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Entanglement, discord and the power of quantum computing
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It is impossible to implement an entangling bipartite quantum operation with local operations and
classical communication (LOCC) without a shared entanglement. When the operation is restricted
to act on unentangled input states that are transformed into unentangled outputs, it may seem that
the implementation by LOCC alone is possible. We present an example where this assertion fails.
Non-zero quantum discord, which is a measure of quantumness of correlations even in the absence
of entanglement, may indicate the failure of the LOCC implementation without entanglement.

The question “what makes the quantum computer
tick” goes back to the early discussions of quantum al-
gorithms [1]. The issue at stake is weather entanglement
is essential for having a speed-up over the classical algo-
rithms, or is it just a byproduct of the quantum super-
position [2, 3].

On the one hand, the universal quantum computation
is possible if a certain set of one-qubit operations and
a two-qubit controlled-NOT (CNOT) gate can be per-
formed [2]. This gate is entangling, i.e it turns a generic
non-entangled input into an entangled output. More-
over, any pure-state quantum computation with only a
restricted amount of entanglement can be efficiently sim-
ulated classically. This also applies to the simulations of
low-entanglement states of various many-body systems
[4].

On the other hand, the algorithm DQC1 [5] presented
us with an example of a quantum speed-up without en-
tanglement, and also drew additional attention to the
hierarchy of correlations in quantum mechanics. Partic-
ularly, presence of quantum correlations without entan-
glement is captured by quantum discord [6], which we
will use in the following. More precisely, there is no bi-
partite entanglement in the system at any stage of the
DQC1 execution, but the final state has a non-zero dis-
cord between the control qubit and the rest.

Our goal is to show that there is some “implicit entan-
glement” hidden in the operation of two-qubit gates, even
if they operate on a restricted set L of unentangled input
states that are transformed into unentangled outputs. To
this end we consider a distributed implementation of the
gate, where two parties A(lise) and B(ob) execute it by
local operations and some shared resources. We show
that under quite general assumptions a two-qubit gate
may be implemented by-locally even on such L only if
Alice and Bob share some entanglement. We first intro-
duce the relevant properties of the discord, then present
a simple example and follow with some general results.

Discord [6] aims to quantify quantum correlations in a
given bipartite state through the difference in quantum
generalizations of two expressions for the classical mutual
information,

I(A : B) = H(A) +H(B)−H(AB), (1)

and

J(A : B) = H(A)−H(A|B) = H(B)−H(B|A), (2)

where H(X) is the Shannon entropy of the probability
distribution X , H(B|A) the conditional entropy of B
given A, and H(AB) is a joint probability distribution
[7]. The two classical expressions are equivalent. Quan-
tum measurement procedure M on a state ρ leads to a
probability distribution XM

ρ . The von Neumann entropy
S(ρX) = −tr ρX log ρX replaces the Shannon entropy [8],
but the conditional entropy now explicitly depends on
the measurement procedure [6, 9] and the optimization
goal it tries to achieve. For our purposes it is enough to
assume that the measurement ΠA performed by Alice is
represented by a complete set of orthogonal projections,
and the optimization is chosen to lead to the discord
measure D2 [10, 11]. Then

JΠ
A

2 (ρ)2 := S(ρB)− S(ρB|ΠA) + S(ρA)− S(ρΠA), (3)

where the averaged post-measurement state of A is

ρΠA =
∑

a

paΠ
a
A, pa = tr ρAΠ

a
A, (4)

the conditional entropy of the post-measurement state

S(ρB|ΠA) :=
∑

a

paS(ρB|Πa

A
). (5)

is the weighted average of the entropies of the states

ρB|Πa

A
= (ΠaA ⊗ 1BρΠaA ⊗ 1B)/pa, (6)

that correspond to the individual outcomes, so the dis-
cord is

DA
2 (ρ) := min

Π
[H(AΠ

ρ ) + S(ρB|Π
A)]− S(ρAB). (7)

Discord has a number of interesting properties and ap-
plications [10–13]. We will use the following property
[11]:

DΠA

2 (ρ) = S(ρΠ
A

)− S(ρAB), (8)

for any set ΠA regardless of its optimality. Often we will
speak just of the discord, without specifying its type.
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This is justified since all types of discord vanish simulta-
neously [11].

Example. First we consider a CNOT gate. It can be
performed bilocally by Alice and Bob if they share one
ebit of entanglement per gate use [14]. Now we inves-
tigate a possibility of a bilocal implementation of this
gate on a restricted set of states without a shared en-
tanglement. Alice and Bob are restricted to arbitrary
local operations and measurements on their respective
qubits, and allowed to exchange unlimited classical mes-
sages. While it is just the standard LOCC paradigm,
we point out one feature of the reduced dynamics of the
system that is important in the following.

The measurements are given by arbitrary local positive
operator-valued measures (POVM), so Alice’s measure-
ment is given by a family of positive operators of the
form EAµ = ΛAµ ⊗ 1B, ΛAµ > 0,

∑

ΛAµ = 1A. At each
stage the operations and measurements are integrated
together with the help of ancilla, which can be further di-
vided into two part A′A′′, as in [15]. The measurement is
accomplished in two stages: first some unitary operation
UAA′A′′ is applied the entire system, and then a standard
projective measurement Πa, a = 1, . . .dimA′′, ΠaΠb =
Πaδab is applied to the system A′′. Depending on the out-
come, a unitary UAA′(a) is applied to the remaining part
AA′. While the entire evolution is completely positive,
i.e. ρinA 7→ ρoutA =

∑

µKµρ
in
AK

†
µ for some set of Kraus ma-

trices Kµ [2], the evolution of a post-measurement state

ρA|Πa 7→ ρoutA = trA′UAA′(a)ρ′AA′U
†
AA′(a) generally de-

pends on the correlations between A and A′ and may be
not completely positive [16].

Alice and Bob share an unknown state from the known
list L and try to implement the CNOT gate by LOCC.
It is obvious that if the set of states in question is locally
distinguishable, then the the gate can be LOCC imple-
mented. It is also obvious that if its action creates en-
tanglement, the implementation fails. However, absence
of entanglement is not sufficient.

Consider the set L in Table I.

TABLE I: Four inputs/outputs for the CNOT gate

# State # State

a |1〉|Y+〉 → i|1〉|Y−〉 c |Y+〉|X−〉 → |Y−〉|X−〉

b |0〉|Y+〉 → |0〉|Y+〉 d |Y+〉|X+〉 → |Y+〉|X+〉

Here σy |Y±〉 = ±|Y±〉, σx|X±〉 = ±|X±〉, where σx,y,z
are Pauli matrices.

We now demonstrate that the ability to implement the
CNOT gate on L without shared entanglement allows un-
ambiguously discriminate between these non-orthogonal
states using just one input copy, which is impossible [8].
Without specifying the local operations of Alice and Bob
we classify them according to their action on the sate
|Y+〉. An operation Φ is flipping (F) if up to a phase

Φ(|Y+〉) = |Y−〉, non-flipping (N) if Φ(|Y+〉) = |Y+〉, and
undetermined otherwise.
Knowing type of the operation allows Alice and Bob

to narrow down the list of possible inputs: e.g., Bob’s
F is incompatible with having input b, while for Alice’s
operation not to have a definite type excludes both c and
d. The resulting list of possible inputs if both operations
are of a definite type is presented in Table II. If one of
the operations is neither F or N, then the type of another
operations allows to determine the input uniquely.

TABLE II: Possible inputs

Alice Bob

F N

F

{

a c

} {

c

b

}

N

{

a

d

} {

b d

}

Any pair of outputs can be reset to the original in-
puts by local unitaries and re-sent through the gate. For
example, if the overall operation was of FF type (identi-
fying the inputs as either a or c), the operation σAz ⊗ σBx
transforms the outputs ψ′

a = |1〉|Y−〉 and ψ
′
c = |Y−〉|X−〉

into the inputs ψa and ψc.
The operations that implement the gate this time may

be of the same type as before, or different. If the gate is
such that there is a finite probability of having a different
operation type, it will be realized after a finite number of
trials. This other type (FN or NF in the above example)
will uniquely specifies the input. If a particular pair of
inputs is processed always by operations of the same type,
then the gate can be used to unambiguously distinguish
between one state from this pair and at least one of the
two remaining states in a single trial. �

From this point of view, the role of entanglement in the
bilocal implementation of the gate is to make impossible
for Alice and Bob identify the effects of their operations.
It is obvious that if only the inputs a and b should

be processed, the gate can be implemented by LOCC.
What about three inputs? A criterion that we prove be-
low states that (under some assumptions about the gate
action) a bilocal implementation without entanglement
is impossible if the input states or any of their random
mixtures have a non-zero discord

D2(ρ) := min[DA
2 (ρ), D

B
2 (ρ)] 6= 0. (9)

Unlike the exact value of discord that can be calculated
analytically only in special cases, it is straightforward to
check weather the discord is zero or not [11]. Moreover,
sates of zero discord (say, DA

2 = 0) are of the form

ρ =
∑

a

paΠ
a
A ⊗ ρaB, pa ≥ 0,

∑

a

pa = 1. (10)
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Now we specify precisely the implementations of a gate
U we consider.
Definition. A bilocal implementation G of a gate U

on some (finite) set of unentangled states L = {ρini }
N
i=1

(and their convex combinations) is a completely positive
map that is implemented by local operations on the sub-
systems A and B, performed separately, and assisted by
unlimited classical communication such that for any state
ρi ∈ L

G(ρini ) =
∑

k

Kkρ
in
i K

†
k ≡ UρiU

† =: ρouti . (11)

Successful implementation of the gate on pure inputs
guaranties that it is “reversible”, with dual maps [17]
playing the role of the inverse.
Lemma 1. The dual map G+(ρ) :=

∑

kK
†
kρKk satis-

fies

ρini = G+(ρouti ) (12)

for all pure input states ρψ ∈ L.
Proof: Since ρoutψ = G(ρinψ ) = UρψU

† is pure, using the
Hilbert-Schmidt inner product we see that

1 = 〈ρoutψ , ρoutψ 〉 = 〈ρinψ , G
+(UρinψU

†)〉, (13)

hence G+ acts as an inverse for all allowed pure inputs
and their convex combinations. �

It is straightforward to see that if we restrict local op-
erations to projective measurements and unitaries, then
the zero discord becomes a necessary criterion for such
implementation’s success. Namely, since entropies of ini-
tial and final states are the same, but a local measure-
ment on a state of non-zero discord increases it according
to Eq. (8), we reach a contradiction.
Now we consider a bilocal implementation of a two-

qubit gate. We assume that the maximally mixed state
is an allowed input (i.e. the gate is unital, G(1) = 1),
and also there is one pure input that we can write as
|00〉. We also restrict the allowed local operations to a
completely positive maps (this is realized, in particular,
if at each stage the ancilla is entirely consumed in the
measurement, i.e., dimA′ = 0).
Lemma 2. If a set L contains one pure product state

(00〉) and the maximally mixed sate (1/4), and the gate
U is implemented by local operations( restricted to arbi-
trary POVM and CPmaps) and classical communication,
then all other allowed inputs and their arbitrary convex
combinations satisfy DA

2 (ρ
in) = DB

2 (ρ
in) = 0.

Proof: Introduce a CP map Φ(ρ) = G+
(

G(ρ)
)

. It is
a unital map, because G+ is unital [17]. According to
Lemma 1 its application to ρ00 := |00〉〈00| gives Φ(ρ00) =
ρ00. Assume that Alice is the first party to perform a
measurement on the inputs, so consider a state ρ10 :=
|10〉〈10| (not necessarily an allowed input). Since Φ is
unital,

Φ(1− ρ00) = Φ(ρ01 + ρ10 + ρ11) = 1− ρ00, (14)

so 〈0|Φ(ρ10|0〉 = 0, and similarly for two other states in
the above equation. As a result, the positivity of Φ(ρ10)
ensures that it has a disjoint support from ρ00. Sep-
arate the map Φ into Alice’s first measurement {ΛAµ }

and everything else. Evolution of any state ρin can be
schematically written as ρin 7→ ρµ 7→ ρout 7→ ρ′, with
ρout = UρinU † for ρin ∈ L, and ρ′ = ρin for pure states
in L. Since ρ′ = Φµ(ρ

µ) for some CP map Φµ by the
lemma’s assumption, and CP maps cannot improve state
distinguishability [2, 18], the post-measurement states
ρµ00 and ρµ10 should have disjoint supports for any out-
come µ. Recall that in dealing with these two states
Alice measures pure qubits while Bob’s sides are identi-
cal. Hence Alice’s measurement reduces to the projective
measurement in the 0,1 basis,

ΛAa = ΠAa = |a〉〈a|A, a = 0, 1. (15)

Assume that the states with pure reduced reduced den-
sity matrices ρinA which are not ρ00 or ρ10, or mixed states
of non-zero discord are allowed inputs. For pure states
ρinA the average post-measurement entropy becomes non-
zero [2, 8]. For mixed states with DA

2 6= 0 Eq. (8) en-

sures that S(ρΠ
A

) > S(ρin). However, projective mea-
surements are repeatable, and the second measurement
by Alice will certainly give the same result and induce
no change in the state. Hence, if the state ρin ∈ L, then
G(ρain) = G(ρin) = UρinU †. Since both unitary and unital
CP maps preserve entropy [2, 17], we reach a contradic-
tion.
In case the first measurement is performed by Bob we

consider the state |01〉 and use the discord DB
2 . �

Even if the scheme we considered is not the most
general one, it is possible to draw several conclusions.
First, absence of entanglement in both input and out-
put does not automatically enable a remote implemen-
tation by LOCC. Second, a discrepancy between local
and global information content of non-entangled states
(which is captured by the discord D2 in our setting and
may have to be generalized in more sophisticated scenar-
ios) requires entanglement for their processing. It would
be an interesting to quantify the minimal amount of en-
tanglement required for the gate implementations in dif-
ferent scenarios and relate it to the discord or other suit-
able measures.
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