
ar
X

iv
:1

00
9.

23
30

v1
  [

qu
an

t-
ph

] 
 1

3 
Se

p 
20

10

Proposal of a two-qutrit contextuality test free of the finite precision and

compatibility loopholes
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It has been argued that any test of quantum contextuality is nullified by the fact that perfect
orthogonality and perfect compatibility cannot be achieved in finite precision experiments. We in-
troduce an experimentally testable two-qutrit violation of an inequality for noncontextual theories in
which orthogonality and compatibility are guaranteed by the fact that measurements are performed
on separated qutrits. The inequality is a direct translation of the basic building block of Kochen
and Specker’s proof of quantum contextuality for a qutrit, despite inequality’s proof be completely
independent of this diagram.

PACS numbers: 03.65.Ud, 03.65.Ta, 03.67.Mn, 42.50.Xa

Introduction—Contextuality is a fascinating property
of nature: The result of an experiment may depend on
other compatible experiments that may be performed.
This is surprising because the experiment gives the same
result when repeated after any number of compatible
experiments. It is also surprising because the probabil-

ity of obtaining any particular result does not depend
on which compatible experiments might be performed
(probabilities are noncontextual). Nature’s contextuality
was pointed out by the discovery that some predictions
of quantum mechanics (QM) cannot be reproduced by
any noncontextual theory, and that this conflict occurs
for any state of any system with three or more distin-
guishable states [1]. Quantum contextuality has deep
consequences like the impossibility of describing nature
by classical theories with bounded speed of information
[2] or bounded density of memory [3], or the possibility of
device-independent eternally secure communications [4].

In 1999, a debate on the physical impact and experi-
mental testability of the Kochen-Specker theorem started
in the pages of Physical Review Letters. Meyer [5] and
Kent [6] pointed out that finite precision measurement
nullifies the physical content of the Kochen-Specker the-
orem. More than twenty papers have been published
since then supporting (for instance, [7, 8]) or criticizing
(for instance, [9, 10]) this conclusion. More recently, a
series of experimental tests with ions [11], neutrons [12],
photons [13, 14], and nuclear magnetic resonance sys-
tems [15] have been questioned due to a variant of Meyer
and Kent’s objection called the compatibility loophole
[11, 16].

In this Letter we present a proposal for a type of ex-
periments that (we hope) will definitely close the debate
on the physical relevance and experimental testability of
the Kochen-Specker theorem, and stimulate a new gen-
eration of experiments.

The simplest physical system exhibiting contextuality
is a quantum three-state system or qutrit. A simple way
to prove contextuality on a qutrit is the following [17, 18].
Suppose the qutrit is initially in the state

|i〉 = 1√
3
(|0〉+ |1〉+ |2〉), (1)

where |0〉, |1〉, and |2〉 are three orthogonal states. Then,
one measures whether the system is in the state

|f〉 = 1√
3
(|0〉 − |1〉+ |2〉) (2)

and obtains the result 1 (representing “yes”). According
to QM, this result occurs with probability

|〈f |i〉|2 =
1

9
. (3)

Now suppose that, instead of the projection onto |f〉 one
would have measured the observable

H0 = a0|a0〉〈a0|+ b0|b0〉〈b0|+ c0|c0〉〈c0|, (4)

where |a0〉, |b0〉, and |c0〉 are the following orthogonal
states:

|a0〉 =
1√
2
(|1〉 − |2〉), (5a)

|b0〉 =
1√
2
(|1〉+ |2〉), (5b)

|c0〉 = |0〉. (5c)

Then, according to QM, the result a0 can never be ob-
tained since 〈a0|i〉 = 0. In addition, in any noncontextual
theory in agreement with QM, the result of H0 cannot be
b0 since 〈f |b0〉 = 0. Therefore, in any noncontextual the-
ory in agreement with QM, the initial state |i〉 together
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FIG. 1. Building block of Kochen and Specker’s proof of
quantum contextuality (left). Vertices represent propositions;
two of them are joined when the propositions are compatible
and both cannot be true. Kochen drawing the block in Zürich
in 2009 (right).

with the positive probability (3) imply H0 = c0, when-
ever the yes answer should be found for |f〉. Similarly, if
one would have measured

H1 = a1|a1〉〈a1|+ b1|b1〉〈b1|+ c1|c1〉〈c1|, (6)

where

|a1〉 =
1√
2
(|0〉 − |1〉), (7a)

|b1〉 =
1√
2
(|0〉+ |1〉), (7b)

|c1〉 = |2〉. (7c)

then, the same reasoning leads to the conclusion that, in
any noncontextual theory in agreement with QM, H1 =
c1.
However, H0 = c0 and H1 = c1 cannot happen simul-

taneously since 〈c1|c0〉 = 0. Therefore, there is no non-
contextual assignment of results to the six propositions
|a0〉〈a0|, . . . , |c1〉〈c1| in agreement with the predictions of
QM for a qutrit prepared in the state |i〉 and postselected
in the state |f〉. Indeed, the orthogonality relations be-
tween these eight states constitutes the building block of
the Kochen-Specker state-independent proof of quantum
contextuality [1, 19]. See Fig. 1.
What if perfect orthogonality cannot be experimen-

tally achieved? Then the previous argument vanishes.
For instance, the block of Fig. 1 cannot be constructed
if the unit vectors are restricted to vectors with ratio-
nal components [5] or to vectors that do not have any
orthogonal vector [7], although in both cases these vec-
tors are dense in the set of unit vectors and therefore
are undistinguishable from the set of all unit vectors by
experiments with finite precision [5–10]. A related prob-
lem affecting some recent experimental violations [11–13]
of noncontextual inequalities [20, 21] involving sequen-
tial measurements on the same physical system is the

fact that these inequalities are based on the assumption
that the sequential measurements are perfectly compat-
ible, something which does not occur in actual experi-
ments, so to conclude contextuality extra assumptions
are needed [11, 16].
Here we avoid these extra assumptions by measuring

one of the observables in one qutrit and the second ob-
servable on a distant qutrit. Spatial separation provides
a physical basis to the assumption that both measure-
ments are not only approximately but perfectly compat-
ible. The combination of Kochen-Specker configurations
and correlated systems is a standard way to show contex-
tuality and nonlocality for composite systems [17, 22–24].
For this purpose we have to derive an inequality valid

for any noncontextual theory based on the observables of
the block of Kochen and Specker and involving correla-
tions between measurements on two different qutrits A
and B.
Lemma: Consider Qi as dichotomic observables, Hi as

trichotomic observables, with labels A and B correspond-
ing to the respective party. Then, for any noncontextual
theory, the following inequality holds:

K ≤ 0, (8a)

where

K =

1∑

i6=j=0

P (QA
i = 1, QB

j = 1)− P (QA
0 = 1, HB

i = ai)

− P (HA
i = ai, Q

B
0 = 1)− P (QA

1 = 1, HB
i = bi)

− P (HA
i = bi, Q

B
1 = 1)− P (HA

i = ai, H
B
i = bi)

− P (HA
i = bi, H

B
i = ai)− P (HA

0 = a0, H
B
0 = c0)

− P (HA
0 = c0, H

B
0 = a0)− P (HA

0 = b0, H
B
0 = c0)

− P (HA
0 = c0, H

B
0 = b0)− P (HA

i = ci, H
B
j = cj),

(8b)

where, P (QA
0 = 1, HB

0 = a0) denotes the joint proba-
bility of obtaining the results 1 and a0 for QA

0 and HB
0 ,

respectively.
Proof: Each probability in (8) measures the frequency

of a set of hidden variable states. In our scenario there
are four dichotomic observables, QA

0 , Q
A
1 , Q

B
0 , and Q

B
1 ,

and four trichotomic observables, HA
0 , HA

1 , HB
0 , and

HB
1 . Therefore, the number of hidden variable states

is 2434 = 1296. P (QA
0 = 1, QB

1 = 1) is the sum
of the frequencies of 324 of these states, and similarly
P (QA

1 = 1, QB
0 = 1). There are 81 states appearing both

in P (QA
0 = 1, QB

1 = 1) and P (QA
1 = 1, QB

0 = 1), that is,
there are 81 frequencies which appear with multiplicity
2, and 486 which appear with multiplicity 1 in P (QA

0 =
1, QB

1 = 1)+ P (QA
1 = 1, QB

0 = 1). P (QA
0 = 1, HB

0 = a0),
which enters with a minus sign in (8), contains 27 fre-
quencies of the first type and 108 of the second. Every ad-
ditional probability that is substracted contains frequen-
cies present in P (QA

0 = 1, QB
1 = 1)+P (QA

1 = 1, QB
0 = 1),
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and the sum of all of them contains all the frequencies in
P (QA

0 = 1, QB
1 = 1)+P (QA

1 = 1, QB
0 = 1) with the corre-

sponding multiplicities. The inequality (8) is minimal in
the sense that no term can be supressed from K without
allowing for a noncontextual model for the probabilities.

Notice that inequality (8) also holds for any local the-
ory. This means that, when the choice of measurement in
one of the particles is spacelike separated from the result
of the measurement on the other particle, then (8) is not
only a noncontextual inequality but also a Bell inequal-
ity. In this case, its violation also proves the impossibility
of local hidden-variable theories. Notice, however, that
a test of contextuality using inequality (8) does not re-
quire spacelike separation since, in such test the role of
spatial separation is only to provide a physical reason
which guarantees that the experiments on qutrit A and
the experiments on qutrit B are actually compatible to
avoid the finite precision and compatibility loopholes of
previous experiments.
Quantum violation.—The interesting feature of in-

equality (8) is that, for a two-qutrit system prepared in
the state

|ψ〉 = 1√
3
(|02〉 − |11〉+ |20〉) , (9)

and for the observables

QA
0 = QB

1 = |i〉〈i|, (10a)

QA
1 = QB

0 = |f〉〈f |, (10b)

HA
0 = a0|a0〉〈a0|+ b0|b0〉〈b0|+ c0|c0〉〈c0|, (10c)

HB
0 = a0|b1〉〈b1|+ b0|a1〉〈a1|+ c0|c1〉〈c1|, (10d)

HA
1 = a1|a1〉〈a1|+ b1|b1〉〈b1|+ c1|c1〉〈c1|, (10e)

HB
1 = a1|b0〉〈b0|+ b1|a0〉〈a0|+ c1|c0〉〈c0|, (10f)

where |i〉 is defined in (1), |f〉 is defined in (2), |a0〉, |b0〉,
and |c0〉 are defined in (5), and |a1〉, |b1〉, and |c1〉 are
defined in (7), the predictions of QM are

P (QA
i = 1, QB

j = 1) =
1

27
, (11a)

P (QA
0 = 1, HB

i = ai) = P (HA
i = ai, Q

B
0 = 1) = 0,

(11b)

P (QA
1 = 1, HB

i = bi) = P (HA
i = bi, Q

B
1 = 1) = 0,

(11c)

P (HA
i = ai, H

B
i = bi) = P (HA

i = bi, H
B
i = ai) = 0,

(11d)

P (HA
0 = a0, H

B
0 = c0) = P (HA

0 = c0, H
B
0 = a0) = 0,

(11e)

P (HA
0 = b0, H

B
0 = c0) = P (HA

0 = c0, H
B
0 = b0) = 0,

(11f)

P (HA
i = ci, H

B
j = cj) = 0, (11g)

where i, j ∈ {0, 1} and i 6= j. Therefore, according to
QM,

KQM =
2

27
≈ 0.074, (12)

violating inequality (8).
Discussion.—There is a one-to-one correspondence be-

tween the Kochen-Specker building block of Fig. 1 and
inequality (8). This correspondence is illustrated in Ta-
ble I. However, the important point is that, in spite of
this one-to-one correspondence, inequality (8) has been
proven from the assumption of noncontextuality (and can
also be proven from the assumption of locality), without
any reference to Fig. 1, and without additional assump-
tions like infinite precision measurements or non-testable
compatibility. Therefore, inequality (8) is totally inde-
pendent of QM and provides a tool to experimentally
test contextuality without additional assumptions, and,
at the same time, it constitutes a translation of the basic
block of the proof in [1].
Any state-independent proof of the Kochen-Specker

theorem contains several blocks similar to the one in
Fig. 1, in which if the system is prepared in a state |i〉,
then, in any noncontextual theory, one will never ob-
tain the state |f〉 [25]. An important point is that the
method to convert the block in Fig. 1 into an experimen-
tally testable nocontextual inequality among correlations
between two systems can be applied to any block in any
proof of the KS theorem in any finite dimension d > 2
(for an almost exhaustive list of possible blocks in any
dimension, see [25, 26]).
Testing the violation of inequality (8) is very demand-

ing experimentally. It requires testing 20 joint probabil-
ities and, assuming that one obtains P (QA

i = 1, QB
j =

1) ≈ 1
27

and ǫ for the other 18 probabilities, then one
must have ǫ < 1

243
≈ 0.0041 in order to observe a vio-

lation of inequality (8). The importance of this result is
that it explicitly shows that there is no fundamental ob-
stacle to observe Kochen-Specker contextuality on (pairs
of) qutrits. No additional assumptions are needed to
deal with the fact that measurements have a finite preci-

TABLE I. Correspondence between the geometrical relations
in Fig. 1 and the experimentally testable probabilities in in-
equality (8); j ∈ {0, 1}.

Fig. 1 Inequality (8)

f/⊥i P (QA
0 = 1, QB

1 = 1), P (QA
1 = 1, QB

0 = 1)

i⊥aj P (QA
0 = 1, HB

j = aj), P (HA
j = aj , Q

B
0 = 1)

f⊥bj P (QA
1 = 1,HB

j = bj), P (HA
j = bj , Q

B
1 = 1)

aj⊥bj P (HA
j = aj ,H

B
j = bj), P (HA

j = bj , H
B
j = aj)

aj⊥cj P (HA
j = aj ,H

B
j = cj), P (HA

j = cj ,H
B
j = aj)

bj⊥cj P (HA
j = bj ,H

B
j = cj), P (HA

j = cj ,H
B
j = bj)

c0⊥c1 P (HA
0 = c0,H

B
1 = c1), P (HA

1 = c1,H
B
0 = c0)
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sion and compatibility between sequential measurements
is not perfect.
Two features distinguishes this proposal: It tests the

quantum contextuality of the simplest physical system
that can exhibit contextuality (qutrits), rather than on
a system with more distinguishable states as in previous
experiments [11–13]. It is free of the finite precision and
compatibility loopholes of these previous experiments.
Using the same approach, one can obtain a noncon-

textual two-qutrit inequality for the complete (state-
independent) proof of Kochen and Specker [1] or any
other state-independent proof for a qutrit [27]. This
can be done by adding all the inequalities correspond-
ing to the composing blocks, and then removing redun-
dant probabilities. Unfortunately, the corresponding vi-
olations demand minimum values for ǫ of the same or-
der required for the experiment proposed in this Let-
ter. A more promising approach is to consider a two-
ququart system (i.e., two four-state quantum systems)
in a maximally entangled state and derive the inequality
corresponding to the simplest (for any dimension) state-
independent proof of contextuality which needs 18 yes-no
tests [28] (instead of the 8 tests in Fig. 1) or its sym-
metrized version [27] using 24 yes-no tests which is more
robust to imperfections (since it includes 16 critical 18-
test proofs and 96 critical 20-test proofs [28]).
In this Letter we have established a one-to-one corre-

spondence between any building block of any proof of
the Kochen-Specker theorem and an experimental test of
contextuality, free of the finite precision and compatibil-
ity loopholes. We hope that this proposal will definitely
close the debate on the physical relevance and experi-
mental testability of the Kochen-Specker theorem, and
iduce a new generation of loophole-free experiments.
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