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Abstract

The notion of random self-decomposability is generalized further. The notion

is then extended to non-negative integer-valued distributions.
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1. Introduction

Recently the notion of random self-decomposability (RSD) has been in-

troduced by Kozubowski and Podgórski [4] generalizing SD. They showed

that if a CF is RSD then it is both SD and geometrically infinitely divisi-

ble (GID). Satheesh and Sandhya [9] generalized this notion to Harris-RSD

(HRSD) and showed that if a CF isHRSD then it is both SD and Harris-ID

(HID). With this nomenclature RSD is geometric-RSD (GRSD). Here we

explore further generalizations of HRSD viz. NRSD and ϕRSD, motivated

by the elegent Proposition 2.3 in Kozubowski and Podgórski [4].
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We need the notion of N -infinitely divisible (N ID) laws here. Let ϕ be a

Laplace transform (LT) that is also a standard solution to the Poincare equa-

tion, ϕ(t) = P (ϕ(θt)), θ ∈ Θ where P is a probability generating function

(PGF) (see Gnedenko and Korolev, [3], p.140).

Definition 1.1. Let ϕ be a standard solution to the Poincare equation and

Nθ a positive integer-valued random variable (r.v.) having finite mean with

PGF Pθ(s) = ϕ(1
θ
ϕ−1(s)), θ ∈ Θ ⊆ (0, 1). A characteristic function (CF)

f(t) is N ID if for each θ ∈ Θ there exists a CF fθ(t) that is independent of

Nθ such that f(t) = Pθ(fθ(t)), for all t ∈ R.

Theorem 1.1. (Gnedenko and Korolev, 1996, Theorem 4.6.3 on p.147) [3]

Let ϕ be a standard solution to the Poincare equation. A CF f(t) is N ID

iff it admits the representation f(t) = ϕ(− log h(t)) where h(t) is a CF that

is ID. f(t) is N stable if h(t) is stable (p.151, [3]).

In the next section we describe NRSD laws and its discrete analogue in

Section 3. In Section 4 we describe ϕRSD laws and its discrete analogue.

2. NRSD distributions

Definition 2.1. A CF f(t) is NRSD if for each c ∈ (0, 1] and each θ ∈ [0, 1)

fc,θ(t) = fc(t).fθ(ct) (1)

is a CF, where fc(t) and fθ(t) are given by

fc(t) =
f(t)

f(ct)
(2)

fθ(t) = ϕ{θϕ−1(f(t))}, (3)

ϕ being a standard solution to the Poincare equation.
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We now notice that the discussion leading to conceiving and proving

Proposition 2.3 in Kozubowski and Podgórski [4] holds in this generalization

as well. When c = 1 equation (1) becomes

f1,θ(t) = fθ(t) = ϕ{θϕ−1(f(t))} (4)

Or

f(t) = ϕ{
1

θ
ϕ−1(fθ(t))} (5)

for each θ ∈ [0, 1). That is f(t) is N ID and hence has no real zeroes. On

the other hand since ϕ(0) = 1, when θ = 0 equation (1) implies

fc,0(t) = fc(t) =
f(t)

f(ct)
(6)

is a CF for each c ∈ (0, 1]. That is f(t) is SD.

Conversely, if f(t) is SD then for each c ∈ (0, 1] the function fc(t) in (2)

is a genuine CF and similarly if f(t) is N ID then for each θ ∈ [0, 1) the

function fθ(t) in (5) also is a genuine CF. Consequently (1) is a well defined

CF.

Remark 2.1 It may be noted that for the CF f(t) to be SD we only require

that (a result due to Biggins and Shanbhag see Fosum [2]) (2) holds for all c

in some left neighbourhood of 1. Thus we may simplify the requirement here

as: A CF f(t) is NRSD if for each c ∈ (a, 1], and each θ ∈ [0, 1) (1) holds,

where 0 < a < 1.

Remark 2.2 In fact we may have apparently still weaker requirement in

describing CFs that are NRSD as follows. A CF f(t) is NRSD if for each

c ∈ (a, 1), and each θ ∈ (0, 1) (1) holds, where 0 < a < 1. Now letting c ↑ 1

we have f(t) is N ID. On the other hand letting θ ↓ 0 we have f(t) is SD

since limθ↓0fθ(t) = 1, see e.g Gnedenko and Korolev [3], page 149.
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Example 2.1 For the LT ϕ(s) = (1 + s)−α, α > 0, ϕ(ϕ−1(s)/p) is a PGF

of a non-degenerate distribution only if α = 1

k
, k ≥ 1 integer, see Example

1 in Bunge [1] or Corollary 4.5 in Satheesh et al. [6]. This PGF is that of

Harris distribution (Satheesh et al. [7]) and the corresponding NRSD dis-

tribution is HRSD. When k = 1 above, we have GRSD (RSD distributions

of Kozubowski and Podgórski [4]).

Example 2.2 Invoking Theorem 1.1 when ϕ(s) is SD and log h(t) = −λ|t|α

we have, for each c ∈ (a, 1]

f(t) = ϕ(|t|α) = ϕ(c|t|α).ϕc(|t|
α). (7)

That is f(t) is both SD andN -strictly stable. Thus we have a good collection

of CFs that are both SD and HID and thus HRSD. Kozubowski and

Podgórski [4]) present examples of a variety of CFs h(t) that are stable.

3. Discrete analogue of NRSD distributions

Steutel and van Harn [10] had described discrete SD (DSD) distribu-

tions. Satheesh and Sandhya [9] have described DHRSD, discrete analogue

of HRSD distributions. We now introduce discrete NRSD (DNRSD) dis-

tributions.

Definition 3.1. (Satheesh et al. [7]) Let ϕ be a standard solution to the

Poincare equation and Nθ a positive integer-valued r.v. having finite mean

with PGF Pθ(s) = ϕ(1
θ
ϕ−1(s)), θ ∈ Θ ⊆ (0, 1). A PGF P (s) is DN ID if for

each θ ∈ Θ there exists a PGF Qθ(s) that is independent of Nθ such that

P (s) = Pθ(Qθ(s)), for all |s| ≤ 1.
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Theorem 3.1. (Satheesh et al. [7]) Let ϕ be a standard solution to the

Poincare equation. A PGF P (s) is DN ID iff it admits the representation

P (s) = ϕ(− logR(s)) where R(s) is a PGF that is DID.

Definition 3.2. A PGF P (s) is DNRSD if for each c ∈ (0, 1] and each

θ ∈ [0, 1)

Pc,θ(s) = Pc(s).Qθ(1− c+ cs) (8)

is a PGF, where Pc(s) and Qθ(s) are given by

Pc(s) =
P (s)

P (1− c + cs)
(9)

Qθ(s) = ϕ{θϕ−1(P (s))}, (10)

ϕ being a standard solution to the Poincare equation.

We may now proceed as in Section 2 describing the relation between

DSD, DN ID and DNRSD distributions. Further, remarks similar to Re-

marks 2.1 and 2.2 are relevant here also and Examples on the lines of Example

2.1 nad 2.2 can also be discussed.

4. ϕRSD distributions

A further generalization of NRSD distributions is possible invoking the

notion of ϕID law that generalizes N ID laws, see Satheesh [5] and Satheesh

et al. [7], [8]) for its discrete analogue. We first describe the discrete case.

Definition 4.1. (Satheesh et al. [7]) Let ϕ be a LT. A PGF P (s) is DϕID

if there exists a sequence {θn} ↓ 0 as n → ∞ and a sequence of PGF s Qn(s)

such that

P (s) = limn→∞ϕ(
1−Qn(s)

θn
). (11)
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Theorem 4.1. (Satheesh et al. [8]) Let {Qθ(s), θ ∈ Θ} be a family of PGFs

and ϕ a LT. Then

limθ↓0ϕ(
1−Qθ(s)

θ
) (12)

exists and is DϕID iff there exists a PGF R(s) that is DID such that

limθ↓0

1−Qθ(s)

θ
= − logR(s) (13)

Definition 4.2. A PGF P (s) is DϕRSD if for each c ∈ (a, 1) and each

θ ∈ (0, b), 0 < a, b < 1

Pc,θ(s) = Pc(s).Qθ(1− c+ cs) (14)

is a PGF, where Pc(s) and Qθ(s) are given by

Pc(s) =
P (s)

P (1− c + cs)
(15)

Qθ(s) = 1− θϕ−1(P (s)). (16)

The restriction of α = 1

k
, k ≥ 1 integer in Example 2.1 is not in this

notion. We may now proceed as in Section 3 describing the relation be-

tween DSD, DϕID and DϕRSD distributions. This has been possible since

limθ↓0Qθ(t) = 1. The case of ϕRSD follows on similar lines.
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