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A FOURIER ANALYTIC APPROACH TO THE

PROBLEM OF MUTUALLY UNBIASED BASES

MÁTÉ MATOLCSI

Abstract. We give an entirely new approach to the problem of
mutually unbiased bases (MUBs), based on a Fourier analytic tech-
nique in additive combinatorics. The method provides a short and
elegant generalization of the fact that there are at most d+1 MUBs
in Cd. It may also yield a proof that no complete system of MUBs
exists in some composite dimensions – a long standing open prob-
lem.
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1. Introduction

In this paper we introduce a novel approach to the problem of mu-
tually unbiased bases in Cd. Surprisingly enough, the required Fourier
analytic technique is borrowed from additive combinatorics – a seem-
ingly unrelated branch of mathematics.

The paper is organized as follows. In the Introduction we recall some
basic notions and results concerning mutually unbiased bases (MUBs).
In Section 2 we describe how the problem of MUBs fits into a general
scheme in additive combinatorics – a scheme we will call Delsarte’s
method. We then apply this method to prove Theorem 2.2, an elegant
generalization of the fact that there are at most d + 1 MUBs in Cd.
Finally, in Section 3 we indicate the limitations of the method by intro-
ducing the notion of pseudo-MUBs, and discuss the possible existence
of such in the case d = 6.

Recall that given an orthonormal basis A = {e1, . . . , ed} in Cd, a

unit vector v is called unbiased to A if |〈v, ek〉| =
1√
d

for all 1 ≤
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k ≤ d. Two orthonormal bases in Cd, A = {e1, . . . , ed} and B =

{f1, . . . , fd} are called unbiased if for every 1 ≤ j, k ≤ d, |〈ej, fk〉| =
1√
d
.

A collection B0, . . .Bm of orthonormal bases is said to be (pairwise)
mutually unbiased if every two of them are unbiased. What is the
maximal number of pairwise mutually unbiased bases (MUBs) in Cd?
This question originates from quantum information theory and has
been investigated thoroughly over the past decades (see [15] for a recent
comprehensive survey on MUBs). The following result is well-known
(see e.g. [1, 4, 27]):

Theorem 1.1. The number of mutually unbiased bases in Cd cannot
exceed d+ 1.

We will generalize this fact in Theorem 2.2 below. The other im-
portant well-known result concerns prime-power dimensions (see e.g.
[1, 11, 12, 13, 17, 20, 27]).

Theorem 1.2. A collection of d+ 1 mutually unbiased bases (called a
complete set of MUBs) can be constructed if the dimension d is a prime
or a prime-power.

However, if the dimension d = pα1

1 . . . pαk

k is composite then very little
is known except for the fact that there are at least p

αj

j + 1 mutually

unbiased bases in Cd where p
αj

j is the smallest of the prime-power
divisors. In some specific square dimensions there is also a construction
based on orthogonal Latin squares which yields more MUBs than p

αj

j +1
(see [26]). The following basic problem, however, remains open for all
non-primepower dimensions:

Problem 1.3. Does a complete set of d + 1 mutually unbiased bases
exist in Cd if d is not a prime-power?

The answer is not known even for d = 6, despite considerable efforts
over the past few years ([4, 6, 7, 18, 21, 24, 5]). The case d = 6 is
particularly tempting because it seems to be the simplest to handle with
algebraic and numerical methods. As of now, some infinite families of
MUB-triplets in C6 have been constructed ([28, 18]), but numerical
evidence suggests that there exist no MUB-quartets [6, 7, 9, 28].

It will also be important for us to recall that mutually unbiased
bases are naturally related to complex Hadamard matrices. Indeed,
if the bases B0, . . . ,Bm are mutually unbiased we may identify each

Bl = {e(l)1 , . . . , e
(l)
d } with the unitary matrix

[Hl]j,k =

[

〈

e
(0)
j , e

(l)
k

〉

1≤k,j≤d

]

,
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i.e. the k-th column of Hl consists of the coordinates of the k-th vector
of Bl in the basis B0. (Throughout the paper the scalar product 〈., .〉
of Cd is conjugate-linear in the first variable and linear in the second.)
With this convention, H0 = I the identity matrix and all other matrices
are unitary and have entries of modulus 1/

√
d. Therefore, the matrices

H ′
l =

√
dHl have all entries of modulus 1 and complex orthogonal rows

(and columns). Such matrices are called complex Hadamard matrices.
It is thus clear that the existence of a family of mutually unbiased
bases B0, . . . ,Bm is equivalent to the existence of a family of complex
Hadamard matrices H ′

1, . . . , H
′
m such that for all 1 ≤ j 6= k ≤ m,

1√
d
H

′∗
j H

′
k is again a complex Hadamard matrix. In such a case we will

say that these complex Hadamard matrices are mutually unbiased.

A complete classification of MUBs up to dimension 5 (see [8]) is
based on the classification of complex Hadamard matrices (see [16]).
However, the classification of complex Hadamard matrices in dimension
6 is still out of reach despite recent efforts [2, 21, 24, 25, 19].

In this paper we will use the above connection of MUBs to complex
Hadamard matrices to apply a Fourier analytic approach, borrowed
from additive combinatorics.

2. Mutually unbiased bases, difference sets and
Delsarte’s method

In this section we describe a general scheme in additive combina-
torics, and show how the problem of mutually unbiased bases fit into
this scheme.

Let G be a compact Abelian group, and let a symmetric subset A =
−A ⊂ G, 0 ∈ A be given. We will call A the ’forbidden’ set. We would
like to determine the maximal cardinality of a set B = {b1, . . . bm} ⊂ G
such that all differences bj−bk ∈ Ac∪{0} (in other words, all differences
avoid the forbidden set A). Some well-known examples of this general
scheme are present in coding theory ([14]), sphere-packings ([10]), and
sets avoiding square differences in number theory ([22]).

We now describe a general method to tackle such problems. To the
best of my knowledge it was first introduced by Delsarte (in a less
general terminology) in connection with binary codes with prescribed
Hamming distance. The method is also ’folklore’ in the additive com-
binatorics community and I was introduced to it by Imre Z. Ruzsa
([23]).
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We are looking for a ’witness’ function h : G → R with the following
properties.

• h is an even function, h(x) = h(−x), such that the Fourier inversion
formula holds for h (in particular, h can be any finite linear combination
of characters on G).

• h(x) ≤ 0 for all x ∈ Ac

• ĥ(γ) ≥ 0 for all γ ∈ Ĝ

• ĥ(0) = 1.

Lemma 2.1. (Delsarte’s method)
Given a function h : G → R with the properties above, we can conclude
that for any B = {b1, . . . bm} ⊂ G such that bj − bk ∈ Ac ∪ {0} the
cardinality of B is bounded by |B| ≤ h(0).

Proof. For any γ ∈ Ĝ define B̂(γ) =
∑m

j=1 γ(bj). Now, evaluate

(1) S =
∑

γ∈Ĝ

|B̂(γ)|2ĥ(γ).

All terms are nonnegative, and the term corresponding to γ = 0 (the

trivial character, i.e. γ(x) = 1 for all x ∈ G) gives |B̂(0)|2ĥ(0) = |B|2.
Therefore

(2) S ≥ |B|2.
On the other hand, |B̂(γ)|2 =

∑

j,k γ(bj − bk), and therefore S =
∑

γ,j,k γ(bj − bk)ĥ(γ). Summing up for fixed j, k we get
∑

γ γ(bj − bk)ĥ(γ) = h(bj − bk) (the Fourier inversion formula), and

therefore S =
∑

j,k h(bj − bk). Notice that j = k happens |B|-many

times, and all the other terms (when j 6= k) are non-positive because
bj − bk ∈ Ac, and h is required to be non-positive there. Therefore

(3) S ≤ h(0)|B|.
Comparing the two estimates (2), (3) we obtain |B| ≤ h(0). �

How do mutually unbiased bases fit into this scheme? The answer is
that they almost perfectly do, except for the fact that the underlying
group is not Abelian. Indeed, let G = Ud×d the group of d× d unitary
matrices, and let H ⊂ Ud×d denote the set of complex Hadamard ma-
trices (rescaled by the factor 1/

√
d)) in Ud×d. Let the ’forbidden’ set

A be the complement of H . Of course, the group operations + and −
in the Delsarte scheme are now replaced by matrix multiplication and
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inverse. Also, the role of zero element is taken by the identity matrix.
Then, the maximal number of mutually unbiased bases in Cd is exactly
the maximal cardinality of a set {U0, U1, . . . Um} ⊂ G such that all
’differences’ U∗

j Uk (0 ≤ j, k ≤ m) lie in the prescribed subset Ac ∪ {I}.
Unfortunately, we do not know how to generalize Delsarte’s method

to the case of non-commutative groups, in particular to G = Ud×d. Nev-
ertheless, we can still use Delsarte’s scheme if we rephrase the problem
appropriately, as follows.

Assume that a family H1, . . .Hm of m mutually unbiased complex
Hadamard matrices exists. Then all entries of all matrices are of mod-
ulus 1, and the columns (and thus the rows) within each matrix are
complex orthogonal, and we have the unbiasedness condition: for any
two columns u,v coming from different matrices we have |〈u,v〉| =

√
d.

(Recall that we have re-normalized the matrices by a factor of
√
d.)

After multiplying rows and columns by appropriate scalars if nec-
essary, we can assume that all coordinates of the first row and col-
umn of H1 are 1’s, and all coordinates of the first row of all other
matrices are 1’s (i.e. we assume that all appearing columns have
first coordinate 1, and the first column in H1 consists of 1’s. This
is standard and trivial normalization.) All the other coordinates in
the matrices are complex numbers of modulus 1, i.e. they are of the
form e2πiρ with ρ ∈ [−1/2, 1/2). Therefore, we can associate to each
column vector (1, e2πiρ1 , . . . , e2πiρd−1) the vector (0, ρ1, . . . , ρd−1) ∈ Td,
the real d-dimensional torus, Td = [−1/2, 1/2)d. Also, note that the
first coordinate always automatically becomes 0, because each column
starts with coordinate 1. Therefore we make the more useful asso-
ciation that a column c = (1, e2πiρ1 , . . . , e2πiρd−1) is represented by
u = (ρ1, . . . ρd−1) ∈ Td−1, the d − 1-dimensional torus. There are
altogether md column vectors in the Hadamard matrices H1, . . .Hm,
and we will denote the associated vectors in Td−1 by u1, . . .umd (we
will see that in this approach it is not really relevant to indicate which
vector comes from which basis. But let us agree for convenience that
u1 = (0, . . . , 0), corresponding to the first column of H1.)

Two columns c1 = (1, e2πiρ1 , . . . , e2πiρd−1) and c2 = (1, e2πiµ1 , . . . , e2πiµd−1)

are orthogonal if and only if 1 +
∑d−1

j=1 e
2πi(−ρj+µj) = 0, and they are

unbiased if and only if |1 +
∑d−1

j=1 e
2πi(−ρj+µj)| =

√
d. Therefore it is

natural to introduce the following definitions.

Definition 2.1. Let ORTd denote the set of vectors (α1, . . . αd−1) ∈
Td−1, in the d − 1-dimensional torus, such that 1 +

∑d−1
j=1 e

2πiαj = 0.
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Also, let UBd denote the set of vectors (α1, . . . αd−1) ∈ Td−1, such

that |1 +
∑d−1

j=1 e
2πiαj | =

√
d. Let us also define the ’forbidden’ set

Ad = (ORTd ∪ UBd)
c.

We conclude that the vectors u1, . . .umd satisfy that the difference of
any two of them (the difference being taken mod 1 in each coordinate,
i.e. we take the difference in the group Td−1) lies in Ac

d∪{0}. Therefore,
we have arrived exactly to the scheme of Lemma 2.1.

As a preliminary remark we note that the dual group of G = Td−1 is
Ĝ = Zd−1. And the action of a character γ ∈ Zd−1 on a point x ∈ Td−1

is given as γ(x) = e2πi〈γ,x〉. In particular, γ = 0 is the trivial character
(constant 1). The Fourier transform of a function f : G → C is a

function f̂ : Ĝ → C given as f̂(γ) =
∫

x∈G f(x)γ(x)dx.

Let us see whether we can find a good ’witness’ function in this
situation. At first sight things do not look promising because we have
no understanding of the geometry of the sets ORTd and UBd inside the
torus Td−1. However, it turns out such geometric understanding is not
necessarily required and we easily prove the following generalization of
Theorem 1.1.

Theorem 2.2. Let A be an orthonormal basis in Cd, and let B =
{c1, . . . cr} consist of unit vectors which are all unbiased to A. Assume
that for all 1 ≤ j 6= k ≤ r the vectors cj and ck are either orthogonal

or unbiased to each other, i.e. either 〈cj, ck〉 = 0 or |〈cj, ck〉| = 1/
√
d.

Then r ≤ d2.

Proof. As we saw in the discussion above, the vectors u1, . . .ur ∈ Td−1

(associated to
√
dc1, . . .

√
dcr) satisfy uj − uk ∈ Ac

d ∪ {0} for all 1 ≤
j, k ≤ r. Therefore Lemma 2.1 can be applied.

Define the ’witness’ function h : Td−1 → R as follows:
(4)

h(x1, . . . xd−1) =
1

(d− 1)d

∣

∣

∣

∣

∣

1 +

d−1
∑

j=1

e2πixj

∣

∣

∣

∣

∣

2(

|1 +
d−1
∑

j=1

e2πixj |2 − d

)

.

It is trivial to check that h satisfies all requirements. Indeed, h is an
even function which vanishes on ORTd∪UBd. The Fourier coefficients
of h are simply the coefficients of the exponential terms after expand-
ing the brackets, and these are clearly nonnegative. Also ĥ(0) = 1

because ĥ(0) is the integral of h, which is just the constant term. Also,
h(0, . . . 0) = d2, so that we conclude from Lemma 2.1 that |B| ≤ d2. �
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Remark 2.3. As shown by Theorem 1.2 the result of Theorem 2.2 is
sharp if d is a prime-power. However, if d is not a prime-power, then
it could be possible to find a better witness function than above. The
function h above uses simply the definition of the sets ORTd and UBd.
In principle, it could be possible to find some structural properties of
these sets in dimension 6 (or any other composite dimension), in order
to construct a better witness function and get a sharper bound on r.
Any upper bound r < d2 would mean that a complete set of MUBs
does not exist in dimension d. We have not been able to make such
improvement for any d so far. �

Another observation is that if r = d2 in Theorem 2.2 then both
estimates (2), (3) must hold with equality. On the one hand, it is trivial
that (3) automatically becomes an equality for the h above (because h
is zero on ORTd and UBd). On the other hand, inequality (2) becomes

an equality if only if |B̂(γ)|2ĥ(γ) = 0 for all γ 6= 0. These are non-
trivial conditions and we obtain the following corollary, which is a
generalization of Theorem 8 in [3].

Corollary 2.4. Let A be an orthonormal basis in Cd, and let B =
{c1, . . . cd2} consist of unit vectors which are all unbiased to A. Assume
that for all 1 ≤ j 6= k ≤ d2 the vectors cj and ck are either orthogonal
or unbiased to each other. Write B as a d× d2 matrix, the columns of
which are the vectors cj, j = 1, . . . d2. Let r1, . . . rd denote the rows of
the matrix B, and let rj/k = rj/rk denote the coordinate-wise quotient
of the rows. Then the vectors rj/k (1 ≤ j 6= k ≤ d) are orthogonal to

each other in Cd2, and they are all orthogonal to the vector (1, 1, . . . 1) ∈
Cd2.

Proof. This is a direct consequence of the proof of Lemma 2.1. Indeed,
for (2) to be an equality B̂(γ) must be zero whenever ĥ(γ) 6= 0 and

γ 6= 0. Looking at the definition of h, ĥ(γ) 6= 0 happens exactly when
γ(x1, . . . xd−1) = e2πi((xj−xk)+(xq−xs)), for any quadruple 0 ≤ j, k, q, s ≤
d − 1, where we use the convention that x0 = 0. Using the definition
of B̂(γ) we obtain that B̂(γ) = 0 means exactly that rj/k and rs/q are
orthogonal to each other.

�

Remark 2.5. There are altogether d(d−1) vectors of the form rj/k, and
with the addition of (1, 1, . . . 1) we get a system of d(d−1)+1 orthogonal

vectors in Cd2 . It is not at all obvious whether in each dimension d2

there exists a set of vectors R = {r1, . . . rd}, with all coordinates having
absolute value 1, such that they satisfy these orthogonality constraints.
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Let us remark that if modulo d2 a d-element Sidon-set exists (i.e. a set
where the non-zero differences are all distinct), then the corresponding
rows of the Fourier matrix Fd2 form an appropriate system R. For
example, for d = 6 the set {0, 1, 3, 8, 23, 27} is a Sidon-set modulo 36,
so the rows R = {f0, f1, f3, f8, f23, f27} of the Fourier matrix F36 satisfy all
orthogonality constraints (but R is not a concatenation of orthonormal
bases, so it does not form a complete set of MUBs). One could try to
find a composite d such that a d-element Sidon set modulo d2 does not
exist, and then show that an appropriate set of vectors R also cannot
exist. This would prove that a complete set of MUBs does not exist in
dimension d. �

3. Linear duality and pseudo-MUBs

We can view the set B in Lemma 2.1 as a 0-1-valued function on G.
Also, observe that B does not directly enter the proof, but instead the

function |B̂(γ)|2 = B̂ − B(γ) is essential. For any y ∈ Td−1 let f(y)
denote the number of ways of writing y as a difference of two elements
of B. Then, for any γ ∈ Ĝ = Zd−1 we have |B̂(γ)|2 =

∑

j,k γ(bj − bk) =
∑

y f(y)e
2πi〈γ,y〉. Therefore, f has the following essential properties.

• the finite exponential sum
∑

y f(y)e
2πi〈γ,y〉 is nonnegative for all

γ ∈ Zd−1, and the exponents y ∈ Ac ∪ {0} = ORTd ∪ UBd ∪ {0}. We
can view it as the Fourier transform of the function f : Td−1 → R+.

• the coefficients f(y) are nonnegative integers.

• the sum of the coefficients
∑

y f(y) = |B|2.
• f(0) = |B|.
Given any such function f we can repeat the proof of Lemma 2.1

with the ’witness’ function h defined in (4), and conclude that

(5)

∑

y f(y)

f(0)
≤ h(0)

ĥ(0)
= d2.

This motivates the following definition:

Definition 3.1. We will call a function f : Td−1 → R+ a complete-
pseudo-MUB-system in dimension d (or pseudo-MUB-d in short) if it
satisfies the following conditions:

• f is nonnegative, the support of f is finite and is contained in
ORTd ∪ UBd ∪ {0}
• the finite exponential sum f̂(γ) =

∑

y f(y)e
2πi〈γ,y〉 is nonnegative

for all γ ∈ Zd−1.
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• the sum of the coefficients
∑

y f(y) = d4.

• f(0) = d2.

Notice that f is not required to be integer valued. As discussed
above, a complete set of d + 1 MUBs always gives rise to a complete-
pseudo-MUB-system. Indeed, let B ⊂ Td−1 denote the d2 columns
of the corresponding d mutually unbiased Hadamards, and let f(y) =
(B−B)(y), meaning the number of ways y can be written as a difference
bj − bk. Then f is a complete-pseudo-MUB-system. The converse is
not necessarily true: a complete-pseudo-MUB-system does not directly
imply the existence of a complete set of MUBs.

In any dimension d, if we find a pseudo-MUB-d function f then it
could serve as a ’dual-witness’ testifying that our function h in equation
(4) is best possible, and it would mean that the Delsarte method alone
cannot prove the non-existence of d + 1 MUBs in dimension d. We
emphasize that it would not mean that a complete system of d + 1
MUBs exists. It would only mean that a complete-pseudo-MUB-system
exists.

We remark that there is a linear duality here. Either a pseudo-MUB-
d exists, or a better witness function h : Td−1 → R exists, proving that
r < d2 in Theorem 2.2. There is no third option! In the latter case
we could conclude that no complete system of d + 1 MUBs exists in
dimension d. In the former case we would have an interesting pseudo-
MUB-d in our hand, which could possibly lead later to the discovery
of a proper complete set of MUBs.

Let us examine the situation in dimension d = 6.

One natural idea is to fix some m, and look for a pseudo-MUB-6
function such that its support contains vectors only whose coordinates
are mth roots of unity. The reason is that all known complete sets
of MUBs consist of such vectors. It is also convenient because such
vectors belonging to ORT6 and UB6 can easily be listed by a computer
code. Furthermore, the restriction f̂(γ) ≥ 0 needs to be checked only
as γ ranges over the cube [0, m − 1]5, due to periodicity. Finally, we
fix f(0) = 1 (which is a somewhat more convenient normalization than
f(0) = d2 in the definition), and maximize M =

∑

y f(y) by linear

programming (a pseudo-MUB-6 would have the value 36 here). We
have tried this and the results are the following:

• m = 12, M = 17.5

• m = 8, M = 21.6
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• m = 16, M = 21.6

Larger values of m are out of our computational power. As one
can see, these results are inconclusive. We could not find a pseudo-
MUB-6 but we could not find a better ’witness’ function h(x) either in
dimension 6. By linear duality one of them must exit, and it would be
interesting to see which one.
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