New 3-mode squeezing operator and squeezed vacuum state in 3-wave mixing *

Xue-xiang $\mathrm{Xu}^{1,2}$, Hong-yi Fan ${ }^{1}$, Li-yun Hu^{2}, ,and Hong-chun Yuan ${ }^{1}$
${ }^{1}$ Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240, China
${ }^{2}$ College of Physics \& Communication Electronics, Jiangxi Normal University, Nanchang 330022, China

September 15, 2010

Abstract

In a 3 -wave mixing process occurring in some nonlinear optical medium when a_{1}^{\dagger} mode interacts with both a_{2}^{\dagger} mode and a_{3}^{\dagger} mode, we theoretically study the squeezing effect generated by the operator $S_{3} \equiv \exp \left[\mu\left(a_{1} a_{2}-a_{1}^{\dagger} a_{2}^{\dagger}\right)+\nu\left(a_{1} a_{3}-a_{1}^{\dagger} a_{3}^{\dagger}\right)\right]$. The new 3 -mode squeezed vacuum state in Fock space is derived, and the uncertainty relation for it is demonstrated, It turns out that S_{3} may exhibit enhanced squeezing. By virtue of the technique of integration within an ordered product (IWOP) of operators, we also derive S_{3} 's normally ordered expansion. The Wigner function of new 3 -mode squeezed vacuum state is calculated by using the Weyl ordering invariance under similar transformations.

PACS 42.50.-p - Quantum optics PACS 03.65.-w - Quantum mechanics

1 Introduction

Nowadays quantum entanglement is the focus of quantum information research and attracts many interests due to its wide applications in quantum communication [1, [2]. Entangled states have brought much attention and interests of physicists [3, 4]. The usual two-mode squeezed state, generated from a parametric amplifier [5], not only exhibits squeezing, but also quantum entanglement between the idle-mode and the signal-mode in frequency domain. Therefore, it is simultaneously a typical entangled state of continuous variable. Theoretically, the two-mode squeezed state is constructed by acting a two-mode squeezing operator $S_{2}=\exp \left[\lambda\left(a_{1} a_{2}-a_{1}^{\dagger} a_{2}^{\dagger}\right)\right]$ [6, 7] on the two-mode vacuum state $|00\rangle$, i.e. $S_{2}|00\rangle=\operatorname{sech} \lambda \exp \left[-a_{1}^{\dagger} a_{2}^{\dagger} \tanh \lambda\right]|00\rangle$, where λ is a squeezing parameter, and $a_{i}\left(a_{j}^{\dagger}\right)$ Bose annihilation (creation) operator satisfying $\left[a_{i}, a_{j}^{\dagger}\right]=\delta_{i j}$. Using the relation between Bose operators (a_{i}, a_{i}^{\dagger}) and the coordinate and momentum operators

$$
\begin{equation*}
Q_{i}=\frac{a_{i}+a_{i}^{\dagger}}{\sqrt{2}}, P_{i}=\frac{a_{i}-a_{i}^{\dagger}}{\sqrt{2} \mathrm{i}} \tag{1}
\end{equation*}
$$

one can recast S_{2} into the form

$$
\begin{equation*}
S_{2}=\exp \left[\mathrm{i} \lambda\left(Q_{1} P_{2}+Q_{2} P_{1}\right)\right] \tag{2}
\end{equation*}
$$

noting

$$
\begin{gather*}
{\left[Q_{1} P_{2}, Q_{2} P_{1}\right]=\mathrm{i}\left(Q_{2} P_{2}-Q_{1} P_{1}\right),} \\
{\left[Q_{1} P_{2}, \mathrm{i}\left(Q_{2} P_{2}-Q_{1} P_{1}\right)\right]=2 Q_{1} P_{2},} \tag{3}\\
{\left[Q_{2} P_{1}, \text { i }\left(Q_{2} P_{2}-Q_{1} P_{1}\right)\right]=-2 Q_{2} P_{1},}
\end{gather*}
$$

[^0]thus there involves a $S U(1,1)$ algebraic stricture. In the state $S_{2}|00\rangle$, the variances of the two-mode quadrature operators of light field,
\[

$$
\begin{equation*}
\mathfrak{X}=\frac{Q_{1}+Q_{2}}{2}, \mathfrak{P}=\frac{P_{1}+P_{2}}{2}, \tag{4}
\end{equation*}
$$

\]

satisfying the commutation relation $[\mathfrak{X}, \mathfrak{P}]=\frac{i}{2}$, exhibiting the standard squeezing, i.e.,

$$
\begin{equation*}
\langle 00| S_{2}^{\dagger} \mathfrak{X}^{2} S_{2}|00\rangle=\frac{1}{4} e^{-2 \lambda},\langle 00| S_{2}^{\dagger} \mathfrak{P}^{2} S_{2}|00\rangle=\frac{1}{4} e^{2 \lambda} \tag{5}
\end{equation*}
$$

which satisfy $(\Delta \mathfrak{X})(\Delta \mathfrak{P})=\frac{1}{4}$.
An interesting question naturally arises: if a_{1}^{\dagger} mode in a nonlinear optical medium, interacting with both a_{2}^{\dagger} mode and a_{3}^{\dagger} mode (e.g., a three-wave mixing), and the corresponding three-mode exponential operator is introduced as

$$
\begin{equation*}
S_{3} \equiv \exp \left[\mu\left(a_{1} a_{2}-a_{1}^{\dagger} a_{2}^{\dagger}\right)+\nu\left(a_{1} a_{3}-a_{1}^{\dagger} a_{3}^{\dagger}\right)\right] \tag{6}
\end{equation*}
$$

Using Eq.(1) we can recast S_{3} into the form

$$
\begin{equation*}
S_{3} \equiv \exp \left[\mathrm{i} \mu\left(Q_{2} P_{1}+Q_{1} P_{2}\right)+\mathrm{i} \nu\left(Q_{3} P_{1}+Q_{1} P_{3}\right)\right] \tag{7}
\end{equation*}
$$

where μ, ν are two different interaction parameters, then what is its squeezing effect for the 3-mode quadratures of light field?

To answer this question we must know what is the state $S_{3}|000\rangle$ ($|000\rangle$ is the 3-mode vacuum state) in Fock space, for this aim, we should know what is the normally ordered expansion of S_{3}. But how to disentangle the exponential operator S_{3} ? Because there is no simple $S U(1,1)$ algebraic structure among $Q_{2} P_{1}, Q_{1} P_{2}, Q_{3} P_{1}$ and $Q_{1} P_{3}$, the disentangling seems hard. Thus we turn to appeal to Dirac's coordinate representation and the technique of integration within an ordered product (IWOP) of operators [8, 9, 10, 11] to solve this problem. Our work is arranged as follows: firstly we derive the explicit form of $S_{3}|000\rangle$, then we demonstrate that it really satisfies the Heisenberg uncertainty relation and may exhibit squeezing enhancement. We also employ the technique of integration within an ordered product (IWOP) of operators to derive the normally ordered expansion of S_{3}. The Wigner function of $S_{3}|000\rangle$ is calculated by using the Weyl ordering invariance under similar transformations [12, 13, 14].

2 New 3-mode squeezed vacuum state

For the sake of convenience, we rewrite S_{3} in Eq.(7) as the following compact form,

$$
\begin{equation*}
S_{3}=\exp \left[\mathrm{i} Q_{i} \Lambda_{i j} P_{j}\right], i, j=1,2,3, \tag{8}
\end{equation*}
$$

where the repeated indices imply the Einstein summation notation, and

$$
\Lambda=\left(\begin{array}{lll}
0 & \mu & \nu \tag{9}\\
\mu & 0 & 0 \\
\nu & 0 & 0
\end{array}\right)
$$

thus

$$
e^{\Lambda}=\left(\begin{array}{ccc}
\cosh r & \cos \theta \sinh r & \sin \theta \sinh r \tag{10}\\
\cos \theta \sinh r & \sin ^{2} \theta+\cos ^{2} \theta \cosh r & \frac{\sin 2 \theta}{2}(\cosh r-1) \\
\sin \theta \sinh r & \frac{\sin 2 \theta}{2}(\cosh r-1) & \sin ^{2} \theta \cosh r+\cos ^{2} \theta
\end{array}\right),
$$

its inverse is

$$
e^{-\Lambda}=\left(\begin{array}{ccc}
\cosh r & -\cos \theta \sinh r & -\sin \theta \sinh r \tag{11}\\
-\cos \theta \sinh r & \sin ^{2} \theta+\cos ^{2} \theta \cosh r & \frac{\sin 2 \theta(\cosh r-1)}{2} \\
-\sin \theta \sinh r & \frac{\sin 2 \theta(\cosh r-1)}{2} & \sin ^{2} \theta \cosh r+\cos ^{2} \theta
\end{array}\right)
$$

where we have set

$$
\begin{equation*}
r=\sqrt{\mu^{2}+\nu^{2}}, \cos \theta=\frac{\mu}{r}, \sin \theta=\frac{\nu}{r} \tag{12}
\end{equation*}
$$

noting that Λ is a symmetric matrix. Using the Baker-Hausdorff formula,

$$
\begin{align*}
e^{A} B e^{-A} & =B+[A, B]+\frac{1}{2!}[A,[A, B]] \\
& +\frac{1}{3!}[A,[A,[A, B]]]+\cdots \tag{13}
\end{align*}
$$

we see that S_{3} causes the following transformation

$$
\begin{equation*}
S_{3}^{-1} Q_{k} S_{3}=\left(e^{-\Lambda}\right)_{k i} Q_{i}, S_{3}^{-1} P_{k} S_{3}=\left(e^{\Lambda}\right)_{k i} P_{i} \tag{14}
\end{equation*}
$$

It then follows that $S_{3}^{-1} a_{k} S_{3}=\left(e^{-\lambda \Lambda}\right)_{k i} a_{i}$, i.e.

$$
\begin{align*}
S_{3}^{-1} a_{1} S_{3} & =a_{1} \cosh r-a_{2}^{\dagger} \cos \theta \sinh r-a_{3}^{\dagger} \sin \theta \sinh r \\
S_{3}^{-1} a_{2} S_{3} & =-a_{1}^{\dagger} \cos \theta \sinh r+a_{2}\left(\sin ^{2} \theta+\cos ^{2} \theta \cosh r\right) \\
& +\frac{1}{2} a_{3}(\cosh r-1) \sin 2 \theta \tag{15}\\
S_{3}^{-1} a_{3} S_{3} & =-a_{1}^{\dagger} \sin \theta \sinh r+\frac{1}{2} a_{2}(\cosh r-1) \sin 2 \theta \\
& +a_{3}\left(\sin ^{2} \theta \cosh r+\cos ^{2} \theta\right) .
\end{align*}
$$

Noticing that $S_{3}^{\dagger}=S_{3}^{-1}$ and $S_{3}^{\dagger}(\mu, \nu)=S_{3}(-\mu,-\nu)$, from Eq.(15) we also have

$$
\begin{align*}
S_{3} a_{1} S_{3}^{-1} & =a_{1} \cosh r+a_{2}^{\dagger} \cos \theta \sinh r+a_{3}^{\dagger} \sin \theta \sinh r \\
S_{3} a_{2} S_{3}^{-1} & =a_{1}^{\dagger} \cos \theta \sinh r+a_{2}\left(\sin ^{2} \theta+\cos ^{2} \theta \cosh r\right) \\
& +\frac{1}{2} a_{3}(\cosh r-1) \sin 2 \theta \tag{16}\\
S_{3} a_{3} S_{3}^{-1} & =a_{1}^{\dagger} \sin \theta \sinh r+\frac{1}{2} a_{2}(\cosh r-1) \sin 2 \theta \\
& +a_{3}\left(\sin ^{2} \theta \cosh r+\cos ^{2} \theta\right)
\end{align*}
$$

For convenience to write, we set $\left.S_{3}|000\rangle=\| 000\right\rangle$. In order to obtain the explicit form of $\left.\| 000\right\rangle$, using Eq.(15) and $a_{1}|000\rangle=0$, we operate a_{1} on $\left.\| 000\right\rangle$ and obtain

$$
\begin{align*}
\left.a_{1} \| 000\right\rangle & =S_{3} S_{3}^{-1} a_{1} S_{3}|000\rangle \\
& =S_{3}\left(a_{1} \cosh r-a_{2}^{\dagger} \cos \theta \sinh r-a_{3}^{\dagger} \sin \theta \sinh r\right)|000\rangle \\
& =S_{3}\left(-a_{2}^{\dagger} \cos \theta \sinh r-a_{3}^{\dagger} \sin \theta \sinh r\right) S_{3}^{-1} S_{3}|000\rangle \\
& \left.=-S_{3}\left(a_{2}^{\dagger} \cos \theta \sinh r+a_{3}^{\dagger} \sin \theta \sinh r\right) S_{3}^{-1} \| 000\right\rangle, \tag{17}
\end{align*}
$$

then we continue to use Eq. (16) to derive

$$
\begin{align*}
\left.a_{1} \| 000\right\rangle & =-\left\{\left[a_{1} \cos \theta \sinh r+a_{2}^{\dagger}\left(\sin ^{2} \theta+\cos ^{2} \theta \cosh r\right)\right.\right. \\
& \left.+\frac{1}{2} a_{3}^{\dagger}(\cosh r-1) \sin 2 \theta\right] \cos \theta \sinh r \\
& +\left[a_{1} \sin \theta \sinh r+\frac{1}{2} a_{2}^{\dagger}(\cosh r-1) \sin 2 \theta\right. \\
& \left.\left.\left.+a_{3}^{\dagger}\left(\sin ^{2} \theta \cosh r+\cos ^{2} \theta\right)\right] \sin \theta \sinh r\right\} \| 000\right\rangle \\
& =-\left(a_{1} \sinh ^{2} r+a_{2}^{\dagger} \cos \theta \cosh r \sinh r\right. \\
& \left.\left.+\frac{1}{2} a_{3}^{\dagger} \sin \theta \sinh 2 r\right) \| 000\right\rangle \tag{18}
\end{align*}
$$

so we reach the equation

$$
\begin{equation*}
\left.\left.a_{1} \| 000\right\rangle=-\tanh r\left(a_{2}^{\dagger} \cos \theta+a_{3}^{\dagger} \sin \theta\right) \| 000\right\rangle . \tag{19}
\end{equation*}
$$

Similarly, operating a_{2} on $\left.\| 000\right\rangle$ and using Eqs.(15) and (16) yields

$$
\begin{align*}
\left.a_{2} \| 000\right\rangle & =S_{3} S_{3}^{-1} a_{2} S_{3}|000\rangle=S_{3}\left(-a_{1}^{\dagger} \cos \theta \sinh r\right)|000\rangle \\
& \left.=S_{3}\left(-a_{1}^{\dagger} \cos \theta \sinh r\right) S_{3}^{-1} \| 000\right\rangle \\
& =-\left(a_{1}^{\dagger} \cosh r+a_{2} \cos \theta \sinh r\right. \\
& \left.\left.+a_{3} \sin \theta \sinh r\right) \cos \theta \sinh r \| 000\right\rangle, \tag{20}
\end{align*}
$$

which leads to

$$
\begin{align*}
& \left.\left[a_{2}\left(1+\cos ^{2} \theta \sinh ^{2} r\right)+\frac{1}{2} a_{3} \sin 2 \theta \sinh ^{2} r\right] \| 000\right\rangle \\
& \left.=-\frac{1}{2} a_{1}^{\dagger} \cos \theta \sinh 2 r \| 000\right\rangle . \tag{21}
\end{align*}
$$

On the other hand, operating a_{3} on $\left.\| 000\right\rangle$ and using Eqs.(15) and (16) yields

$$
\begin{align*}
\left.a_{3} \| 000\right\rangle & =S_{3} S_{3}^{-1} a_{3} S_{3}|000\rangle=S_{3}\left(-a_{1}^{\dagger} \sin \theta \sinh r\right)|000\rangle \\
& \left.=S_{3}\left(-a_{1}^{\dagger} \sin \theta \sinh r\right) S_{3}^{-1} \| 000\right\rangle \\
& =-\left(a_{1}^{\dagger} \cosh r+a_{2} \cos \theta \sinh r\right. \\
& \left.\left.+a_{3} \sin \theta \sinh r\right) \sin \theta \sinh r \| 000\right\rangle, \tag{22}
\end{align*}
$$

i.e.,

$$
\begin{align*}
& \left.\left[a_{3}\left(1+\sin ^{2} \theta \sinh ^{2} r\right)+\frac{1}{2} a_{2} \sin 2 \theta \sinh ^{2} r\right] \| 000\right\rangle \\
& \left.=-\frac{1}{2} a_{1}^{\dagger} \sin \theta \sinh 2 r \| 000\right\rangle . \tag{23}
\end{align*}
$$

Combining Eqs.(21) and (23) we have

$$
\begin{equation*}
\left.\left.a_{2} \| 000\right\rangle=-a_{1}^{\dagger} \tanh r \cos \theta \| 000\right\rangle, \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left.a_{3} \| 000\right\rangle=-a_{1}^{\dagger} \tanh r \sin \theta \| 000\right\rangle . \tag{25}
\end{equation*}
$$

From Eqs.(19),(24) and (25), we may predict that $\| 000\rangle$ has the following explicit form:

$$
\begin{equation*}
\| 000\rangle=N \exp \left[-\left(a_{2}^{\dagger} \cos \theta+a_{3}^{\dagger} \sin \theta\right) a_{1}^{\dagger} \tanh r\right]|000\rangle, \tag{26}
\end{equation*}
$$

where N is the normalization constant, which can be determined by $\langle 000 \| 000\rangle=1$, and we calculate $N=\operatorname{sech} r$.

3 Squeezing property and quantum fluctuation in \|000

Squeezing is an important phenomenon in quantum theory and has many applications in various areas in quantum optics and quantum information [15]. In this section, we examine the quadrature squeezing effects of $\| 000\rangle$. The quadratures in the 3 -mode case are defined as

$$
\begin{equation*}
X_{1}=\frac{1}{\sqrt{6}} \sum_{i=1}^{3} Q_{i}, X_{2}=\frac{1}{\sqrt{6}} \sum_{i=1}^{3} P_{i}, \tag{27}
\end{equation*}
$$

which satisfy the relation $\left[X_{1}, X_{2}\right]=\frac{i}{2}$. Their variances are $\left(\Delta X_{i}\right)^{2}=\left\langle X_{i}^{2}\right\rangle-\left\langle X_{i}\right\rangle^{2}, i=1,2$. Noting the expectation values of X_{1} and X_{2} in the state $\left.\| 000\right\rangle$ is $\left\langle X_{1}\right\rangle=\left\langle X_{2}\right\rangle=0$. With the help of Eq.(15), we can calculate that the corresponding variances in the state $\| 000\rangle$: (noting Λ is symmetric)

$$
\begin{align*}
\left(\triangle X_{1}\right)^{2} & =\langle 000| S_{3}^{-1} X_{1}^{2} S_{3}|000\rangle \\
& =\frac{1}{6} \sum_{i=1}^{3} \sum_{j=1}^{3}\left(e^{-\Lambda}\right)_{k i}\left(e^{-\Lambda}\right)_{j l}\langle 000| Q_{k} Q_{l}|000\rangle \\
& =\frac{1}{12} \sum_{i=1}^{3} \sum_{j=1}^{3}\left(e^{-\Lambda}\right)_{k i}\left(e^{-\Lambda}\right)_{j l}\langle 000| a_{k} a_{l}^{\dagger}|000\rangle \\
& =\frac{1}{12} \sum_{i=1}^{3} \sum_{j=1}^{3}\left(e^{-\Lambda}\right)_{k i}\left(e^{-\Lambda}\right)_{j l} \delta_{k l} \\
& =\frac{1}{12} \sum_{i, j}^{3}\left(e^{-2 \Lambda}\right)_{i j} \tag{28}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\triangle X_{2}\right)^{2}=\langle 000| S_{3}^{-1} X_{2}^{2} S_{3}|000\rangle=\frac{1}{12} \sum_{i, j}^{3}\left(e^{2 \Lambda}\right)_{i j} \tag{29}
\end{equation*}
$$

The explicit form of the matrices $e^{2 \Lambda}$ and $e^{-2 \Lambda}$ can be derived from Eq.(10) and (11), so we can obtain

$$
\begin{align*}
\left(\triangle X_{1}\right)^{2} & =\frac{1}{12}[(2 \cosh 2 r+1)+\sin 2 \theta(\cosh 2 r-1) \\
& +2(\cos \theta+\sin \theta) \sinh 2 r] \tag{30}
\end{align*}
$$

and

$$
\begin{align*}
\left(\triangle X_{2}\right)^{2} & =\frac{1}{12}[(2 \cosh 2 r+1)+\sin 2 \theta(\cosh 2 r-1) \\
& -2(\cos \theta+\sin \theta) \sinh 2 r] \tag{31}
\end{align*}
$$

We can successfully verify

$$
\begin{align*}
& \left(\triangle X_{1}\right)\left(\triangle X_{2}\right) \\
& =\frac{1}{12} \sqrt{(4 \cosh 2 r+4)+\left(1-2 \sinh ^{2} r \sin 2 \theta\right)^{2}} \\
& \geqslant \frac{1}{12} \sqrt{(4 \cosh 2 r+4)+\left(1-2 \sinh ^{2} r\right)^{2}} \\
& =\frac{1}{12} \sqrt{\frac{1}{2} \cosh 4 r+\frac{17}{2}} \geqslant \frac{1}{4} \tag{32}
\end{align*}
$$

which confirms the uncertainty relation of quantum mechanics.
To see the trend of squeezing effects in the $X_{1}-$ or X_{2}-direction, we plot $\left(\Delta X_{1}\right)^{2}$ and $\left(\Delta X_{2}\right)^{2}$ as the function of parameter μ for different ν in Fig.1. When $\nu=0$, it exhibits the usual two mode squeezing effect depending on the varying $\mu,\left(\Delta X_{1}\right)^{2}$ increases accompanying $\left(\Delta X_{2}\right)^{2}$ decreases; when $\nu=0.5,\left(\Delta X_{1}\right)^{2}$ increases more than the case of $\nu=0$, which exhibits enhanced squeezing in certain domain of μ. In Fig.2, we plot the uncertainty value $\left(\triangle X_{1}\right)\left(\triangle X_{2}\right)$ as the function of r for different θ.

4 Normally ordered form of S_{3}

We calculate the normally ordered form (denoted by : :) of S_{3} by inserting the completeness relation of coherent state

$$
\begin{equation*}
S_{3}=\int \frac{d^{2} z_{1} d^{2} z_{2} d^{2} z_{3}}{\pi^{3}} S_{3}\left|z_{1} z_{2} z_{3}\right\rangle\left\langle z_{1} z_{2} z_{3}\right| \tag{33}
\end{equation*}
$$

where $\left|z_{1} z_{2} z_{3}\right\rangle$ is the three-mode coherent state and $\left|z_{i}\right\rangle=\exp \left[-\frac{\left|z_{i}\right|^{2}}{2}+z_{i} a_{i}^{\dagger}\right]\left|0_{i}\right\rangle, i=1,2,3$.
Using the relations in Eqs. (15) and (16), we have the explicit relation of $S_{3}\left|z_{1} z_{2} z_{3}\right\rangle$

$$
\begin{align*}
& S_{3}\left|z_{1} z_{2} z_{3}\right\rangle \\
& =\exp \left(-\sum_{i=1}^{3} \frac{\left|z_{i}\right|^{2}}{2}\right) S_{3} \exp \left(z_{1} a_{1}^{\dagger}+z_{2} a_{2}^{\dagger}+z_{3} a_{3}^{\dagger}\right) S_{3}^{-1} S_{3}|000\rangle \\
& =\frac{1}{\cosh r} \exp \left(-\sum_{i=1} \frac{\left|z_{i}\right|^{2}}{2}+z_{1} z_{2} \cos \theta \tanh r+z_{1} z_{3} \sin \theta \tanh r\right) \\
& \times \exp \left\{\frac { 1 } { \operatorname { c o s h } r } \left[a_{1}^{\dagger} z_{1}+\left(a_{2}^{\dagger}\left(\sin ^{2} \theta \cosh r+\cos ^{2} \theta\right)-\frac{1}{2} a_{3}^{\dagger}(\cosh r-1) \sin 2 \theta\right) z_{2}\right.\right. \\
& \left.\left.+\left(a_{3}^{\dagger}\left(\sin ^{2} \theta+\cos ^{2} \theta \cosh r\right)-\frac{1}{2} a_{2}^{\dagger}(\cosh r-1) \sin 2 \theta\right) z_{3}\right]\right\} \\
& \times \exp \left[-a_{1}^{\dagger} \tanh r\left(a_{2}^{\dagger} \cos \theta+a_{3}^{\dagger} \sin \theta\right)\right]|000\rangle \tag{34}
\end{align*}
$$

Substituting Eq.(34) into Eq.(33), noticing that $|000\rangle\langle 000|=: \exp \left(-a_{1}^{\dagger} a_{1}-a_{2}^{\dagger} a_{2}-a_{3}^{\dagger} a_{3}\right)$: , and using the following formula

$$
\begin{equation*}
\int \frac{d^{2} z}{\pi} \exp \left(\zeta|z|^{2}+\xi z+\eta z^{*}\right)=-\frac{1}{\zeta} e^{-\frac{\xi \eta}{\zeta}}, \quad \operatorname{Re}(\zeta)<0 \tag{35}
\end{equation*}
$$

as well as the IWOP technique, we can obtain the explicit normally ordered expansion of S_{3} :

$$
\begin{align*}
S_{3} & =\frac{1}{\cosh r} \exp \left[-a_{1}^{\dagger}\left(a_{2}^{\dagger} \cos \theta+a_{3}^{\dagger} \sin \theta\right) \tanh r\right] \\
& \times: \exp \left[\frac { 1 - \operatorname { c o s h } r } { \operatorname { c o s h } r } \left(a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2} \cos ^{2} \theta\right.\right. \\
& \left.\left.+a_{3}^{\dagger} a_{3} \sin ^{2} \theta+\frac{1}{2} a_{2} a_{3}^{\dagger} \sin 2 \theta+\frac{1}{2} a_{2}^{\dagger} a_{3} \sin 2 \theta\right)\right]: \\
& \times \exp \left[a_{1}\left(a_{2} \cos \theta+a_{1} \sin \theta\right) \tanh r\right] \tag{36}
\end{align*}
$$

5 Wigner function of $\| 000\rangle$

Wigner distribution function of quantum states [16, 17, 18] is widely studied in quantum statistics and quantum optics and is very important tool for a global description of nonclassical effect in the quantum system, which can be measured by various means such as photon counting experiment and homodyne tomography. Now we derive the Wigner function of $\| 000\rangle$ by using a new method.

Recalling that in Ref. [14] we have introduced the Weyl ordering form of single-mode Wigner operator $\Delta_{1}\left(q_{1}, p_{1}\right)$,

$$
\begin{equation*}
\Delta_{1}\left(q_{1}, p_{1}\right)=: \delta\left(q_{1}-Q_{1}\right) \delta\left(p_{1}-P_{1}\right): \tag{37}
\end{equation*}
$$

where the symbols:: denote the Weyl ordering, while its normal ordering form is

$$
\begin{equation*}
\Delta_{1}\left(q_{1}, p_{1}\right)=\frac{1}{\pi}: \exp \left[-\left(q_{1}-Q_{1}\right)^{2}-\left(p_{1}-P_{1}\right)^{2}\right]: . \tag{38}
\end{equation*}
$$

Thus the Wigner function for $|0\rangle$ can be easily expressed as $\langle 0| \Delta_{1}\left(q_{1}, p_{1}\right)|0\rangle=\frac{1}{\pi} \exp \left(-q_{1}^{2}-p_{1}^{2}\right)$. Note that the order of Bose operators a_{1} and a_{1}^{\dagger} within a normally ordered product (or a Weyl ordered product) can be permuted. That is to say, even though $\left[a_{1}, a_{1}^{\dagger}\right]=1$, we can have : $a_{1} a_{1}^{\dagger}:=: a_{1}^{\dagger} a_{1}$: and : $a_{1} a_{1}^{\dagger}:={ }^{\prime} a_{1}^{\dagger} a_{1}:$. The Weyl ordering of operators has a remarkable property, i.e., the Weylordering invariance of operators under similar transformations, which means

$$
\begin{equation*}
U_{:}^{:}(\circ \circ \circ)_{:}^{:} U^{-1}=: U(\circ \circ \circ) U^{-1}: \tag{39}
\end{equation*}
$$

as if the "fence" : : did not exist when U operates.
For 3-mode case, the Weyl ordering form of the Wigner operator is

$$
\begin{equation*}
\Delta_{3}(\mathbf{q}, \mathbf{p})=: \delta(\mathbf{q}-\mathbf{Q}) \delta(\mathbf{p}-\mathbf{P}): \tag{40}
\end{equation*}
$$

where $\mathbf{Q}=\left(Q_{1}, Q_{2}, Q_{3}\right)^{T}, \mathbf{P}=\left(P_{1}, P_{2}, P_{3}\right)^{T}, \mathbf{q}=\left(q_{1}, q_{2}, q_{3}\right)^{T}$ and $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}\right)^{T}$. Then according to the Weyl ordering invariance under similar transformations and using Eq.(14), we have

$$
\begin{align*}
& S_{3}^{-1} \Delta_{3}(\mathbf{q}, \mathbf{p}) S_{3} \\
& =S_{3}^{-1}: \delta(\mathbf{q}-\mathbf{Q}) \delta(\mathbf{p}-\mathbf{P}): S_{3} \\
& =\vdots\left(q_{k}-\left(e^{-\Lambda}\right)_{k i} Q_{i}\right) \delta\left(p_{k}-\left(e^{\Lambda}\right)_{k i} P_{i}\right) \\
& \vdots \\
& = \\
& \vdots \tag{41}\\
& = \\
& = \\
& \vdots\left(\left(e^{\Lambda}\right)_{k i} q_{i}-Q_{k}\right) \delta\left(\left(e^{\prime}-\mathbf{Q}\right)_{k i} p_{i}-P_{k}\right) \delta\left(\mathbf{p}^{\prime}-\mathbf{P}\right): \\
& =\Delta_{3}\left(\mathbf{q}^{\prime}, \mathbf{p}^{\prime}\right)
\end{align*}
$$

where $q_{k}^{\prime}=\left(e^{\Lambda}\right)_{k i} q_{i}, p_{k}^{\prime}=\left(e^{-\Lambda}\right)_{k i} p_{i}$. Thus the Wigner function of $\left.\| 000\right\rangle$ is

$$
\begin{align*}
& \langle 000| S_{3}^{-1} \Delta_{3}(\mathbf{q}, \mathbf{p}) S_{3}|000\rangle \\
& =\langle 000| \Delta_{3}\left(\mathbf{q}^{\prime}, \mathbf{p}^{\prime}\right)|000\rangle \\
& =\frac{1}{\pi^{3}} \exp \left(-\mathbf{q}^{T} e^{2 \Lambda} \mathbf{q}-\mathbf{p}^{T} e^{-2 \Lambda} \mathbf{p}\right) \tag{42}
\end{align*}
$$

where $e^{2 \Lambda}$ and $e^{-2 \Lambda}$ are given by e^{Λ} in Eq. (10) and $e^{-\Lambda}$ in Eq.(11), respectively.
In summary, we have shown that the operator $S_{3} \equiv \exp \left[\mu\left(a_{1} a_{2}-a_{1}^{\dagger} a_{2}^{\dagger}\right)+\nu\left(a_{1} a_{3}-a_{1}^{\dagger} a_{3}^{\dagger}\right)\right]$ is a new 3 -mode squeezed operator by calculating the quantum fluctuation for 3 -mode quadratures. We have obtained the new 3 -mode squeezed vacuum state and derived the normally ordered expansion of S_{3}. The IWOP technique brings convenience in our derivation.

References

[1] Nielsen M. A. and Chuang I. L., Quantum Computation and Quantum Information (Cambridge University Press) 2000.
[2] Bouwmeester D. et al., The Physics of Quantum Information (Springer, Berlin) 2000.
[3] Fan H.-y., and Yu G.-c. Phys. Rev. A 65 (2002) 033829.
[4] Fan H.-y. and Klauder J. R., Phys. Rev. A, 49 (1994) 704.
[5] Mandel L. and Wolf E., Optical Coherence and Quantum Optics (Cambridge:Cambridge University Press) 1995.
[6] Loudon R. and Knight P. L., J. Mod. Opt., 34 (1987) 709.
[7] Dodonov V. V., J. Opt. B: Quantum Semiclass. Opt., 4 (2002) R1.
[8] Fan H.-y., Europhys. Lett., 23 (1993) 1.
[9] Fan H.-y., Europhys. Lett., 17 (1992) 285; 19 (1992) 443.
[10] Hu L.-y. and Fan H.-y.,Europhys. Lett., 85 (2009) 60001.
[11] Fan H.-y., J. Opt. B: Quantum Semiclass. Opt., 5 (2003) R147.
[12] Fan H.-y., J. Phys. A, 25 (1992) 3443; Fan H.-y. and Fan Y., Int. J. Mod. Phys. A, 17 (2002) 701.
[13] Fan H.-y., Mod. Phys. Lett. A, 15 (2000) 2297.
[14] Fan H.-y., Ann. Phys. (N.Y.), 323 (2008) 500; 1502.
[15] El-Orany F. A. A., et al., Opt. Commu. 283 (2010) 3158
[16] Wigner E. P., Phys. Rev., 40 (1932) 749.
[17] O'Connell R. F. and Wigner E. P., Phys. Lett. A, 83 (1981) 145.
[18] Schleich W., Quantum Optics (Wiley, New York) 2001.

Figure 1: (Colour online) The quantity $\left(\triangle X_{1}\right)^{2}$ and $\left(\triangle X_{2}\right)^{2}$ as the function of squeezing parameter μ for different case $\nu=0$ and $\nu=0.5$.

Figure 2: (Colour online) The uncertainty value $\left(\Delta X_{1}\right)\left(\Delta X_{2}\right)$ as the function of r for different θ.

[^0]: *Work was supported by the National Natural Science Foundation of China under grants 10775097 and the Key Programs Foundation of Ministry of Education of China (No. 210115).
 †E-mail:hlyun2008@126.com.

