.

Let U be either CNOT or CPHASE gate. The notation U
(
a, bDl

)
refers to a string of gates in a pearl-

necklace encoder and denotes an infinitely repeated sequence of U gates from qubit a to qubit b in every

frame where qubit b is in a frame delayed by l. 1

Let U be either phase or Hadamard gate. The notation U (b) refers to a string of gates in a pearl-necklace

encoder and denotes an infinitely repeated sequence of U gates which act on qubit b in every frame. By

convention we call this qubit, the target of U (b) during this paper.

If Ui is CNOT or CPHASE the notation ai, bi, and li are used to denote its source index, target index

and degree, respectively. If Ui is H or P the notation bi is used to denote its target index.

For example, the strings of gates in Figure 2(a) correspond to:

H (3) CPHASE (1, 2D) CNOT (1, 3) , (1)

b1 = 1, a2 = 1, b2 = 2, l2 = 1, a3 = 1, b3 = 3, and l3 = 0.

Suppose the number of gate strings in the pearl-necklace encoder is N. The members of the sets I+CNOT,

I−CNOT, I
+
CPHASE, and I−CPHASE are the indices of gate strings in the encoder which are CNOT with non-

negative degree, CNOT with negative degree, CPHASE with non-negative degree and CPHASE with negative

degree respectively:

I+CNOT = {i|U i is CNOT, li ≥ 0, i ∈ {1, 2, · · · , N}},

I−CNOT = {i|U i is CNOT, li < 0, i ∈ {1, 2, · · · , N}},

I+CPHASE = {i|U i is CPHASE, li ≥ 0, i ∈ {1, 2, · · · , N}},

I−CPHASE = {i|U i is CPHASE, li < 0, i ∈ {1, 2, · · · , N}}.

The members of the sets IH and IP are the indices of gate strings of the encoder which are H and P

respectively:

IH = {i|U i is H, i ∈ {1, 2, · · · , N}},

IP = {i|U i is P , i ∈ {1, 2, · · · , N}}.

Our convention for numbering the frames upon which the unitary of a convolutional encoder acts is from

“bottom” to “top.” Figure 5(b) illustrates this convention for a convolutional encoder. If Ui is CNOT or

CPHASE gate, then let σi and τi denote the frame index of the respective source and target qubits of the

Ui gate in a convolutional encoder. If Ui is Hadamard or Phase gate, let τi denote the frame index of the

target qubit of the Ui gate in a convolutional encoder. For example, consider the convolutional encoder in

Figure 5(b). The convolutional encoder in this figure consists of six gates; τ1 = 0, τ2 = 0, σ3 = 0, τ3 = 1,

σ4 = 2, τ4 = 0, σ5 = 3, τ5 = 2, σ6 = 4, and τ6 = 3.

While referring to a convolutional encoder, the following notation are defined as follows:

The notation CNOT(a, b) (σ, τ) denotes a CNOT gate from qubit a in frame σ to qubit b in frame τ .

1Instead of the previously used notation U(a, b)(Dl), we prefer to use U
(
a, bDl

)
as it seems to better represent the concept.
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Figure 2: Simple (since all gate strings commute with each other) example of the rearrangement of a pearl-

necklace encoder for a non-CSS code into a convolutional encoder. (a) The pearl-necklace encoder consists of

the gate strings H (1) CPHASE (1, 2) (D) CNOT (1, 3). (b) The rearrangement of gates after the first three

by shifting them to the right. (c) The repeated application of the procedure in (b) realizes a convolutional

encoder from a pearl-necklace encoder.

The notation CPHASE(a, b) (σ, τ) denotes a CPHASE gate from qubit a in frame σ to qubit b in frame τ .

The notation H(b)(τ) denotes a Hadamard gate which acts on qubit b in frame τ.

The notation P (b)(τ) denotes a Phase gate which acts on qubit b in frame τ.

For example the gates in Figure 5(b) correspond to:

H (1) (0)P (1) (0)CPHASE (1, 2) (0, 1) CPHASE (2, 3) (2, 0) CNOT (3, 2) (3, 2) CNOT (2, 3) (4, 3) .

2 Memory requirements for an arbitrary pearl-necklace encoder

As discussed before, for finding the practical realization of a pearl-necklace encoder it is required to rearrange

the gates as a convolutional encoder.

To do this rearrangement, we must first find a set of gates consisting of a single gate for each gate string

in the pearl-necklace encoder such that all the gates that remain after the set commute with it. Then we

can shift all these gates to the right and infinitely repeat this operation on the remaining gates to obtain a

convolutional encoder. When all gates in the pearl-necklace encoder commute with each other, there is no

constraint on frame indices of target (source) qubits of gates in the convolutional encoder [1]. (Figure 2 shows

an example of the rearrangement of commuting gate strings into a convolutional encoder.) On the other

hand, when the gate strings do not commute, the constraint of commutativity of the remaining gates with

the chosen set results in constraints on frame indices of target (source) qubits of gates in the convolutional

encoder.

In the following sections, after defining different types of non-commutativity and their imposed con-

straints, the algorithm for finding the minimal-memory convolutional encoder for an arbitrary pearl-necklace

encoder is presented.

4



2.1 Different types of non-commutativity and their imposed constraints

There may arise three types of non-commutativity for any two gate strings of shift-invariant Clifford: source-

target non-commutativity, target-source non-commutativity and target-target non-commutativity. Each

imposes a different constraint on frame indices of gates in the convolutional encoder. These types of non-

commutativity and their constraints are explained in the following sections.

2.1.1 Source-target non-commutativity

The gate strings in (2-5) below do not commute with each other. In all of them, the index of each source

qubit in the first gate string is the same as the index of each target qubit in the second gate string, therefore

we call this type of non-commutativity source-target non-commutativity.

CNOT(a, bDl)CNOT(a′, b′Dl′), where a = b′, (2)

CPHASE(a, bDl)CNOT(a′, b′Dl′), where a = b′, (3)

CNOT(a, bDl)H(b′), where a = b′, (4)

CPHASE(a, bDl)H(b′), where a = b′. (5)

With an analysis similar to the analysis in Section 3.1 of [1], it can be proved that the following inequality

applies to any correct choice of a convolutional encoder that implements either of the transformations in (2-5):

σ ≤ τ ′, (6)

where σ and τ ′ denote the frame index of the source qubit of the first gate and the frame index of the target

qubit of the second gate in a convolutional encoder respectively. We call the inequality in (6), source-target

constraint.

As an example, the gate strings of the pearl-necklace encoder, CPHASE(2, 3D)CNOT(1, 2D), (Figure

3(a)) have source-target non-commutativity. A correct choice of convolutional encoder is (the encoder

depicted over a first arrow in the Figure 3):

CPHASE(2, 3)(1, 0)CNOT(1, 2)(2, 1). (7)

In this case σ = 1 ≤ τ ′ = 1. Since the source-target constraint is satisfied the remaining gates after the

chosen set in Figure3(b) can be shifted to the right. Repeated application of the procedure in (b) realizes a

convolutional encoder representation from a pearl-necklace encoder(Figure3(c)).

The following Boolean function is used to determine whether this type of non-commutativity exists for

two gate strings:

Source-Target
(
U i, U j

)
.

This function takes two gate strings U i and U j as input. It returns TRUE if U i and U j have source-target

non-commutativity and returns FALSE otherwise.

2.1.2 Target-source non-commutativity

It is obvious that the gate strings in (8-11) do not commute. In all of them, the index of each target qubit

in the first gate string is the same as the index of each source qubit in the second gate string. Therefore we

call this type of non-commutativity, target-source non-commutativity.

CNOT(a, bDl)CNOT(a′, b′Dl′), where b = a′, (8)
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Figure 3: Finding a correct choice for a two non-commutative gate strings . (a) The pearl-necklace encoder

consists of the gate strings CPHASE(2, 3D)CNOT(1, 2D), which have source-target non-commutativity. (b)

The rearrangement of gates after the first three by shifting them to the right. (c) The repeated application

of the procedure in (b) realizes a convolutional encoder from a pearl-necklace encoder.

CNOT(a, bDl)CPHASE(a′, b′Dl′), where b = a′, (9)

H(b)CNOT(a′, b′Dl′), where b = a′, (10)

H(b)CPHASE(a′, b′Dl′), where b = a′. (11)

With an analysis similar to the analysis in Section 3.1 of [1], it can be proved that the following inequality

applies to any correct choice of a convolutional encoder that implements either of the transformations in (8-

11):

τ ≤ σ′, (12)

where τ and σ′ denote the frame index of the target qubit of the first gate and the frame index of the source

qubit of the second gate in a convolutional encoder respectively. We call the inequality in (12), target-source

constraint.

The following Boolean function is used to determine whether target-source non-commutativity exists for

two gate strings:

Target-Source
(
U i, U j

)
.

This function takes two gate strings U i and U j as input. It returns TRUE if U i and U j have target-source

non-commutativity and returns FALSE otherwise.

2.1.3 Target-target non-commutativity

It is obvious that the gate strings in (13-22) do not commute. In all of them, the index of each target qubit

in the first gate string is the same as the index of each target qubit in the second gate string. Therefore we

call this type of non-commutativity, target-target non-commutativity.

CPHASE(a, bDl) CNOT(a′, b′Dl′), where b = b′, (13)

CNOT(a, bDl)CPHASE(a′, b′Dl′), where b = b′, (14)
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CNOT(a, bDl)H(b), where b = b′, (15)

CPHASE(a, bDl)H(b′), where b = b′, (16)

H(b)CNOT(a′, b′Dl′), where b = b′, (17)

H(b)CPHASE(a′, b′Dl′), where b = b′, (18)

CNOT(a, bDl)P (b′), where b = b′, (19)

P (b)CNOT(a′, b′Dl′), where b = b′, (20)

P (b)H(b′), where b = b′, (21)

H(b)P (b′), where b = b′. (22)

With a analysis similar to the analysis in Section 3.1 of [1], it can be proved that the following inequality

applies to any correct choice of a convolutional encoder that implements either of the transformations in (13-

22):

τ ≤ τ ′, (23)

where τ and τ ′ denote the frame index of the target qubit of the first gate and the frame index of the target

qubit of the second gate in a convolutional encoder respectively. We call the inequality in (23), target-target

constraint. The following Boolean function is used to determine whether target-target non-commutativity

exists for two gate strings:

Target-Target
(
U i, U j

)
= TRUE.

This function takes two gate strings U i and U j as input. It returns TRUE if U i and U j have target-target

non-commutativity and returns FALSE otherwise.

Consider the jth gate string, U j in the encoder. It is important to consider the gate strings preceding this

one that do not commute with this gate string and categorize them based on the type of non-commutativity.

Therefore we define the following sets:

(S − T )j = {i | Source-Target(U i, U j) = TRUE, i ∈ {1, 2, · · · , j − 1}},

(T − S)j = {i | Target-Source(U i, U j) = TRUE, i ∈ {1, 2, · · · , j − 1}},

(T − T )j = {i | Target-Target(U i, U j) = TRUE, i ∈ {1, 2, · · · , j − 1}}.

2.2 The proposed algorithm for finding minimal memory requirements for an

arbitrary pearl-necklace encoder

In this section we find the minimal-memory realization for an arbitrary pearl-necklace encoder which include

all gate strings that are in shift-invariant Clifford group: Hadamard gates, Phase gates, controlled-phase

and finite depth and infinite-depth controlled-NOT gate strings. To achieve this goal, we consider any non-

commutativity that may exist for a particular gate and its preceding gates. Suppose that a pearl-necklace

encoder features the following succession of N gate strings:

U1, U2, · · · , UN . (24)

If the first gate string is CNOT(a1, b1D
l1), l1 ≥ 0, the first gate in the convolutional encoder is

CNOT(a1, b1)(σ1 = l1, τ1 = 0). (25)
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If the first gate string is CNOT(a1, b1D
l1), l1 < 0 the first gate in the convolutional encoder is

CNOT(a1, b1)(σ1 = 0, τ1 = |l1|). (26)

If the first gate string is CPHASE(a1, b1D
l1), l1 ≥ 0 the first gate in the convolutional encoder is

CPHASE(a1, b1)(σ1 = l1, τ1 = 0). (27)

If the first gate string is CPHASE(a1, b1D
l1), l1 < 0 the first gate in the convolutional encoder is

CPHASE(a1, b1)(σ1 = 0, τ1 = |l1|). (28)

If the first gate string is H(b1) or P (b1) the first gate in the convolutional encoder is as follows respectively:

H(b1)(0), (29)

P (b1)(0). (30)

For the target indices of each gate j where 2 ≤ j ≤ N , we should choose a value for τj that satisfies all the

constraints that the gates preceding it impose.

First consider Uj is the CNOT or CPHASE gate, then the following inequalities must be satisfied to

target index of Uj , τj :

By applying the source-target constraint in (6) we have:

σi ≤ τj ∀i ∈ (S − T )j ,

∴ τi + li ≤ τj ∀i ∈ (S − T )j ,

∴ max{τi + li}i∈(S−T )j ≤ τj , (31)

by applying the target-source constraint in (12) we have:

τi ≤ σj ∀i ∈ (T − S)j

∴ τi ≤ τj + lj ∀i ∈ (T − S)j ,

∴ τi − lj ≤ τj ∀i ∈ (T − S)j ,

∴ max{τi − lj}i∈(T −S)j ≤ τj . (32)

By applying the target-target constraint in (23) we have:

τi ≤ τj ∀i ∈ (T − T )j

∴ max{τi}i∈(T −T )j ≤ τj . (33)

The following constraint applies to the frame index τj of the target qubit by applying (31-33):

max{{τi + li}i∈(S−T )j
, {τi − lj}i∈(T −S)j , {τi}i∈(T −T )j} ≤ τj . (34)

Thus, the minimal value for τj (which corresponds to the minimal-memory realization) that satisfies all the

constraints is:

τj = max{{τi + li}i∈(S−T )j
, {τi − lj}i∈(T −S)j , {τi}i∈(T −T )j}. (35)
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It can be easily shown that there is no constraint for the frame index τj if the gate string Uj commutes with

all previous gate strings. Thus if lj ≥ 0 we choose the frame index τj as follows:

τj = 0. (36)

and if lj < 0 we choose τj as follows:

τj = |lj |. (37)

If lj ≥ 0, a good choice for the frame index τj , by considering (35) and (36) is as follows:

τj = max{0, {τi + li}i∈(S−T )j
, {τi − lj}i∈(T −S)j , {τi}i∈(T −T )j}. (38)

and if lj < 0, a good choice for the frame index τj , by considering (35) and (37) is as follows:

τj = max{|lj |, {τi + li}i∈(S−T )j
, {τi − lj}i∈(T −S)j , {τi}i∈(T −T )j}. (39)

Now consider Uj is the H, then the following inequalities must be satisfied to target index of Uj , τj :

By applying the source-target constraint in (6) we have:

σi ≤ τj ∀i ∈ (S − T )j ,

∴ τi + li ≤ τj ∀i ∈ (S − T )j ,

∴ max{τi + li}i∈(S−T )j ≤ τj . (40)

By applying target-target constraint in (23) we have:

τi ≤ τj ∀i ∈ (S − T )j

∴ max{τi}i∈(T −T )j ≤ τj , (41)

The following constraint applies to the frame index τj of the target qubit by applying (40) and (41):

max{{τi + li}i∈(S−T )j
, {τi}i∈(T −T )j} ≤ τj .

Thus, the minimal value for τj (which corresponds to the minimal-memory realization) that satisfies all the

constraints is:

τj = max{{τi + li}i∈(S−T )j
, {τi}i∈(T −T )j}. (42)

It can be easily shown that there is no constraint for the frame index τj if the gate string Uj commutes with

all previous gate strings. Thus, in this case, we choose the frame index τj as follows:

τj = 0. (43)

A good choice for the frame index τj , by considering (42) and (43) is as follows:

τj = max{0, {τi + li}i∈(S−T )j
, {τi}i∈(T −T )j}. (44)

Now consider Uj is the P , then by applying the target-target constraint in (23), the following inequality

must be satisfied to target index of Uj , τj :

τi ≤ τj ∀i ∈ (T − T )j

∴ max{τi}i∈(T −T )j ≤ τj .

9



Thus, the minimal value for τj (which corresponds to the minimal-memory realization) that satisfies all the

constraints is:

τj = max{τi}i∈(T −T )j . (45)

It can be easily shown that there is no constraint for the frame index τj if the gate string Uj commutes with

all previous gate strings. Thus, in this case, we choose the frame index τj as follows:

τj = 0. (46)

A good choice for the frame index τj , by considering (45) and (46) is as follows:

τj = max{0, {τi}i∈(T −T )j}. (47)

2.2.1 Construction of the non-commutativity graph

We introduce the notion of a non-commutative graph, G in order to find the best values for the target qubit

frame indices. The graph is a weighted, directed acyclic graph constructed from the non-commutativity

relations of the gate strings in (24). Algorithm 1 presents pseudo code for constructing the non-commutativity

graph. G consists of N vertices, labeled 1, 2, · · · , N , where the jth vertex corresponds to the jth gate string

U j . It also has two dummy vertices, named “START” and “END.” DrawEdge(i, j, w) is a function that

draws a directed edge from vertex i to vertex j with an edge weight equal to w.

2.2.2 The longest path gives the minimal memory requirements

Theorem 1 below states that the weight of the longest path from the START vertex to the END vertex is

equal to the minimal memory required for a convolutional encoder implementation.

Theorem 1. The weight w of the longest path from the START vertex to END vertex in the non-commutativity

graph G is equal to the minimal memory L that the convolutional encoder requires.

Proof. We first prove by induction that the weight wj of the longest path from the START vertex to vertex

j in the non-commutativity graph G is

wj = τj . (48)

Based on the algorithm, a zero-weight edge connects the START vertex to the first vertex, if 1 ∈ (I+CNOT ∪
I+CPHASE ∪ IH ∪ IP ) and in this case based on (25), (27), (29) and (30), τ1 = 0 therefore w1 = τ1 = 0. An

edge with the weight equal to |l1| connects the START vertex to the first gate if 1 ∈ (I−CNOT ∪ I
−
CPHASE),

and based on (26) and (28), τ1 = |l1| therefore w1 = τ1 = |l1|. Thus the base step holds for the target index

of the first gate in a minimal-memory convolutional encoder. Now suppose the property holds for the target

indices of the first k gates in the convolutional encoder:

wj = τj ∀j : 1 ≤ j ≤ k.

Suppose we add a new gate string Uk+1 to the pearl-necklace encoder, and Algorithm 1 then adds a new

vertex k + 1 to the graph G. Suppose (k + 1) ∈ (I+CNOT ∪ I
+
CPHASE). The following edges are added to G:

1. A zero-weight edge from the START vertex to vertex k + 1.

2. An li-weight edge from each vertex {i}i∈(S−T )k+1
to vertex k + 1.

3. A −lk+1-weight edge from each vertex {i}i∈(T−S)k+1
to vertex k + 1.
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Algorithm 1 Algorithm for determining the non-commutativity graph G for general case

N ← Number of gate strings in the pearl-necklace encoder.

Draw a START vertex.

for j := 1 to N do

Draw a vertex labeled j for the jth gate string U j

if j ∈ (I−CNOT ∪ I
−
CPHASE) then

DrawEdge(START, j, |lj |)
else

DrawEdge(START, j, 0)

end if

for i := 1 to j − 1 do

if j ∈ (I+CNOT ∪ I
+
CPHASE ∪ I

−
CNOT ∪ I

−
CPHASE) then

if i ∈ (S − T )j then

DrawEdge(i, j, li )

end if

if i ∈ (T − S)j then

DrawEdge(i, j,−lj)
end if

if i ∈ (T − T )j then

DrawEdge(i, j, 0)

end if

else

if j ∈ IH then

if i ∈ (S − T )j then

DrawEdge(i, j, li)

end if

if i ∈ (T − T )j then

DrawEdge(i, j, 0)

end if

else

if i ∈ (T − T )j then

DrawEdge(i, j, 0)

end if

end if

end if

end for

end for

Draw an END vertex.

for j := 1 to N do

if j ∈ (I+CNOT ∪ I
+
CPHASE) then

DrawEdge(j,END, lj)

else

DrawEdge(j,END, 0)

end if

end for
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4. A zero-weight edge from each vertex {i}i∈(T −T )k+1
to vertex k + 1.

5. An lk+1-weight edge from vertex k + 1 to the END vertex.

It is clear that the following relations hold:

wk+1 = max{0, {wi + li}i∈(S−T )k+1
, {wi − lk+1}i∈(T −S)k+1

, {wi}i∈(T −T )k+1
},

= max{0, {τi + li}i∈(S−T )k+1
, {τi − lk+1}i∈(T −S)k+1

, {τi}i∈(T −T )k+1
}. (49)

By applying (38) and (49) we have:

wk+1 = τk+1.

In a similar way we can show that if the Uk+1 is any other gate string of Clifford shift-invariant:

wk+1 = τk+1.

The proof of the theorem then follows by considering the following equalities:

w = max{ max
i∈(I+

CNOT∪I
+
CPHASE∪IH∪IP )

{wi + li}, max
i∈(I−CNOT∪I

−
CPHASE)

{wi}}

= max{ max
i∈(I+

CNOT∪I
+
CPHASE∪IH∪IP )

{τi + li}, max
i∈(I−CNOT∪I

−
CPHASE)

{τi}}

= max{ max
i∈(I+

CNOT∪I
+
CPHASE∪IH∪IP )

{σi}, max
i∈(I−CNOT∪I

−
CPHASE)

{τi}}.

The first equality holds because the longest path in the graph is the maximum of the weight of the path

to the ith vertex summed with the weight of the edge to the END vertex. The second equality follows by

applying (48). The final equality follows because σi = τi + li. It is clear that

max{ max
i∈(I+

CNOT∪I
+
CPHASE∪IH∪IP )

{σi}, max
i∈(I−CNOT∪I

−
CPHASE)

{τi}},

is equal to minimal required memory for a minimal-memory convolutional encoder, hence the theorem

holds.

The final task is to determine the longest path in G. Finding the longest path in a graph, in general

is an NP-complete problem, but in a weighted, directed acyclic graph requires linear time with dynamic

programming [28]. The non-commutativity graph G is an acyclic graph because a directed edge connects

each vertex only to vertices for which its corresponding gate comes later in the pearl-necklace encoder.

The running time for the construction of the graph is quadratic in the number of gate strings in the

pearl-necklace encoder. Since in Algorithm 1, the instructions in the inner for loop requires constant time

O(1). The sum of iterations of the if instruction in the jth iteration of the outer for loop is equal to j − 1.

Thus the running time T (N) of Algorithm 1 is

T (N) =

N∑
i=1

j−1∑
k=1

O(1) = O(N2).

Example 1: Consider the following succession of gate strings in a pearl-necklace encoder(Figure 4(a)):

H (1)P (1) CPHASE
(
1, 2D−1

)
CPHASE

(
2, 3D2

)
CNOT (3, 2D) CNOT (2, 3D) ,

Figure 5(a) draws G for this pearl-necklace encoder, after running Algorithm. The longest path through the

graph is

START→ 4→ 5→ 6→ END,
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Figure 4: (a) pearl-necklace representation, and (b) minimal-memory convolutional encoder representation

for example 1.

Figure 5: (a) The non-commutativity graph G and (b) a minimal-memory convolutional encoder for Example

1
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with weight equal to four (0+2+1+1). Therefore the minimal memory for the convolutional encoder is equal

to four frames of memory qubits. Also from inspecting the graph G, we can determine the locations for all

the target qubit frame indices: τ1 = 0, τ2 = 0, τ3 = 1, τ4 = 0, τ5 = 2, and τ6 = 3. Figure 5(b) depicts a

minimal-memory convolutional encoder for this example. Figure 4(b) depicts minimal-memory convolutional

encoder representation for the pearl-necklace encoder in Figure 4(a).

3 Conclusion

In this paper, we have proposed an algorithm to find a practical realization with a minimal memory require-

ment for a a pearl-necklace encoder of a general quantum convolutional code, which includes any gate string

in the shift-invariant Clifford group. We have shown that the non-commutativity relations of gate strings

in the encoder determine the realization. We introduce a non-commutativity graph, whose each vertex cor-

responds to a gate string in the pearl-necklace encoder. The weighted edges represent non-commutativity

relations in the encoder. Using the graph, the minimal-memory realization can be obtained. The weight of

the longest path in the graph is equal to the minimal required memory of the encoder. The running time

for the construction of the graph and finding the longest path is quadratic in the number of gate strings in

the pearl-necklace encoder.

As we mentioned in our previous paper [1], an open question still remains. The proposed algorithm

begins with a particular pearl-necklace encoder, and finds the minimal required memory for it. But one

can start with polynomial description of convolutional code and find the minimal required memory for the

code. There are two problems here to work on: (1) finding the pearl-necklace encoder with minimal-memory

requirements among all pearl-necklace encoders that implement the same code, (2) constructing a repeated

unitary directly from the polynomial description of the code itself, and attempting to minimize the memory

requirements of realizing this code.
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