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We calculate the ground—state energy and other physical properties of the hydrogen atom inside a
spherical box with an impenetrable wall. We apply the variational method and perturbation theory
and compare both approximate results. We show that the total, kinetic and potential energies for
the moving—nucleus model are greater than those for the case in which the nucleus is clamped at

the box center.

I. INTRODUCTION

Atoms and molecules confined into boxes of different shapes and permeability proved to be suitable simple models
for the study of the effect of the environment or of high pressure. In the later case the pressure is given by p = —dE/d)
where F is the energy and 2 the volume of the confining box. Those models enable us to simulate the effect of pressure
on several properties of atoms and molecules, such as, for example, their polarizabilityﬂ]. There is a vast literature
on the subject and the reader may find suitable reviews elsewhere[2-6].

In all those cases the nucleus was clamped at some chosen point within the box. For example, in the case of an
impenetrable spherical box we know that the energy is lowest when the nucleus is clamped at origin and increases
as the nucleus approaches the surfaceﬂ]. This behavior comes entirely from the interaction between the electron and
the wall and does not tell us anything about the effect of the hard surface on the nucleus.

If we have an atom in a real environment we should assume that the nucleus also interacts with that environment.
Therefore, it seems reasonable to add that interaction explicitly into the model. The simplest one is that in which
both the nucleus and electron are affected exactly in the same way by the impenetrable spherical surface. In such
a case we know that the nucleus cannot have zero kinetic energy because of its interaction with the surface and,

therefore, the clamped—nucleus approach may not be the most realistic one ].
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It seems more reasonable to assume that a repulsive force on the electron should be an attractive one on the nucleus
and conclude that it is more realistic to choose different boundary conditions for each particle at the box surface.
However, as a first approximation to more elaborate models it seems sensible to start with an impenetrable wall for

both particles and compare the results of this model with the clamped—nucleus approach.

II. THE MODEL

The Hamiltonian operator for a nonrelativistic hydrogen atom is

H=T+V
R h? K2
T = —— V- \Y
2m. ¢ 2m, "
62
V(r) = — 1
(r) 4meor (1)

where m, and m,, are the masses of the electron and nucleus located at r. and r,, with charges —e and e, respectively,
r=|r|, r =r. —T,, € is the vacuum permittivity and V? denotes the Laplacian in the coordinates indicated by the
subscript.

If the atom is confined to a spherical box of radius R with an impenetrable wall we can formally write the Hamil-

tonian operator in atomic units as

H = T—I—V(r)—i—U(re,rn)
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where m,, = 1836.15267261 and the eigenfunctions should vanish when either r. = R or r, = R.

It is well-known that the virial theorem for such a system is given by|3, |5, [11]

dE dE .
RoZ =305 = 2 <T> W) (3)
where € is the volume of the spherical box. This expression gives us the pressure on the hydrogen atom p = —dE/dS)

in terms of the kinetic and potential energies. When R — oo we recover the virial theorem for the free hydrogen atom

2(1,)+ (V) =0, 7, = —%W @)

where T}, is the kinetic energy for the relative motion and m = m,, /(my, + 1) is the reduced mass in atomic units.

III. METHODS OF CALCULATION

A. The variational method

In order to calculate accurate eigenvalues and eigenfunctions of the hydrogen in a box we resort to the generalized

Hylleraas basis set that proved useful for three-body Coulomb systems|12-15]. For example, for the S states we



choose a trial function of the form

N
O(re,Tn,m) = (1 — %) (1 — %) ZCkrngzwrlkefawcfﬁwnf'yw (5)

with linear ¢, and nonlinear g, Sk, % variational parameters. The explicitly correlated character of these functions
ensures accurate energies for the ground and low excited states of free three-body atomic and molecular species with
relatively few terms in the expansion. The effect of the Hamiltonian operator (2]) on this variational function is simply

given by
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A recent pedagogical approach to the confined hydrogen atom with a moving nucleus proposed the simple ansatz

plrer) = N B) (1= ) (1= ) e (")

where v is a variational parameter and N (v, R) the appropriate normalization factor|g, [9]. Since this function yields
the correct result when R — oo then it provides accurate ground—state energies for large and moderate values of R.

In this paper we propose the straightforward generalization

N
plresrm) = (1= ) (1= ) e Y ewrerierts (8)
k=1

that may be suitable for the ground and excited S states.

Notice that the cut—off function (1 — r./R)(1 — r,,/R) tends to unity as R — oo so that the resulting asatz (8]) will
be suitable for the free system. We also expect that under such condition « and § vanish as well as the coeflicients
¢y, of those terms with ny # 0 and my # 0.

For comparison we will also consider the hydrogen atom with the nucleus clamped at origin. A suitable trial function

is
PN = (1- %) e-“idﬂj (9)
=0

where ¢ and d; are nonlinear and linear variational parameters, respectively. This trial function yields the exact
S states of the free hydrogen atom when R — oo. For brevity we refer to the moving—nucleus case (MNC) and

clamped-nucleus case (CNC) from now on.

B. Perturbation theory

In the strong—coupling regime R — 0 the Coulomb interaction is entirely dominated by the kinetic energy and the

problem is almost separable|8-10]. In the first approximation we have two particles moving independently within



the box and we can apply Rayleigh—Schrodinger perturbation theory by splitting the Hamiltonian operator into the
zero—order or reference

1 1

H - 2 _ 2 ey !'n 1
0 2Ve 2mnvn—|—U(r,r) (10)
and perturbation H’ = —1/r parts.
The unperturbed eigenfunctions are given by
@ = 11
Yptimn' vrme (Te,Tn) = Xnim(Te) Xn/trm/ (Tn) (11)
were
Xnim () = Rui(1)Y1m (0, ¢) (12)
and
Rnl(T) = Nn,ljl (:ElynT/R) (13)

In these equations Y., (6, ¢) are the well-known spherical harmonics, j;(z) is a spherical Bessel function and z; ,, its

nth zero|16].

IV. RESULTS AND DISCUSSION

Table [l shows the total, kinetic and potential energies for the ground state for several values of the box radius R. The
first, second, and third rows for each entry shows perturbation and variational results for the MNC and variational

results for the CNC, respectively. For simplicity, we restrict our MNC variational calculations to the trial function

(e, ) = (1 - T—];) (1 - %) e OTeTBTRTAT (01 4 cor + ez + CaTe) (14)
In the CNC we counsider Eq. @) with N = 4 that yields as much as five-digits accuracy when compared with the
higly accurate results of Aquino et al[17]. On the other hand, the approximate variational MNC energy is expected to
be less accurate because the basis set in Eq. ([4) is comparatively smaller. However, present results are considerably
more accurate than previous ones for this model[g, [9].

First—order perturbation theory is acceptable in the strong-coupling region R < 1 au. We appreciate that the
perturbation result is systematically greater than the variational one that is known to be a rigorous upper bound.
This fact clearly shows that the latter is more accurate even for R = 0.1 au where the perturbation result is expected to
be fairly accurate. Table[lshows that perturbation theory underestimates the nuclear kinetic energy and overestimates
the potential energy while, on the other hand, provides a quite reasonable estimate of the electronic kinetic energy.

It is also interesting to compare the variational results for the MNC and CNC. The MNC energy is greater than
the CNC one for all values of R. The reason is that the CNC energy is smallest when the nucleus is located at the
center of the box that is the particular case chosen here. This effect was discussed earlier by means of a less accurate
trial function for the MNCJ§, [9]. Table [l shows that both the kinetic and potential energies are greater for the MNC.

Table [l shows the variational parameters for the trial functions (I4) and (@) as well as the expectation values of

re, T and 7. Since the magnitude of the nonlinear variational parameter « is negligible for all values of R we have



set it equal to zero. On the other hand, S is quite large for small R and decreases as R increases. The remaining
nonlinear parameter v decreases with R reaches a minimum and then increases asymptotically towards the free-atom
value. Those exponential parameters suggest that the nucleus is localized about the box center whereas the electron
is localized about the nucleus (though not so strongly because 8 > « for all R). The fact that (r,) < (r.) ~ R/2

supports this conjecture. Table [T also shows that (1), v = (M eane-
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TABLE I: Total, kinetic and potential energies for the confined hydrogen atom for several values of the box radius. The entries

stand for MNC perturbation theory, MNC variational method and CNC variational method, respectively

rR| b (T (1) (T (V)

0.1[475.88825|493.74898 493.48022 0.26876 —17.86073
473.84272(497.55784 495.52046 2.03739 —23.71513
468.99313(493.59225 — — —24.59911
0.2[114.50688123.43724 123.37006 0.06719 —8.93037
112.47785(124.54287 123.91907 0.62381 —12.06502
111.07107{123.48629 — — —12.41522
0.3] 48.90742 | 54.86100 54.83114 0.02986 —5.95358
47.28928 | 55.44914 55.13094 0.31820 —8.15987
46.59279 | 54.94902 — — —8.35623
0.4] 26.39413 | 30.85931 30.84251 0.01680 —4.46518
25.06003 | 31.26099 31.06244 0.19855 —6.20096
24.63398 | 30.96278 — — —6.32881
0.5] 16.17781 | 19.74996 19.73921 0.01075 —3.57215
15.03997 | 20.06358 19.92556 0.13802 —5.02361
14.74805 | 19.86217 — — —5.11412
0.6] 10.73846 | 13.71525 13.70778 0.00747 —2.97679
9.74237 | 13.98064 13.87803 0.10261 —4.23827
9.52774 | 13.83361 — — —4.30586
0.7 7.52498 | 10.07651 10.07102 0.00548 —2.55153
6.63550 | 10.31303 10.23317 0.07986 —3.67754
6.46994 | 10.19984 — — —3.72990
0.8| 5.48224 | 7.71483  7.71063 0.00420 —2.23259
4.67560 7.93312 7.86889 0.06424 —3.25753
4.54339 7.84251 — — —3.29912
0.9| 4.11114 | 6.09567  6.09235 0.00332 —1.98453
3.37058 6.30211 6.24913 0.5298 —2.93153
3.26219 6.22741 — — —2.96522
1.0 3.15142 4.93749 4.93480 0.00269 —1.78607
2.46468 | 5.13617  5.09161 0.04456 —2.67149

2.37399 | 5.07314 - - —2.69915
1.1 — — — — —
1.81475 | 4.27426  4.23620 0.03807 —2.45952
1.73761 | 4.22006 - - —2.48245
1.2 — — — — —
1.33794 | 3.64094  3.61044 0.03049 —2.30300
1.26931 | 3.57213 — — —2.30282
1.3 - - - - -
0.97551 | 3.12685  3.10009 0.02676 —2.15133
0.91704 | 3.06876 — — —2.15172
1.4 — — — — —

0.69758 | 2.71961  2.69594 0.02367 —2.02203
0.64711 | 2.67018 - —  —2.02307
15 = _ _ _ _




R £ |1 @ @) W
2.0 — — — — —
—0.099461.43084 1.41801 0.01283 —1.53031
—0.12500(1.41016 — — —1.53515
3.0 — — — — —
—0.41078|0.78067 0.77452 0.00615 —1.19145
—0.4239710.77206 — — —1.19603
4.0 — — — — —
—0.47520(0.59178 0.58854 0.00325 —1.06699
—0.48327|0.58486 — — —1.06813
5.0 — — — — —
—0.491380.53155 0.52961 0.00194 —1.02293
—0.49642|0.52453 — — —1.02095
6.0 — — — — —
—0.49615|0.51194 0.51064 0.00130 —1.00809
—0.49928|0.50635 — — —1.00563
7.0 — — — — —
—0.4978410.50515 0.50420 0.00096 —1.00299
—0.49986|0.50148 0.50148 — —1.00135
8.0 — — — — —
—0.49857|0.50256 0.50180 0.00075 —1.00113
—0.49997(0.50032 0.50032 — —1.00029
9.0 — — — — —
—0.49894|0.50145 0.50082 0.00062 —1.00039
—0.500001{0.50006 0.50006 — —1.00006
10.0 — — — — —
—0.49916|0.50070 0.50013 0.00057 —0.99985
—0.50000(0.50002 0.50002 — —1.00002




TABLE II: Variational parameters for the trial functions (I4)) and [@) (N = 4) and some expectation values

R 1] ¥ c1 C2 c3 c4 (re) (ra) (rYmnc
) do dq do ds d4 (ryenc

0.1]71.386 12.285 0.056 1.000 —0.210 0.446 0.050 0.017 0.052
— 4915 0.001 0.014 0.004 —1.154 2.836 | — — 0.050
0.2(40.494 6.305 0.120 1.000 —0.203 0.514 0.099 0.031 0.102
— 1.068 0.095 0.531 —2.000 —1.603 —0.639| — — 0.099
0.3]29.340 4.287 0.195 1.000 —0.203 0.588 0.148 0.044 0.152
— 1.321 0.140 0.551 —-0.946 —1.275 —0.567| — — 0.147
0.4(23.400 3.267 0.286 1.000 —0.207 0.670 0.196 0.055 0.200
— 1.267 0.261 0.767 —0.768 —1.127 —0.513| — — 0.195
0.5]19.647 2.651 0.397 1.000 —0.214 0.767 0.243 0.066 0.248
— 1.217 0.419 0.977 —0.593 —0.974 —0.437| — — 0.242
0.6(17.031 2.237 0.535 1.000 —0.225 0.883 0.290 0.077 0.295
— 1156 0.617 1.171 —0.446 —0.848 —0.333| — - 0.289
0.7(15.088 1.939 0.694 0.974 —0.233 1.000 0.337 0.087 0.341
— 1.095 0.797 1.253 —0.293 —0.706 —0.216| — — 0.335
0.8]13.578 1.713 0.781 0.825 —0.215 1.000 0.382 0.097 0.387
— 1.041 0.958 1.262 —0.163 —0.586 —0.126| — — 0.380
0.9(12.365 1.536 0.867 0.685 —0.197 1.000 0.427 0.107 0.431
— 1.001 1.091 1.225 —0.052 —0.485 —0.065| — — 0.425
1.0111.365 1.393 0.954 0.551 —0.182 1.000 0.471 0.117 0.475
— 1.011 0.972 0.980 0.073 —0.330 —0.033| — — 0.468
1.117.414 0.480 0.025 —0.091 1.000 0.095 0.515 0.123 0.518
— 1.212 0.885 1.000 0.233 —-0.074 —0.124| — — 0.511
1.2]116.215 0.481 0.028 —0.095 1.000 0.099 0.557 0.132  0.560
— 1.216 0.948 1.000 0.272 —-0.022 —0.099| -— — 0.553
1.3/15.168 0.482 0.031 —0.100 1.000 0.103 0.599 0.141 0.602
— 1.224 0993 0.989 0.298 0.019 —0.076| — - 0.595
1.4114.243 0.485 0.033 —0.104 1.000 0.107 0.640 0.150 0.642
— 1.264 1.000 0.983 0.328 0.071 —-0.061| -— — 0.635
1.5|13.418 0.488 0.037 —0.109 1.000 0.112 0.681 0.159 0.681
— 1.279 1.000 0.951 0.335 0.093 —0.041| — —  0.675




R B o c1 Cca c3 ca (re) (rn) (r)mnc

1) do dy da ds ds <7'>CNC

2.0 {10.303 0.510 0.056 —0.131 1.000 0.133 0.869 0.204 0.864
— 1.348 1.000 0.841 0.385 0.062 0.045| — — 0.859

3.0 [ 4.498 0.565 1.000 —0.459 0.312 0.452 1.178 0.319 1.147
— 0922 1.000 0.243 0.091 -0.012 0.012| — - 1.153

4.0 2974 0.642 1.000 —0.324 —0.015 0.319 1.391 0.449 1.320
— 0.400 1.000 —0.350 0.086 —0.012 0.001| - — 1.342

5.0 | 2.159 0.711 1.000 —0.254 —0.063 0.251 1.539 0.599 1.408
— 0424 1.000 —0.375 0.087 —0.012 0.001| - — 1.440

6.0 | 1.643 0.768 1.000 —0.200 —0.090 0.201 1.657 0.761 1.450
— 0465 1.000 -0.367 0.079 —0.010 0.001| - — 1.481

7.0]1.296 0.813i 1.000 —0.157 —0.109 0.165 1.770 0.930 1.470
— 0.510 1.000 —0.346 0.068 —0.008 0.000| — — 1.495

8.0 | 1.043 0.851 1.000 —0.122 —0.126 0.139 1.887 1.106 1.480
— 0.555 1.000 —0.319 0.057 —0.006 0.000| — - 1.499

9.0 | 0.841 0.886 1.000 —0.089 —0.142 0.118 2.018 1.295 1.486
— 0.601 1.000 —0.287 0.046 —0.004 0.000| - — 1.500

10.0| 0.747 0.910 1.000 —0.067 —0.151 0.102 2.104 1.412 1.490
— 0935 1.000 0.032 0.009 -0.001 0.000| - - 1.500
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