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We present a laser cooling scheme for trapped ions and atoms using a combination of laser
couplings and a magnetic gradient field. In a Schrieffer-Wolff transformed picture, this setup cancels
the carrier and blue sideband terms completely resulting in an improved cooling behaviour compared
to standard cooling schemes (e.g. sideband cooling) and allowing cooling to the vibrational ground
state. A condition for optimal cooling rates is presented and the cooling behaviour for different
Lamb-Dicke parameters and spontaneous decay rates is discussed. Cooling rates of one order of
magnitude less than the trapping frequency are achieved using the new cooling method. Furthermore
the scheme turns out to be robust under deviations from the optimal parameters and moreover
provides good cooling rates also in the multi particle case.
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I. INTRODUCTION

Cooling of atoms/ions is an important precondition for quantum logic and computation [1, 2], wherein an initial
ground state preparation of the vibrational state is required, for high resolution spectroscopy beyond the Doppler
limitations and for the analysis of low temperature phenomena (e.g. BEC condensates). Cooling by light (laser
cooling) for atoms and ions was originally proposed in [3, 4]. For trapped ions, sideband cooling [5, 6] is the standard
cooling method, achieved by tuning the laser frequency to the red sideband of the bare atomic frequency, which
leads to a resonant cooling contribution whereas heating is only induced by off-resonant carrier and blue-sideband
excitations. To obtain well-resolved sidebands requires the linewidth of the atomic transition to be much smaller
than the trapping frequency Γ� ν (strong confinement). Furthermore, taking into account that off-resonant heating
excitations increase with increasing laser intensity the coupling Rabi-frequency has to be smaller than the trapping
frequency Ω� ν (weak coupling) [2]. Cooling to lower temperatures was reached using the concept of Raman sideband
cooling [7], applicable for atoms [8] and ions [9, 10], which allows the realisation of very small cooling linewidths by
Raman two-photon transitions. Further improvements on the way to reach the ground state are achieved with dark
state concepts based on eliminating off-resonant excitations via quantum interference. In EIT cooling [11, 12] the
concept of electromagnetically induced transparency [13] is used to eliminate the carrier transition, which gives the
main heating contribution in the sideband schemes. It uses a three level system coupled by two lasers, wherein one of
the lasers (the stronger one) creates the absorption spectrum, a Fano like profile with a zero at the carrier transition
and a peak at the red sideband transition. Therefore stronger couplings can be realised, no strong confinement is
required due to the three level nature of the system and a large cooling bandwidth (i.e. frequency range for cooling)
allows simultaneous cooling of several modes. An alternative approach, based on the Stark shift gate [14], is the Stark
shift cooling [15], cancelling the carrier transition for a correctly tuned Rabi frequency, which is of the order of the
trapping frequency. This is achieved in the dressed state picture, i.e. taking the Stark shift of the laser interaction
(originating from the zeroth order in the Lamb-Dicke parameter contributions of the resonant coupling laser) into
account. The robust laser cooling scheme [16] combines the methods of EIT and Stark shift cooling resulting in a
dark state for the combination of EIT and Stark shift Hamiltonian contribution and leading to an elimination of both
the carrier transition and the blue sideband heating transition by interference.

The scheme presented here also eliminates the carrier and blue sideband transitions, using an atomic three level
system, a combinations of four laser beams and applying a magnetic field gradient. The application of an inhomo-
geneous magnetic field to trapped ions resulting in a position dependent resonance shift and mediating the coupling
between internal and external degrees of freedom (e.g. allowing the coupling by microwaves with a non-vanishing
effective Lamb-Dicke parameter) was discussed in [17, 18]. For our method only the proper choice of the gradient
strength and the phase relations of the laser beams form the conditions for a pure red sideband interaction.

The paper is organized as follows: In section II the cooling scheme is presented and the influence of the magnetic
field gradient is analysed. It turns out, that in a Schrieffer-Wolff transformed picture, both the carrier as well as the
blue sideband transition are eliminated by interference and thus cooling to the vibrational ground state is achieved. In
section III the resonance condition for the cooling process is derived. Moreover it is shown that the maximal cooling
amplitude is limited by the trapping frequency, a fact that arises from the amplitudes of the dressed states, which are
tuned to resonance. Section IV presents an analytic formula for the cooling rate obtained by the method of adiabatic
elimination and valid in the weak coupling case. Indeed a comparison to numerical results shows a good agreement
in the range of small Rabi frequencies. In section V the dependence of the cooling rate on the spontaneous decay rate
as well as on the magnitude of the Lamb-Dicke parameter is analysed. Furthermore the dependence of the cooling
rate and final population on phase fluctuations of the coupling lasers is presented resulting in the conclusion that
the scheme is robust under deviations around the optimal parameters. Section VI deals with the cooling of multiple
vibrational modes, i.e. with multiple trapped ions. Only for the center of mass mode a complete elimination of heating
terms (carrier and blue sideband) is possible; however the strength of the heating terms for other modes is smaller
than in standard cooling schemes.

II. COOLING SCHEME AND HAMILTONIAN

The scheme presented here is based on a complete elimination of the blue sideband heating terms in a Schrieffer-
Wolff transformed picture (see eq. (6) and (7) below), which is achieved by a magnetic gradient field together with a
four laser coupling scheme. It requires an atomic three level system consisting of a (fast decaying) excited state |e〉
and a Zeeman splitted ground state |+ 1〉 and | − 1〉 induced by the external position dependent magnetic field. Each
of the Zeeman splitted levels is coupled by two lasers with Rabi frequency Ω and opposite Lamb-Dicke parameters η
(η2 = ~ k2/(2mν)) to the excited level |e〉 furthermore having a phase difference ϕ = π/2 (see fig.1).

The ion is assumed to be trapped in an harmonic trapping potential with frequency ν and for simplicity only the
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FIG. 1. Cooling scheme: a) Coupling scheme in the standard basis. Each of the Zeeman splitted ground state levels is coupled
to the excited level |e〉 by two lasers with Rabi frequency Ω, Lamb Dicke parameter η, phase ϕ and detuning δ. Note that the
external magnetic field gives, beside the position independent ω0 splitting, an additional position dependent energy shift via
the magnetic gradient contribution. b) Scheme in dressed state basis after Schrieffer-Wolff transformation. See also eq. (8)

motion along the trap axis is taken into account. Moreover, the expansion up to first order in terms of the Lamb-Dicke
parameter requires the atom/ion to be localized on the scale provided by the laser wavelength (Lamb-Dicke limit,
η � 1). The position dependent magnetic field B(x) has the form

B(x) ≈ B0 +
dB

dx

∣∣∣∣
x=0

x (1)

higher terms are not present or can be neglected in the following expansion in terms of the effective Lamb-Dicke
parameter respectively. The corresponding energy shift due to the magnetic Zeeman splitting is (with the position

operator x =
√

~
2mν (b + b†), wherein b† and b are the phonon creator and annihilator operators respectively) given

by

∆E = −µB = ~ω0ms + ηeff ~ ν
(
b+ b†

)
ms (2)

with µ the magnetic moment, ms the magnetic quantum number and ηeff =
√
~√

2mν
ω0

νB0

∂B
∂x , providing a coupling

between the spatial position and the internal energy, i.e. phonons and internal atomic states. The effective Lamb
Dicke parameter has a physical meaning as the energy difference between the left and right bound of the ground state
wavefunction extent in units of ~ ν. The energy shift of the homogeneous part is given by ~ω0 = −g µB B0, wherein
g denotes the g-factor and µB the Bohr magneton. Thus the Hamiltonian of the system (cp. to fig. 1) is given by
(setting ~ = 1)

H =ν b† b+ ωe |e〉〈e|+ ω0 (|+ 1〉〈+1| − | − 1〉〈−1|) + ηeff ν (|+ 1〉〈+1| − | − 1〉〈−1|)
(
b+ b†

)
+ Ω (|e〉〈+1|+ |+ 1〉〈e|) · [cos (k x− ωL t) + cos (−k x− ωL t+ π/2)]

+ Ω (|e〉〈−1|+ | − 1〉〈e|) · [cos (−k x− ω∗L t) + cos (k x− ω∗L t+ π/2)]

(3)

with ωe being the energy of the upper level |e〉. In order to end up with a time independent Hamiltonian we assume
for the detuning: δ = ωe−ω0−ωL = ωe+ω0−ω∗L, wherein ωL is the frequency of the first laser pair (coupling |+1〉 to
|e〉) and ω∗L the frequency of the second pair respectively (coupling | − 1〉 to 〈e|). In an interaction picture, expanding
the Hamiltonian up to the first order in the Lamb-Dicke parameter η and applying the rotating wave approximation,
the Hamiltonian takes the form

H =ν b†b+ δ |e〉〈e|+ ηeff ν (|+ 1〉〈+1| − | − 1〉〈−1|)
(
b+ b†

)
+

[
Ω

2
(1 + i) (|e〉〈+1|+ |e〉〈−1|) +η

Ω

2
(1 + i)

(
b+ b†

)
(|e〉〈+1| − |e〉〈−1|) + h.c.

]
.

(4)

In order to cancel the blue sideband heating contributions completely, it is important to adjust the magnetic gradient
field in a way so that

η = ηeff (5)
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TABLE I. Magnetic gradients needed to fulfill condition (5) for different trapping frequencies. Values are given for the S1/2 to
P1/2 transitions of Ytterbium-172 ions (369 nm) and Calcium-40 ions (397 nm). In this case the magnetic gradient is given by
∂B
∂x

= 2 ν ~
(−ge)µB

k cos θ, wherein θ denotes the angle between the laser beams and the trap axis (η =
√

~ k2/(2mν) cos θ), which

in the following is assumed to be zero and ge denotes the electron g-factor.

172Y b+ 40Ca+

Trapping frequency [ν/(2π)]/Hz 5 · 105 1 · 106 5 · 105 1 · 106

Magnetic gradient ∂B
∂x

/(T/m) 607.6 1215 564.7 1130

Lamb-Dicke parameter η 0.13 0.09 0.25 0.18

as will be explained later. Values for the necessary magnetic gradient to fulfill condition (5) for Ytterbium-172 and
Calcium-40 ions are given in table I.
The basic idea for the cancellation mechanism is that σx(b+ b+) + iσy(b− b+) generates the red sideband and cancels

the blue one. Since the photon coupling introduces a term that is proportional to b + b+ and the magnetic gradient
introduces a term that is proportional to i(b − b+), we can expect that if the phases are adjusted appropriately we
can get a complete interference of the blue sideband.

The effect of the magnetic field is best seen by applying a unitary Schrieffer-Wolff transformation U to the Hamil-
tonian (4)

U = exp
{
−η (|+ 1〉〈+1| − | − 1〉〈−1|)

(
b− b†

)}
(6)

resulting in the following transformations

b → b− η (|+ 1〉〈+1| − | − 1〉〈−1|)
|+ 1〉 → |+ 1〉 exp

[
−ηeff

(
b− b†

)]
| − 1〉 → | − 1〉 exp

[
ηeff

(
b− b†

)] (7)

Application of the Schrieffer-Wolff transformation to the Hamiltonian (4) and keeping only terms up to first order
in η we get (fig. 1b, note that η is equal to ηeff ):

H ′ = U H U† = ν b† b+ δ |e〉〈e|+
[

Ω√
2

(1 + i) |e〉〈B| + ηΩ
√

2 (1 + i) b |e〉〈D|+ h.c.
]
. (8)

Herein we have defined:

|B〉 =
1√
2

(|+ 1〉+ | − 1〉) ,

|D〉 =
1√
2

(|+ 1〉 − | − 1〉) .
(9)

Note that the first order expansion terms of the Schrieffer-Wolff transformation (ηeff ) of the zeroth order term in η
(Lamb-Dicke-Parameter) Hamiltonian contributions (see 4) leads to a cancellation of the first order in η blue sideband
laser interaction contributions under the assumption (5).

The complete time evolution in the Schrieffer-Wolff transformed picture is given by

∂

∂t
ρ = −i [H ′, ρ] + Ld ρ. (10)

The Liouvillian Superoperator Ld describes the spontaneous decay from the excited level |e〉 to the levels |+ 1〉 and
| − 1〉. It exhibits the following form:

Ld = Ld0 + Ld1 . (11)

Ld0 ρ describes the general spontaneous decay terms in zeroth order in the Lamb-Dicke Parameter:

Ld0 ρ =
∑

i={(+1),(−1)}

γi
2

[
2 |i〉〈e|ρ|e〉〈i| − |e〉〈e| ρ− ρ |e〉〈e|

]
. (12)
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Ld1 ρ is the Schrieffer-Wolff transformation contribution of the spontaneous decay term (in first order in η):

Ld1 ρ =
∑

i={(+1),(−1)}

γi (−1)i η
[(
b− b†

)
, |i〉〈e|ρ|e〉〈i|

]
. (13)

Note that recoil only contributes in order η4, leading to a very small correction to the cooling rate (decreasing it)
due to the dark state nature of the cooling scheme and therefore can be neglected for small η (which was tested by
numerical simulations). This is due to the fact, that the probability for being in the excited state is given by η2

and the spontaneous decay including recoil from this state is a process in second order in η and therefore recoil only
contributes with a strength ∝ η4.

If the final phonon population |n = 0〉 is reached, the system will be decoupled from the laser interaction and will
end up in the state |D,n = 0〉 (“ dark state”). Note that due to the presence of only red sideband terms the phonon
state |n = 0〉 will always be reached (unless Ω = 0). In the original (i.e. non Schrieffer-Wolff transformed) picture,
this final state has the form:

U† |D,n = 0〉 = |D,n = 0〉 − η |B,n = 1〉+O
(
η2
)
. (14)

Therefore the presented scheme cools to the vibrational ground state (n=0) in zeroth order in η. Furthermore the
Schrieffer-Wolff transformation preserves pure states and thus does not increase the entropy (which remains zero).
A simple (projective) measurement of the internal state |D〉 as well as a unitary rotation could further improve the
achieved final population, that is they would result in a state with n = 0 up to second order in η.

III. CONDITIONS FOR OPTIMAL COOLING RATES AND LIMITATIONS

At first sight it might seem possible to increase the cooling rate by an arbitrary amount just by increasing the laser
Rabi frequency Ω. However a detailed analysis of the Ω |e〉〈B|-coupling terms (cp. Hamiltonian (8)) shows that this
is not the case. These terms are changing the |e〉-state (shifting it and mixing it with the |B〉-state) and therefore
crucially influence the cooling term (∼ ηΩb|e〉〈D|) . Optimal rates are achieved for tuning the cooling interaction in
resonance with one of the dressed states of the Ω |e〉〈B| interaction. The Hamiltonian (8) in the dressed state basis
takes the form

H =ν b† b+ ωu |u〉〈u|+ ωd |d〉〈d|+ ηΩ
√

2 (1 + i) b
{(
aue |u〉+ ade |d〉

)
〈D|+ h.c.

}
(15)

wherein |u〉 and |d〉 is the dressed state basis (each having contributions of |e〉 and |B〉 states), ωu and ωd are the
energies of those states (i.e. eigenvalues of the diagonalization procedure)

ωu/d =
1

2

(
δ ±

√
δ2 + 4 Ω2

)
(16)

and aue and ade the amplitudes of |u〉 and |d〉 in |e〉 respectively (see also eq. (17)), i.e. the excited level |e〉 expressed
in the dressed state basis is given by

|e〉 = aue |u〉+ ade |d〉 . (17)

In the interaction picture with respect to the first three Hamiltonian contributions, the resonance condition (for
tuning the |u〉 state to resonance) is easily seen to be fulfilled by setting ωu = ν. This procedure leads to the following
resonance condition for optimal cooling rates:

δ =
ν2 − Ω2

ν
. (18)

Consequently the detuning is - for a given trapping and laser rabi frequency - uniquely determined in the optimal
cooling case.
To see how the magnitude of the cooling term increases with increasing Ω it is useful to define an “effective Rabi
frequency“ Ωeff . If |u〉 corresponds to the resonant state (the one which has been tuned to resonance), then Ωeff is
defined as

Ωeff = Ω aue (19)
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FIG. 2. a) |Ωeff |/ν is plotted over the Rabi frequency Ω for different values of the trapping frequency ν. The continuous line
corresponds to ν = 1, the dashed line to ν = 2, the dotted line to ν = 5 and the dashed dotted line to ν = 8. In all cases the
maximal achievable |Ωeff | is limited to the trapping frequency ν. b) Absolute value of |e〉 amplitudes in the dressed states; the
red curve represents the resonant state. The minimal amplitude determines the dynamics for a given Ωeff .

and is a direct measure for the strength of the resonant (and therefore relevant) cooling contribution. In case of
fulfilling condition (18) it follows that

|Ωeff | =
ν |Ω|√
ν2 + Ω2

(20)

(see figure 2a). From equation (20) it is clearly visible, that it is impossible to increase the cooling term contribution
above a limiting upper value or more precise, Ωeff is limited to a maximal value, which corresponds to the trapping
frequency ν (|Ωeff |max = ν). Therefore the trapping frequency is responsible for an upper limit to the maximal
achievable cooling rate.

A second limitation arises from the decay rate γ and the contributions of the excited state |e〉 in the new dressed
state basis. Note that spontaneous decay to both dressed states and the |D〉 state takes place. The cooling process
relies on the decay to the |D〉 state, and thus - to keep the process going - it is necessary that the other states
decay fast enough, i.e. have a sufficient large |e〉 contribution. Otherwise the system will be trapped (at least for
a certain amount of time) in one of the dressed states and thus the cooling rate is reduces significantly. For equal
decay rates γ in (12),(13), equal |e〉 contributions in the dressed states would lead to the optimal case when only
taking the spontaneous decay influence into account. The |e〉-amplitudes in the dressed states for the resonance case
(18) are plotted in figure 2b. Note that the minimal amplitude determines the dynamics. After a point of equal
|e〉-amplitudes in the dressed states (maximal minimal |e〉-amplitude), the minimal |e〉-amplitude decreases again for
further increasing Ωeff , which sets the optimal rate to a value Ωeff < ν, depending on the relation between Γ and ν.

IV. RATE EQUATION FORMULA AND COMPARISON TO THE NUMERICAL RESULTS

The procedure described in [7, 19] allows to calculate an analytic formula for the cooling rate by adiabatically
eliminating the internal degrees of freedom under the assumption that the cooling dynamics is much slower than the
internal dynamics. Moreover it is assumed that the trapping frequency is large compared to the cooling dynamics
(i.e. ηΩ � ν), which allows a projection on the phonon |n〉〈n| subspace; i.e., a derivation of a rate equation. This
second condition is only fulfilled for small values of Ω in our case (otherwise the cooling term is of the order of the
trapping frequency or for further increasing Ω even bigger). The rate W can be written in the form W = A− − A+

and the final steady state population is given by 〈n〉ss = A+/(A− − A+), wherein A+ /A−- are the transition rates
for increasing or lowering the phonon number respectively. Those quantities consist of two time correlation functions
of internal operators, which can be calculated using the quantum regression theorem and the optical Bloch equations.
It follows that, due to the fact that there exist no heating terms in first order in the Lamb-Dicke Parameter, A+ is
equal to zero and thus W = A− and the final phonon population is given by 〈n〉ss = 0.
Following the procedure given in [19], we get for the rate W (see appendix for the calculation)

W =
8 η2 Ω2 γ ν2

γ2 ν2 + [(δL − ν) ν + Ω2)]
2 , (21)
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FIG. 3. Cooling rate W in units of the trapping frequency ν as a function of the Rabi frequency Ω for ν = 2, η = 0.1 and
γ = 10 (left plot) / γ = 1 (right plot). The detuning δ for a given Ω is chosen to fulfill the resonance condition eq. (18). The
blue line is the rate obtained by numerical simulations, the red dashed line the one calculated using the rate equation formula
(23).

where the rate W is defined via:

d

dt
〈n〉 = −W 〈n〉 . (22)

This rate (21) gets optimal if the term in brackets is equal to zero and the resulting condition is equivalent to the
resonance condition given in eq. (18). In that case, the rate takes the following form:

W =
8 η2 Ω2

γ
. (23)

The fact that the rate is proportional to 1/γ is a direct consequence of the adiabatic elimination in high γ. More
precisely, the rate W is proportional to the spontaneous decay rate γ of the excited level times the probability pu for
achieving this level. The latter quantity is proportional to 1/γ2, i.e. the probability for reaching the excited dressed
state (here: |u〉) decreases with increasing dissipation. Therefore the rate is given by: W ∝ (1/γ2) γ = 1/γ. However
it does not mean that the optimal achievable rate is getting slower for increasing γ, because it is possible to reach
higher final values for Ω due to the fact, that the (internal) dynamics is less limited by the decreasing |e〉-amplitude
of the resonant state, which occurs for increasing Ω beyond a point of equal dressed state amplitudes. Figure 3 shows
the rate obtained by numerical simulations and that one calculated using eq. (23) for different Rabi frequencies. As
expected, the rate formula describes the rate quite well in the limit of small Ω values whereas it fails completely in the
opposite limit (when the cooling contribution is getting stronger and the conditions used for the formula derivation
are no longer fulfilled).

V. SIMULATION AND RESULTS

Figure 4 shows optimal cooling cycles for different spontaneous decay rates (γ = 1 < ν and γ = 10 > ν). In
the first case (γ < ν, the rate is of the magnitude of γ) the optimal cooling rate is achieved for Ωeff ≈ ν (cp. to
eq. (18)) , i.e. the case of equal |e〉-amplitudes in the dressed states. That is what one would expect, because for
further increasing Ωeff to its maximal value ν there is one dressed state with a small |e〉 amplitude and therefore the
slower spontaneous decay from this state leads to a decreasing rate despite of the increasing strength of the cooling
term contribution. In the γ = 10, γ > ν, rate� γ case, the spontaneous decay rate is much faster than the cooling
dynamics. Therefore, as expected, it is possible to increase Ωeff beyond the ”equal amplitude“ situation and thus a
slightly higher effective Rabi frequency can be realized. The spontaneous decay time of the dressed states is much
less limiting in this case. Note that this higher Ω is needed to compensate the influence of the quantum Zeno effect,
which reduces the rate compared to the γ = 1 case for a given Ω. The optimal achieved rates W (see also eq. (22))
are 0.08 ν (Ω = 1.7,Ωeff = 1.3) for the γ = 1 case and 0.09 ν (Ω = 5.6,Ωeff = 1.88) for the γ = 10 case respectively.
Rates for different values of Ω are presented in figure 3.

The dependence of the cooling rate W on the spontaneous decay rate γ is plotted in fig. 5. As discussed before,
for higher spontaneous decay rates higher values of Ω are possible because of less restrictions due to the spontaneous
decay and therefore the rate increases with increasing γ. For small values of γ, when the cooling dynamics is limited
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FIG. 4. Average population 〈n〉 vs. time in units of the spontaneous decay rate γ for optimal chosen cooling parameters. The
left plot describes the opt. case for γ = 1 and ν = 2 (Ω = 1.7, δ = 0.56, η = 0.1), the right plot for γ = 10 and ν = 2 (Ω = 5.6,
δ = −13.68, η = 0.1).

FIG. 5. Cooling rate W in units of the trapping frequency ν for different values of the spontaneous decay rate γ. The inset
shows the optimal value of Ω (left) and Ωeff (right) for a given γ (in units of ν). While the rate increases fast in regions where
the cooling is limited by the spontaneous decay rate (small values of γ) it saturates for high spontaneous decay rates, where
the rate is limited by the limitation of Ωeff (see also fig. (2)). Values have been calculated for ν = 2, η = 0.1.

by the spontaneous decay rate and not by the Ωeff coupling, the rate increases significantly with increasing γ. For
high values of γ the rate converges to a limiting value for the rate. In this case the cooling dynamics is clearly
limited by the fact, that Ωeff reaches its maximal value ν (the trapping frequency (20), see right inset of fig. 5 for
the corresponding Ωeff values). Thus further increasing Ω in the region Ωeff . ν for increasing γ (which is indeed
necessary to compensate the higher quantum Zeno effect) is leading to a very small increasing of Ωeff and therefore
leads to a saturation of the rate with Ωeff converging to its maximal value.

The dependence on η (for otherwise fixed parameters) is shown in fig. 6. For η � 1, i.e. in the regime where
heating terms of higher orders in η can be neglected, the rate scales approximately linearly with increasing Lamb-
Dicke parameter η. Note that the rate equation (23) includes a quadratic contribution of η, but also the optimal
Rabi frequency depends on Ω, scaling approx. ∝ 1/

√
η and thus leading to an approximately linear scaling of the

rate dependence on η1. Thus decreasing η leads to an increasing Ω for the optimal condition, which can be explained
compensating the quantum Zeno effect although it deteriorates the spontaneous decay amplitude behaviour. By
increasing η to higher values it reaches some optimal point and decreases again afterwards due to the fact that the
heating terms in second order (and by further increasing also in higher orders) in η become more and more important.

Robustness to phase fluctuations — The presented scheme relies on destructive interference and thus may be fragile

1 More exactly, numerical simulations show that the approximate scaling is given by W ∝ η1.28 and Ω ∝ η−0.45.
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FIG. 6. Cooling rate W in units of the trapping frequency ν for different values of the Lamb-Dicke parameter η. The
corresponding Ω dependence (for optimal rates) is shown in the inset. For small values of η (when the influence of higher order
heating terms is small) the rate scales approximately linear in η. All values have been calculated for a fixed spontaneous decay
rate γ = 10 and a trapping frequency ν = 2, including terms up to second order in η.

FIG. 7. The left plot shows the final population 〈n〉ss, the right plot the rate W in units of ν for different phase differences ϕ
between the two coupling laser pairs. Note that ϕ = π/2 corresponds to the optimal case allowing the complete elimination of
heating terms in first order in η. The simulation is performed in the Schrieffer-Wolff transformed picture and an Hamiltonian
expansion up to second order in the Lamb-Dicke parameter with the parameters Ω = 5.6, δ = −13.68 (according to the resonance
condition eq. (18)), η = 0.1 and γ = 10. Note that the final population corresponds to the population in the transformed picture.

to dephasing, i.e., fluctuations in the phase difference between the laser pairs around the optimal π/2 value. The
numerical analysis of the phase fluctuation is shown in fig. 7. It can be seen that even at fluctuations which are larger
than 20% the population is still less than 10−2 and the rates decrease only by a factor of 2.

The proposed cooling scheme is faster and more robust than previously proposed continuous cooling schemes. The
fastest continuous schemes that was implemented is the EIT cooling scheme [12] which cooled at a rate of 10−4ν. The
robust cooling scheme [16] can in principle reach a rate of 10−2ν. In contrary the proposed cooling scheme can reach
rates which are one order of magnitude less than the trap frequency.
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VI. MULTIMODE COOLING

The presented cooling scheme was tested for the case of several trapped ions. Furthermore the cooling scheme,
i.e. the laser coupling of internal and external degrees of freedom as presented in section II, is applied to one of the
trapped ions (named ion 1 in the following). It is advantageous to express the Hamiltonian in terms of normal modes,
wherein the creator and annihilator of the n-th normal mode is denoted by a†n and an respectively. In contrast, the

ones of the i-th local mode are denoted by bi and b†i . Expanding equation (4) to the multi particle case leads to the
Hamiltonian

H =δ |e〉〈e|+
∑
n

νn a
†
n an + η ν [|+ 1〉〈+1| − | − 1〉〈−1|]

(
b1 + b†1

)
+

[
Ω√
2

(1 + i) |e〉〈B|+ η
Ω√
2

(1 + i)
(
b1 + b†1

)
+ h.c.

]
+O(η2) .

(24)

Herein νn describes the frequencies of the corresponding normal modes, the summation over n equals a summation
over all normal modes and all internal states correspond to those of ion 1. With the transformation xi =

∑
nM

n
i Qn

between the local coordinates {xi} and the normal coordinates {Qi} the local operators in (24) can be expressed in

terms of normal ones using the relation (xi =
√

~/(2mν) (bi + b†i ))(
bi + b†i

)
=
∑
n

Mn
i

√
ν

νn

(
an + a†n

)
(25)

and thus the Hamiltonian (24) reads

H =δ |e〉〈e|+
∑
n

[
νn a

†
n an + η′n ν [|+ 1〉〈+1| − | − 1〉〈−1|]

(
an + a†n

)]
+

[
Ω√
2

(1 + i) |e〉〈B|+
∑
n

η′n
Ω√
2

(1 + i) |e〉〈D| (an + a†n) + h.c.

]
+O(η2) .

(26)

wherein η′n = ηMn
1

√
ν/νn.

Again, the effect of the magnetic gradient terms is best seen by moving to a Schrieffer-Wolff transformed picture in
which the magnetic gradient displacements of the individual normal mode oscillators are removed. This transformation
is given by

U ′ = exp

[
−
∑
n

η̃n [|+ 1〉〈+1| − | − 1〉〈−1|] (an − a†n)

]
=
∏
n

exp
[
−η̃n [|+ 1〉〈+1| − | − 1〉〈−1|]

(
an − a†n

)] (27)

with η̃n = η′n ν/νn = ηMn
1 (ν/νn)3/2. Note that this transformation differs from the transformation used in sect. II

what can easily be checked by inserting (25) into (6). Applying this transformation (cp. to eq. (7)) to the Hamilto-
nian (24) leads to H ′ = U ′H U ′†

H ′ =δ |e〉〈e|+
∑
n

νn a
†
n an +

[
Ω√
2

(1 + i) |e〉〈B|

+ η
Ω√
2

(1 + i) |e〉〈D|
∑
n

Mn
1

√
ν

νn

([
1 +

ν

νn

]
an +

[
1− ν

νn

]
a†n

)
+ h.c.

]
+O(η2) .

(28)

Consequently, the amplitudes of the blue and red sideband terms for a specific mode n depend on the relation of the
trapping frequency ν to the normal mode frequency νn. A complete cancellation of blue sideband heating terms is only
possible for the center of mass mode (COM), because only in this case νCOM = ν. For higher modes heating terms
are always present, although they are off-resonant by tuning the laser frequency to the red sideband. In general, for
increasing νn the heating amplitude increases and the cooling amplitude decreases, which leads to equal amplitudes
for νn → ∞. The latter case corresponds to the situation in cooling schemes that do not cancel blue sideband
terms, e.g. EIT cooling and sideband cooling. Therefore the presented cooling scheme results in an improved cooling
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FIG. 8. Cooling of three trapped ions. The line colours blue, red and green correspond to the single modes with increasing
frequency in this order. The simulation was performed in the original (non transformed) picture using a second order in η
Hamiltonian expansion and the values Ω = 5.6, γ = 10 and η = 0.1. The left plot shows the cooling of the three modes all
starting with an initial population 〈n〉 = 2. The detuning δ was chosen in a way to set the red sideband terms of the first and
second mode to resonance respectively, corresponding to continuous and dashed lines. Continuous lines describe the situation
when the laser is tuned to resonance with the red sideband of the center of mass mode and dashed lines the analogous situation
with the breathing mode tuned to resonance (see resonance condition eq. (18)). The right plot shows the heating of the excited
modes during the cooling process of the center of mass mode, which is set to resonance. The final populations are: 〈n1〉 = 0.005,
〈n2〉 = 0.031 and 〈n3〉 = 0.14.

behaviour with respect to those schemes also in the multiparticle case albeit not being able to cool other modes than
the COM-mode without heating terms.

The cooling of the individual modes (COM mode (blue), first excited mode (breathing mode, red) and second

excited mode (egyptian mode, green)) for the case of three ions is presented in fig. 8. For three ions [2] ~M1 =

(1/
√

3,−1/
√

2, 1/
√

6), ν1 = ν, ν2 =
√

3 ν, ν3 =
√

29/5 ν. The left plot shows the cooling starting with an initial
population 〈n〉 = 4 for each mode. Due to the fact that in the higher excited modes heating terms are always present
while in the COM mode those contributions are eliminated completely in first order in η, the COM mode is always
cooled with a faster rate also in the case when the cooling terms of any of the excited mode is set to resonance, i.e.
the COM cooling transitions are off-resonant. The right plot shows the heating of the non-resonant excited modes
originally in 〈n〉 = 0 during the resonant cooling process of the center of mass mode starting from 〈n1〉 = 0. The
modes are cooled/heated to final populations of 〈n1〉 = 0.005, 〈n2〉 = 0.031 and 〈n3〉 = 0.14. That is the heating
turns out to be very small and increases with νn as expected from eq. (28).

VII. CONCLUSION AND COMMENTS

We presented a cooling scheme, which completely eliminates the influence of the blue sideband heating transitions
as well as the carrier transitions resulting in a good cooling behavior and providing cooling rates of the order of one
magnitude below the trapping frequency. This is achieved by a proper choice of the magnetic gradient strength whose
influence was analysed in a Schrieffer-Wolff transformed picture. Optimal cooling conditions were derived together
with a formula valid in the weak laser coupling case. The dependence on the Lamb-Dicke parameter as well as on
the spontaneous decay rate was presented. Moreover it was shown that the cooling scheme is robust under deviations
around the optimal phase differences between the coupling laser pairs and therefore phase fluctuations have only
weak influences on the cooling rate and final population. Furthermore an analysis of the multiparticle case revealed
good cooling behaviour also for several modes albeit not being able to eliminate the carrier and blue sideband terms
completely in other modes than the center of mass mode.
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Appendix A: Rate equation derivation

In this appendix, the calculation leading to the rate equation formula (21) is presented. The master equation (10)
up to first order in η can be written in the following form

dρ

dt
= L0 ρ+

(
L1
1 + L2

1

)
ρ (A1)

wherein the lower index indicated the order in the Lamb-Dicke parameter. The Liouvillians are given by

L0 ρ = (L0,ext + L0,int) ρ = −i [H0,ext, ρ] +
[
−i [H0,int, ρ] + Ld0 ρ

]
(A2)

L1
1 ρ = −i [H1, ρ] , L2

1 ρ = Ld1 ρ (A3)

with the definitions of the spontaneous decay contributions Ld0 ρ and Ld1 ρ given in eq. (12) and eq. (13) respectively.
The complete first order Liouvillian L1 is defined as the sum of the two first order contributions, i.e. L1 = L1

1 + L2
1.

The zero and first order Hamiltonian contributions (cp. to eq. (8)) are

H0,ext = ν b†b

H0,int = δ1 |e〉〈e|+
{

Ω√
2

(1 + i) |e〉〈B|+ h.c.

}
(A4)

H1 = b ηΩ
√

2 (1 + i) |e〉〈D|+ h.c. =
∑

n∈{1,2}

Rn Fn (A5)

where Rn are pure external operators and Fn pure internal ones: R1 := b, R2 := R†1, F1 := ηΩ
√

2 (1 + i) |e〉〈D| and

F2 = F †1 .
The projector P on the relevant subspace is given by

Pρ = Pe Piρ = µρss

Pi ρ = lim
t→∞

eL0,int t ρ = ρss trI(ρ)

Pe ρ =

∞∑
n=0

|n〉〈n| 〈n|ρ|n〉

(A6)

with the external/vibrational density matrix contribution µ = Pe trI(ρ), the internal steady state ρss = |D〉〈D| and
Pi and Pe the projectors on the internal steady state (assuming that the internal dynamics is much faster than the
cooling dynamics) and the vibrational |n〉〈n| subspace respectively. trI denotes the trace over the internal part. The
master equation for the relevant external part Pρ up to first order in the Lamb-Dicke parameter is given by (see e.g.
[20])

d

dt
Pρ = PL1

(
−L−10

)
L1P ρ =

∫ ∞
0

dtP L1 e
L0 t L1Pρ . (A7)

Tracing equation (A7) over the internal part, the master equation for the external part µ is obtained

d

dt
µ =

∫ ∞
0

dt Pe trI
(
L1 e

L0 tL1P ρ
)

=

∫ ∞
0

dt Pe trI
(
L1
1 e
L0 tL1

1P ρ
)

(A8)
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wherein it was used that trI(Pρ) = Pe trI(ρ), which follows directly from eq. (A6). The last step takes into account
that the L2

1 terms (originating from the Polaron transformation of the spontaneous decay terms) do not contribute
in the master equation, because

L2
1 µρss = 0, L2

1ρextρint = 0 (A9)

with ρss = |D〉〈D| and furthermore assuming equal γ-rates in L2
1.

Inserting (A5) into eq. (A3) the first order Liouvillian L1
1 can be written as

L1
1 ρ = −i

∑
n

[FnRn, ρ] = −i
∑
n

Fn Ln1,ext ρ+ Ln1,int ρRn (A10)

using the definitions Ln1,ext ρ = [Rn, ρ] and Ln1,int ρ = [Fn, ρ]. Thus, inserting (A10) into (A8) and noting that

trI(Ln1,int ρext ⊗ ρint) = ρext trI([Fn, ρext]) = 0 (A11)

one obtains

d

dt
µ = (−i)

∑
n

∫ ∞
0

dtPetrI
(
Fn Ln1,ext eL0 t L1

1 µρss
)

= (−1)
∑
n,n′

∫ ∞
0

dtPeLn1,exteL0,extt
{
Ln

′

1,ext µ trI
(
Fn e

L0,intt Fn′ ρss
)

+ µRn′ trI

(
Fn e

L0,int tLn
′

1,int ρss

)}
= (−1)

∑
n,n′

∫ ∞
0

dtPeLn1,ext eL0,ext t
{
Ln

′

1,ext µ 〈Fn(t)Fn′(0)〉ss + µRn′ 〈[Fn(t), Fn′(0)]〉ss
}
.

(A12)

with the internal operator two time-correlation functions 〈Fn(t)Fn′(0)〉ss = trI
(
Fn e

L0,intt Fn′ ρss
)

and 〈Fn′(0)Fn(t)〉ss =

trI
(
Fn e

L0,intt ρss Fn′
)
.

Furthermore, using that [exp(Lo,ext t), µ] = 0 and defining Rn(t) = eL0,ext tRn we end up with

d

dt
µ = (−1)

∑
n,n′

∫ ∞
0

dtPe {[Rn, [Rn′(t), µ]] 〈Fn(t)Fn′(0)〉ss + [Rn, µRn′(t)] [Fn(t), Fn′(0)]} . (A13)

Inserting the concrete expressions for the external and internal operators (see definitions below eq. (A5)) and applying
the projection Pe (eq. (A6)) the master equation for the external part turns out to be

d

dt
µ = S12(−ν)

(
b† µ b− b b† µ

)
+ S21(ν)

(
b µ b† − b† b µ

)
+ h.c. (A14)

wherein

Sij(ν) =

∫ ∞
0

dt eiνt 〈Fi(t)Fj(0)〉ss . (A15)

The time evolution of the vibrational state population (µ =
∑∞
n=0 pn |n〉〈n|) following from eq. (A14) takes the form

d

dt
pn = 〈n| d

dt
µ|n〉 = (n+ 1)A− pn+1 − [(n+ 1)A+ + nA−] pn + nA+ pn−1 (A16)

with the phonon number increasing / decreasing rates

A− = 2 Re(S21(ν)), A+ = 2 Re(S12(−ν)) . (A17)

Therefore the equation of motion for the phonon population expectation value 〈n〉 is found to be

d

dt
〈n〉 =

d

dt

∞∑
n=0

pn n =

∞∑
n=0

n
d

dt
pn = −(A− −A+) 〈n〉+A+ (A18)

with the steady state solution 〈n〉ss

〈n〉ss =
A+

A− −A+
. (A19)
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Thus it remains calculating the rates A− and A+, i.e. calculating the two-time correlation functions Sij(ν) (A15).
Using the Bloch equations (the internal equation of motion in zeroth order in the Lamb-Dicke parameter) and the
quantum regression theorem leads to the results in section IV.
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