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A STRONG LAW FOR THE RATE OF GROWTH OF LONG LATENCY

PERIODS IN CLOUD COMPUTING SERVICE

SOUVIK GHOSH AND SOUMYADIP GHOSH

Abstract. Cloud-computing shares a common pool of resources across customers at a scale
that is orders of magnitude larger than traditional multi-user systems. Constituent physical
compute servers are allocated multiple “virtual machines” (VM) to serve simultaneously.
Each VM user should ideally be unaffected by others’ demand. Naturally, this environment
produces new challenges for the service providers in meeting customer expectations while
extracting an efficient utilization from server resources. We study a new cloud service metric
that measures prolonged latency or delay suffered by customers. We model the workload
process of a cloud server and analyze the process as the customer population grows. The
capacity required to ensure that average workload does not exceed a threshold over long
segments is characterized. This can be used by cloud operators to provide service guarantees
on avoiding long durations of latency. As part of the analysis, we provide a uniform large-
deviation principle for collections of random variables that is of independent interest.

Key words: large deviations, long strange segments, latency periods, moving average,
non-stationary processes
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1. Introduction

Cloud computing is a paradigm shift of multiple orders of magnitude in the pursuit of
extracting greater utilization of server resources while serving the computing needs of a large
collection of customers. This has been made possible primarily by the concept of workload
virtualization wherein individual users operate on virtual machines (VMs), each with modest
resource requirements, and multiple VMs are served by a single large computing server.
Cloud service providers achieve greater utilization by over-provisioning VMs on compute
nodes, acting on the assumption that rarely will multiple customers simultaneously require
large quantities of resources.

The resources required over time by a user is a stochastic process, modeled here as a
discrete-time moving-average (MA) process. We allow for a heterogeneous population of
customers, where they are partitioned only by their statistical/stochastic behaviour but are
considered equal in terms of priority of service. Service guarantees currently provided by
cloud computing providers (Amazon Web Services’ EC2 , Google’s Web Toolkit, Microsoft’s
Azure etc.) are weak: Service Level Agreements (SLAs) are available only for quick initial
provisioning of a new VM from a user onto a compute node, but no guarantees are provided
on the quality of service experienced by the customer over time. Large organizations with
significant computing requirements, who are willing to pay for good service guarantees, are
thus wary of using this architecture for any activity beyond their non-critical desktop usage;
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see Li et al. (2009); Mendler (2010). This in particular impedes large-scale adoption of cloud
computing for time-critical and resource-intensive workloads.

New techniques need to be developed to address the challenge of estimating performance
from the user’s perspective in this computing paradigm. A key performance indicator in
multi-user systems measures the latency suffered by users. Latency occurs when access to
computing resources is throttled because the total quantity of one or more resource required
(CPU cycles, Memory space, IO bandwidth etc.) by all the VMs exceed the server’s capacity.
Then, under the most commonly used form of processor sharing discipline, all customers on
the server are provisioned proportionately lower resources than they had requested and thus
are said to experience latency. Suppose the server is allocated a capacity that maintains a
steady per-customer average Cp above its expected value. Even if Cp is a large number, there
will be time segments during which the average workload of the server will exceed the total
capacity. Applications that are intolerant to latency are discouraged from being put on clouds
in the absence of Service Level Agreements that penalize their incidence (Li et al. (2009)).
Therefore, for a company that wishes to guarantee its customers availability of the server’s
resources, it is important to understand how large and frequent such long time segments of
continued latency can be. We provide a framework to construct such estimates. In particular,
we use this framework to estimate the time till the first observation of continued latencies of a
given large time length, and its dual, the largest period of latency experienced within a given
time. Cloud service operators can utilize this technique to create SLA contracts. In addition,
the relationship between the expected first observation time and the per-customer average
capacity can help design system improvements to minimize SLA violations. An operator
may also provide differentiated service to customers, where those willing to pay for better
guarantees can be put on an isolated sub-cloud with capacity provisioning tailored to their
growth, usage and the agreed upon SLA contract.

Our framework is built on analyzing long strange segments (see definitions (2.2) and
(2.3)) of the underlying workload process of the cloud server; refer Arratia et al. (1990)
and Ghosh and Samorodnitsky (2010) for a review. A standard technique for analyzing the
rate of growth of long strange segments for stationary processes involves an associated large
deviation principle (see discussion at the end of Section 2). While standard probabilistic
models (for example, queues) operate on stationary processes, the cloud workload process
is non-stationary (see definition in Section 2). This is because the total number of virtual
machines in the cloud environment increases over time. This is a consequence of the fact
that VMs are software artifacts that are inexpensive to instantiate and operate, and so client
organizations tend to encourage large-scale adoption and persistent usage of the VMs within
their organization. In addition, a major new technological innovation allows fast migration
of VMs between individual physical servers within the same cloud infrastructure. Thus, the
cloud service environment is better modeled to consist of larger logical servers that each con-
tinually grow in capacity in order to serve a continually growing population of users, which
yields a non-stationary workload process.

The standard large deviation tools that are vital to the analysis of long strange segments
of stationary processes are thus not useful for our non-stationary workload process. This
process however has a certain structure that can be gainfully exploited. To take advantage of
this, we develop a tool for proving uniform large deviation principle that in its most general
form applies to collections of random variables that satisfy certain regulatory conditions
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(see Theorem 3.1 in Section 3). This tool, which is of independent interest, plays a crucial
role in proving Theorem 2.2, the main result of this paper, which provides a strong law
characterization of the rate of growth of duration of latency periods as a function of the
Fenchel-Legendre transform of the log moment generation functions of the underlying process.
The conditions imposed by the uniform large deviation principle (Theorem 3.3) admit many
common models for computer workloads.

To summarize, the main contributions of this paper are:

a) We provide a tool for proving uniform large deviation principle for a collection of sequences
of probability measures. Recall that the Gartner-Eliis Theorem is a very helpful device
for proving large deviation principle for a single sequence of probability measures; refer
Gartner (1977), Ellis (1984) and (Dembo and Zeitouni, 1998, Theorem 2.3.6, p.44). We
view Theorem 3.1 as an analogue of the Gartner-Ellis Theorem for proving uniform large
deviation principle for a collection of such sequences. The conditions imposed on the
random variables restrict the set of admissible probability laws, but are sufficiently flexible
to apply to a wide variety of situations.

b) We provide strong laws characterizing the rate of growth of two performance measures
of service under the cloud computing architecture, namely the minimum time taken to
observe a continued latency period of a given length, and its dual the maximum latency
period that is observed within a given time.

c) We show, using a motivating example, how these results can be used by a cloud service
manager to a) create SLA contracts representing a guarantee to the customer against
chances of observing frequent long latencies, and b) design system improvements to min-
imize the frequency of long latencies, such as rates at which new capacity should be
procured/allocated to maintain or improve service.

The following section describes our model of the cloud environment and states the main
result of this paper. We conclude the section with a discussion of a representative example.
Section 3 states and proves the uniform large deviation principle for collections of random
variables. This is used in Section 4 where the main result is proved.

2. Cloud Model and Main Result

We model the workload of each user with respect to the instantaneous requirements for a
single resource, e.g. CPU cycles required, over time. A total of K customer groups are served,
where groups differ in their workload characterization. The cloud is managed in a manner
that provisions ni(t) customers from the ith group at time t on each large logical server. The
function ni(t) is assumed to be a power function, i.e. there exist a positive constant α and
positive integers c1, . . . , cK , such that

ni(t) = ci⌊t
α⌋ for all i = 1, . . . ,K.

For any x ∈ R, ⌊x⌋ denotes the greatest integer less than or equal to x and ⌈x⌉ represents the
smallest integer greater than or equal to x. The ci are chosen to be positive integers rather
than real numbers. This is solely because of convenience in handling the limit identities
which appear below; we are certain that taking ni(t) = ⌊cit

α⌋ for some positive real number
ci would not have any significant effect on the results. This form for ni(t) has two important
implications: first, the relative mix of customers from each group, defined by the ratios of the
parameters ci, remains constant over time, and only the total population of users grows with
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time. Second, the number of customers remain a deterministic function of time. We believe
this setting can be easily generalized to allow the number of customers to be a stochastic
process, e.g. the case where (n1(t), . . . , nK(t)) are jointly regularly varying with index α and
the number of customers in the ith group is a Poisson process with intensity ni(t), but we do
not foresee this situation adding any extra insights to the studied problem.

The jth customer in the ith group has workload Wi,j(t) at discrete-time t:

Wi,j(t) = µi +Xi,j(t) = µi + βT
i Z(t) + εi,j(t) for all 1 ≤ i ≤ K, 1 ≤ j ≤ ni(t), t ≥ 1,

where µi is a constant denoting the expected workload of customers in the ith group and
Xi,j(t) is the deviation from the mean workload of the jth customer in the ith group at time
t. The stochastic process Xi,j(t) is further defined as the weighed sum of a K-dimensional
moving-average process Z(t) and an additional pure-noise i.i.d. random variables εi,j(t). The

weights βi ∈ R
K are group-specific constants. The noise-process (εi,j(t); 1 ≤ i ≤ K, t ≥

1, 1 ≤ j ≤ ni(t)) consists of independent and identically distributed (i.i.d.) random variables,
independent of (ξ(t), t ∈ Z), with mean zero, satisfying

Λε(λ) := logE
[

exp
{

λεi,j(t)
}]

< ∞ in a neighborhood of 0.

The process Z(t) is a K dimensional moving average process defined as

Z(t) =
∑

k

φkξ(t− k) for all t ∈ Z,

with
∑

k |φk| < ∞. We will assume φ :=
∑

k φk 6= 0. The innovations (ξ(t); t ∈ Z) are
K-dimensional i.i.d. random variables with mean zero, satisfying

(2.1) Λξ(η) := logE
[

exp
{

η · ξ(t)
}]

< ∞ for all η ∈ R
K ,

where for any two vectors x and y, x·y denotes the scalar product. We shall place the following
additional restriction on the log-m.g.f. Λξ(·) to satisfy the conditions of the uniform large
deviation principle (Theorem 3.3):

Assumption 2.1.
∣

∣

d
dλΛξ(λβ̄)

∣

∣ → ∞ whenever |λ| → ∞, where β̄ := C−1(
∑K

i=1 ciβi) with

C :=
∑K

i=1 ci.

This mild restriction on the parameters of the MA process is satisfied by realistic computing
workloads. For example, it admits a Gaussian form for the innovations ξ.

The expected workload of the server at time t is given by
∑K

i=1 ni(t)µi. In our setup the
number of customers in each group grows over time and so does the expected workload of
the server. Hence, to keep the system solvent and avoid build up of an infinite queue, the
capacity of the server must also be continually increased. This can be done, for example, by
ensuring that the capacity grows in order to maintain a constant ratio of Cp with the total
expected workload. Our imperative is to understand the deviations from the mean workload.
Define S(t) as the sum of all the deviations until time t:

S(t) :=
t
∑

k=1

K
∑

i=1

ni(k)
∑

j=1

Xi,j(t) for all t ≥ 1.
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and N(t) as the associated normalizing term for time t:

N(t) =
t
∑

k=1

K
∑

i=1

ni(k) for all t ≥ 1.

By convention, we understand that
∑j

l=i xl = 0 if j ≤ i. Furthermore, if i and j are not

integers
∑j

l=i xl will denote
∑⌊j⌋

l=⌈i⌉ xl.

We study the average deviation of the workload of the server from its mean over long
segments of time. For any time segment (k, l) the average deviation is given by

X̄(k, l) :=
S(l)− S(k)

N(l)−N(k)
.

A simple argument using law of large numbers tell us that X̄(k, l) should not be too far away
from 0 if l− k is large. If X̄(k, l) is not close to 0 then we term (k, l) as a strange segment. It
is also easy to see that if we fix any number L and a threshold ǫ and wait sufficiently long,
we will almost surely get a segment (k, l) such that l − k ≥ L and X̄(k, l) > ǫ. Our main
result describes how the length of these strange segments grow over time.

For any measurable set A, we define the long strange segments as

(2.2) Rt(A) := sup
{

m : X̄(l −m, l) ∈ A for some l = m, . . . , t
}

,

and its dual characteristic

(2.3) Tr(A) := inf
{

l : there exists k, 0 ≤ k ≤ l − r such that X̄(k, l) ∈ A
}

.

The functional Rn(A) is the maximum length of a segment from the first n observations
whose average is in set A. Tn(A) is the minimum number of observations required to have a
segment of length at least n, whose average is in the set A. It is easy to see that Rt(A) grows
as t → ∞ and Tr(A) grows as r → ∞. Theorem 2.2 below describes the rate of growth of
these functionals. There is a duality relation between the rate of growth of these functionals
which follows from the fact {Tr(A) ≤ m} = {Rm(A) ≥ r}. If the per-customer capacity of
the server is maintained at Cp units above its expected value then we will take A = (Cp,∞).

For any convex function f(·), we will use f∗(·) to denote its Fenchel-Legendre transform:

f∗(x) := sup
λ∈R

{

λx− f(λ)
}

.

For any set A ⊂ R, A◦ and Ā will represent the interior and closure of A respectively.

Theorem 2.2. For any measurable set A

(2.4) I∗ ≤ lim inf
r→∞

log Tr(A)

r
≤ lim sup

r→∞

log Tr(A)

r
≤ I∗ a.s.,

and

(2.5)
1

I∗
≤ lim inf

t→∞

Rt(A)

log t
≤ lim sup

t→∞

Rt(A)

log t
≤

1

I∗
a.s.,

where

I∗ = inf
x∈Ā

Λ∗(x) and I∗ = inf
x∈A◦

Λ∗(x),

Λ∗(x) is the Fenchel-Legendre transform of Λ(λ) := Λξ(λφβ̄).
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Remark 2.3. Under our assumption that the customer group compositions remain constant,
the customer groups are all jointly represented by their average β̄ = (

∑K
i=1 ciβi)/

∑K
i=1 ci.

Remark 2.4. We are interested in sets of the nature A = (Cp,∞), where system-stability
requires that the value Cp be set greater than 0. Then, the continuity and increasing nature
of the Fenchel-Legendre transform over A ensures that the infimum over the sets Ā and A◦

are achieved at Cp. Thus, the upper and lower bounds in (2.4) and (2.5) collapse to give a
limit result of the form:

(2.6) lim
r→∞

log Tr(A)

r
= lim

t→∞

log t

Rt(A)
= Λ∗(Cp) a.s.

Example 2.5. Suppose that the innovation vectors ξ(t) are i.i.d. replicates of aK−dimensional
joint-normal random vector with mean zero and covariance matrix Σ. In that case Λ(λ) =
λ2φ2β̄TΣβ̄/2 and hence

Λ∗(x) =
(

2φ2β̄TΣβ̄
)−1

x2 for all x ∈ R.

Therefore, if A = (Cp,∞) then

(2.7) lim
r→∞

log Tr(A)

r
= lim

t→∞

log t

Rt(A)
=
(

2φ2β̄TΣβ̄
)−1

C2
p a.s.

This yields the estimates Tr ∼ exp{rC2
p/M} and Rt ∼ M log t/C2

p , where Cp represents the

server’s capacity and M = 2φ2β̄TΣβ̄ is a property of the customer classes. As expected,
higher values of Cp slow the rate of growth of the duration Tr before observing a latency
period of length r. On the other hand, higher variability of the innovation ξ(t) or a higher
value of |φ| in the MA process results in a higher value of M and culminates in a faster
growth of the long latency periods Rt observed in time t.

Another interesting application is when A = (−∞,−Cp). This can be used to check if
there are long time periods when the server resources are being severely under utilized. By
the symmetry of the Gaussian distribution, the estimates for Tr and Rt remain the same
in this case. In particular, if Cp were chosen equal to the average workload size, then Rt

estimates the longest period by time t when the server idles.

We postpone the proof of Theorem 2.2 till Section 4, and develop the proper tools required
for the proof in Section 3. We close this section with a discussion on why standard large-
deviation tools are inadequate for the proof of Theorem 2.2.

The rate of growth of long strange segments have been studied by Mansfield et al. (2001) for
moving average processes with heavy-tailed innovations and then by Rachev and Samorodnitsky
(2001) for a long-range dependent moving average processes with heavy-tailed innovations.
Recently Ghosh and Samorodnitsky (2010) studied the effect of memory on the rate of growth
of long strange segments for a moving average process with light-tailed innovations. A
strong law of the form (2.5) is often referred to as the Erdös-Rényi law of large numbers;
Erdös and Rényi (1970) proved asymptotics for longest head runs in i.i.d. coin tosses.

It is instructive to take a heuristic look at the standard technique of proving the rate of
growth of long strange segments for a stationary process, say (Yt). A vital tool for analyzing
this growth is a large deviation principle associated with the partial sums of (Yt). Recall that
a sequence of probability measures (Pt, t ≥ 1) satisfies large deviation principle (LDP) on R if
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there exists a non-negative lower-semicontinuous function I(·) such that for any measurable
A ⊂ R

(2.8) − inf
x∈A◦

I(x) ≤ lim inf
t→∞

1

t
logPt(A) ≤ lim sup

t→∞

1

t
log Pt(A) ≤ − inf

x∈Ā
I(x),

The function I(·) is called the rate function. A rate function with compact level sets is called
a good rate function.

Denote the average of the segment (k, l) by

Ȳ (k, l) =

∑l
i=k+1 Yi

l − k
.

It is often possible to show that the law of Ȳ (0, t) satisfies an LDP under assumptions
of mixing or other specific structure on (Yt) and existence of exponential moments of Yt;
see for example Bryc and Dembo (1996), Varadhan (1984), Dembo and Zeitouni (1998),
Deuschel and Stroock (1989). Then for a ‘nice’ set A such that E(Y0) /∈ Ā there exists
I > 0 such that for t large

log P
[

Ȳ (0, t) ∈ A
]

∼ −It.

Using stationarity, this implies log P
[

Ȳ (l, l + t) ∈ A
]

∼ −It for every l ≥ 0. Heuristically,

this means that for approximately etI segments of length t, we can expect to find one with an
average would be in A. The segments (0, t), (1, t + 1), (2, t + 2), . . . are not independent but
that is handled typically using mixing type conditions borrowed from the process (Yt) itself.
Theorem 2.3 in Ghosh and Samorodnitsky (2010) is an example of this line of argument
where the authors consider moving average processes and use the large deviation principle
for partial sums proved in Ghosh and Samorodnitsky (2009) to obtain asymptotic results for
the rate of growth of long strange segments.

In our application’s setting, the distribution of X̄(l, l+ t) differs from that of X̄(0, t) when
l > 0. This is because the growing number of customers in the system implies that each
X̄(l, l+ t) represents an average over different number of realizations (N(t+ l)−N(l) versus
N(t)). So, in order to understand the rate of growth of the long strange segments we need
to estimate the probability P

[

X̄(l, l+ t) ∈ A
]

uniformly over l ≥ 0. We address this problem
by proving the uniform large deviation principle in Theorem 3.3. A collection of probability
measures (Pk,t, t ≥ 1, k ∈ Γ) satisfies large deviation principle on R uniformly over k ∈ Γ
if there exist non-negative lower-semicontinuous functions (Ik(·), k ∈ Γ) such that for any
measurable A ⊂ R

(2.9) lim inf
t→∞

inf
k∈Γ

{

1

t
log Pk,t(A) + inf

x∈A◦

Ik(x)

}

≥ 0

and

(2.10) lim sup
t→∞

sup
k∈Γ

{

1

t
log Pk,t(A) + inf

x∈Ā
Ik(x)

}

≤ 0.

Note that bounds (2.9) and (2.10) are generalizations of the LHS and RHS of the standard
large-deviation bounds in (2.8).
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3. Uniform Large Deviation Principle

The Gartner-Ellis Theorem is an important tool for proving large deviation principle, cf.
Gartner (1977), Ellis (1984) and (Dembo and Zeitouni, 1998, Theorem 2.3.6, p.44). Theorem
3.1 is an analog of the Gartner-Ellis Theorem for proving uniform large deviation principle.
We use this theorem to prove uniform large deviation principle for the average of segments
of the server workload process in Theorem 3.3 which is in fact the first step in proving of
Theorem 2.2.

Theorem 3.1. Suppose (Yk,t, t ≥ 1, k ∈ Γ) is a collection of random variables such that

there exists (Λk(·), k ∈ Γ) which are differentiable and satisfy the following conditions: for all
0 < L < ∞ and ǫ > 0 there exists T > 0 and δ > 0 such that

lim
t→∞

sup
k∈Γ,|λ|≤L

∣

∣

∣

∣

Λk
(

λ
)

−
1

t
logE

[

exp
{

tλYk,t

}]

∣

∣

∣

∣

= 0,(3.1)

sup
k∈Γ,t≥T,|λ|≤L

∣

∣

∣

∣

1

t
logE

[

exp{tλYk,t

]

∣

∣

∣

∣

< ∞,(3.2)

inf
k∈Γ

∣

∣

∣
(Λk)′(λ)

∣

∣

∣
→ ∞ whenever |λ| → ∞,(3.3)

and
∣

∣

∣
(Λk)′(λ1)− (Λk)′(λ2)

∣

∣

∣
< ǫ for all |λ1 − λ2| < δ, λ1, λ2 ∈ [−L,L], k ∈ Γ.(3.4)

Then for any closed set F ⊂ R

(3.5) lim sup
t→∞

sup
k∈Γ

{

1

t
logP [Yk,t ∈ F ] + inf

x∈F
Λk∗(x)

}

≤ 0

and for any open set G ⊂ R

(3.6) lim inf
t→∞

inf
k∈Γ

{

1

t
log P [Yk,t ∈ G] + inf

x∈G
Λk∗(x)

}

≥ 0

where the rate function Λk∗(·) is the Fenchel-Legendre transform of Λk(·).

Remark 3.2. It can be observed from the proof below that conditions (3.1), (3.2) and (3.3)
have been used to prove (3.5), whereas, all the conditions (3.1)-(3.4) are required for proving
(3.6). Condition (3.1) requires that the normalized log-m.g.f.s of Yk,t converges to Λk(λ)
uniformly over k ∈ Γ and locally uniformly in λ ∈ R. Condition (3.2) ensures uniform
exponential tightness of the random variables (Yk,t). Condition (3.3) is the equivalent of the
steepness assumption imposed by the Gartner-Ellis theorem, cf. (Dembo and Zeitouni, 1998,
Theorem 2.3.6, p.44). Condition (3.4) requires that the functions (Λk)′(λ) are continuous in
λ, uniformly over k ∈ Γ and λ in a compact subset of R. This ensures that the Fenchel-
Legendre transforms Λk∗(x) are continuous in x, uniformly over k ∈ Γ and x in compact
subsets of R.

Proof. We will first prove (3.5). As (3.5) holds trivially when F = ∅, we can safely assume
that F is non-empty. To begin with suppose F is compact. Fix any x ∈ F and δ > 0. Since
Λk(·) is convex, continuously differentiable and satisfies (3.3), we can find λk

x ∈ R such that
(

Λk
)′
(λk

x) = x.
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This would imply
Λk∗(x) = sup

λ∈R
{λx− Λk(λ)} = λk

xx− Λk(λk
x).

From (3.3) we also know that {λk
x : k ∈ Γ} is a bounded set. Hence we can find an open

neighborhood Ax of x such that

inf
y∈Ax

λk
x(y − x) ≥ −δ for all k ∈ Γ.

Then by Chebychev’s inequality we get an upper bound for the following probability

P
[

Yk,t ∈ Ax

]

≤ E
[

exp
{

λk
xt
(

Yk,t − x
)

}]

exp
{

− t inf
y∈Ax

λk
x(y − x)

}

which implies
1

t
logP

[

Yk,t ∈ Ax

]

≤
1

t
logE

[

exp
{

λk
xtYk,t

}]

− λk
xx+ δ.

From (3.1) we can get T ≥ 1 such that for all t ≥ T and k ∈ Γ

1

t
logE

[

exp
{

λk
xtYk,t

}]

≤ Λk
(

λk
x

)

+ δ

and this means for t ≥ T

(3.7)
1

t
logP

[

Yk,t ∈ Ax

]

≤ Λk
(

λk
x

)

− λk
xx+ 2δ = −Λk∗(x) + 2δ.

Now, obviously ∪x∈FAx is an open cover of F and since F is compact we can obtain
x1, . . . , xN ∈ F , such that F ⊂ ∪1≤i≤NAxi

. Then by a simple union of events bound we
get for t ≥ T

1

t
log P

[

Yk,t ∈ F
]

+ min
1≤i≤N

Λk∗(xi) ≤
1

t
logN + 2δ for all k ∈ Γ.

It is now easy to see that for t ≥ T

sup
k∈Γ

{

1

t
logP

[

Yk,t ∈ F
]

+ inf
x∈F

Λk∗(x)

}

≤
1

t
logN + 2δ

and since 0 < δ < 1 is arbitrary

(3.8) lim sup
t→∞

sup
k∈Γ

{

1

t
log P

[

Yk,t ∈ F
]

+ inf
x∈F

Λk∗(x)

}

≤ 0.

This proves (3.5) when F is compact.
Next we extend the above result to any non-empty closed set F . First we note a few facts.

Using (3.1) and (3.2) we get that for any δ > 0

c := sup
k∈Γ,|λ|<δ

∣

∣Λk(λ)
∣

∣ < ∞.

Since {λk
x : k ∈ Γ} is bounded and Λk∗(x) = λk

xx − Λk(λk
x) we get that supk∈Γ Λ

k∗(x) < ∞.
Furthermore, for all k ∈ Γ

Λk∗(x) = sup
λ∈R

{

λx− Λk(λ)
}

≥ sup
|λ|<δ

{

λx− Λk(λ)
}

≥ δ|x| − c.

Hence for any closed set F there exists M1 > 0 such that

(3.9) inf
x∈F

Λk∗(x) = inf
x∈F∩[−M1,M1]

Λk∗(x) for all k ∈ Γ.
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Also note that for any k ∈ Γ and t ≥ 1

1

t
logP

[

|Yk,t| > θ
]

≤ −θ + sup
k∈Γ,t≥1

1

t
logE

[

etYk,t

]

+ sup
k∈Γ,t≥1

1

t
logE

[

e−tYk,t

]

and therefore

(3.10) lim
θ→∞

lim sup
t→∞

sup
k∈Γ

1

t
logP

[

|Yk,t| > θ
]

= −∞.

Now set

c′ = sup
k∈Γ

inf
x∈F

Λk∗(x)

Since for any x, supk∈Γ Λ
k∗(x) < ∞ we get that c′ < ∞. Note that if c′ = 0 then the proof is

immediate. So we look into the case when c′ > 0. Using (3.10) we can get M2 > 0 such that

P
[

|Yk,t| > M2

]

≤ e−2c′t for all k ∈ Γ, t ≥ 1.

Let M = max{M1,M2}. Note that from (3.8) and (3.9)

lim sup
t→∞

sup
k∈Γ

{

1

t
logP

[

Yk,t ∈ F ∩ [−M,M ]
]

+ inf
x∈F

Λk∗(x)

}

= lim sup
t→∞

sup
k∈Γ

{

1

t
logP

[

Yk,t ∈ F ∩ [−M,M ]
]

+ inf
x∈F∩[−M,M ]

Λk∗(x)

}

≤ 0.

This means that for any given δ > 0 we can find T ≥ 1 such that

1

t
log P

[

Yk,t ∈ F ∩ [−M,M ]
]

+ inf
x∈F

Λk∗(x) ≤ δ for all k ∈ Γ, t ≥ T.

Now if P [Yk,t ∈ F ∩ [−M,M ]] ≤ P [|Yk,t| > M ] then

1

t
log P

[

Yk,t ∈ F
]

≤
1

t
log 2− 2c′.

Otherwise,
1

t
log P

[

Yk,t ∈ F
]

≤
1

t
log 2 +

1

t
log P

[

Yk,t ∈ F ∩ [−M,M ]
]

.

Therefore, in both the cases,

1

t
logP

[

Yk,t ∈ F
]

+ inf
x∈F

Λk∗(x) ≤
1

t
log 2 + δ for all k ∈ Γ, t ≥ T.

and hence

lim sup
t→∞

sup
k∈Γ

{

1

t
log P

[

Yk,t ∈ F
]

+ inf
x∈F

Λk∗(x)

}

≤ 0.

This completes the proof of (3.5).
We will now prove (3.6). Note that we can find M > 0 such that

inf
x∈G

Λk∗(x) = inf
x∈G∩[−M,M ]

Λk∗(x) for all k ∈ Γ.

Fix any ǫ > 0 and get xk ∈ G ∩ [−M,M ] such that

Λk∗(xk) < inf
x∈G

Λk∗(x) + ǫ/2.
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Another observation that we need to make is that we can find δ > 0 such that
∣

∣

∣Λk∗(x)− Λk∗(y)
∣

∣

∣ < ǫ/2 for all |x− y| < δ, x, y ∈ [−M,M ], k ∈ Γ.

This follows easily from (3.4). Now obviously ∪x∈G∩[−M,M ]Bx,δ is an open cover of G ∩
[−M,M ], where Bx,δ = (x − δ, x + δ). Since G ∩ [−M,M ] is precompact, we can find

x1, . . . , xn ∈ G∩ [−M,M ] such that for all xk there exists 1 ≤ ik ≤ n for which |xk−xik | < δ.
This implies that

inf
1≤i≤n

Λk∗(xi) < inf
x∈G

Λk∗(x) + ǫ for all k ∈ Γ.

For notational simplicity we define X = {x1, . . . , xn}. Let δ′ > 0 be such that Bx,δ′ ⊂ G for

all x ∈ X. Now fix any x ∈ X. Define the random variables Ỹk,t by an exponential change of
measure such that

P
[

Ỹk,t ∈ B
]

=
E
[

etλ
k
xYk,tI[Yk,t∈B]

]

E
[

etλ
k
xYk,t

]

Then

P
[

Yk,t ∈ Bx,δ′
]

= E
[

etλ
k
xYk,t

]

E
[

e−tλk
xỸk,tI[Ỹk,t∈Bx,δ′ ]

]

and
1

t
logP

[

Yk,t ∈ Bx,δ′
]

=
1

t
logE

[

etλ
k
xYk,t

]

+
1

t
logE

[

e−tλk
xỸk,tI[Ỹk,t∈Bx,δ′ ]

]

≥
1

t
logE

[

etλ
k
xYk,t

]

− λk
xx−

∣

∣

∣λk
x

∣

∣

∣ δ′ +
1

t
log P

[

Ỹk,t ∈ Bx,δ′
]

.

We claim that

(3.11) lim
t→∞

inf
k∈Γ,x∈X

1

t
log P

[

Ỹk,t ∈ Bx,δ′
]

= 0.

To remain with the flow we complete the proof of (3.6) assuming (3.11), which we prove
at the end. Let M ′ > 0 be such that |(Λk)′(λ)| > M for all |λ| > M ′ and k ∈ Γ. From
assumption (3.3) we know that M ′ < ∞. We can also get T ≥ 1 such that for all t ≥ T and
x ∈ X,

inf
k∈Γ

1

t
logP

[

Ỹk,t ∈ Bx,δ′
]

≥ −ǫ

and

sup
k∈Γ

∣

∣

∣

∣

Λk
(

λk
x

)

−
1

t
logE

[

etλ
k
xYt,k

]

∣

∣

∣

∣

< ǫ.

This implies for all t ≥ T, x ∈ X and k ∈ Γ

1

t
logP

[

Yk,t ∈ G
]

≥
1

t
logP

[

Yk,t ∈ Bx,δ′
]

≥ Λk(λk
x)−λk

xx−M ′δ′− 2ǫ = −Λk∗(x)−M ′δ′− 2ǫ.

Since x ∈ X is arbitrary and M ′, δ′ and ǫ are independent of the choice of x, we get for all
t ≥ T and k ∈ Γ

1

t
log P

[

Yk,t ∈ G
]

≥ − inf
x∈X

Λk∗(x)−M ′δ′ − 2ǫ ≥ − inf
x∈G

Λk∗(x)−M ′δ′ − 3ǫ.

Hence we get

lim inf
t→∞

sup
k∈Γ

{

1

t
log P

[

Yk,t ∈ G
]

+ inf
x∈G

Λk∗(x)

}

≥ −M ′δ′ − 3ǫ.
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This completes the proof of (3.6) since δ′ and ǫ can be chosen arbitrarily close to 0.
It now remains to prove (3.11). Since X is a finite set, it suffices to show that for any

x ∈ X

lim
t→∞

inf
k∈Γ

1

t
logP

[

Ỹk,t ∈ Bx,δ′
]

= 0.

We will use the upper large deviation bound (3.5) for that purpose. Note that

1

t
logE

[

etλỸk,t
]

=
1

t
logE

[

et(λ+λk
x)Yk,t

]

−
1

t
logE

[

etλ
k
xYk,t

]

→ Λ̃k(λ) := Λk(λ+ λk
x)− Λk(λk

x).

It is easy to check that Λ̃k(·) inherits the properties (3.1), (3.2), (3.3) and (3.4) from Λk(·).
Therefore, since Bc

x,δ′ := {x ∈ R : x /∈ Bx,δ′} is a closed set, by (3.5)

(3.12) lim sup
t→∞

sup
k∈Γ

{

1

t
log P

[

Ỹk,t ∈ Bc
x,δ′
]

+ inf
y∈Bc

x,δ′

Λ̃k∗(y)

}

≥ 0.

Note that (Λ̃k)′(0) = x for all k ∈ Γ and that implies Λ̃k∗(x) = 0 for all k ∈ Γ. Since Λ̃k∗(·) is
nonnegative and convex infy∈Bc

x,δ′
Λ̃k∗(y) ≥ min{Λ̃k∗(x−δ′), Λ̃k∗(x+δ′)}. Now get a compact

set K ′ such that |(Λ̃k)′(λ)| > |x|+ δ′ and then find η > 0 such that

(3.13)
∣

∣

∣
(Λ̃k)′(λ′)− (Λ̃k)′(λ′′)

∣

∣

∣
< δ′/2 for all |λ′ − λ′′| < η, λ′, λ′′ ∈ K ′, k ∈ Γ.

Then get λ̃k
x+ and λ̃k

x− such that (Λ̃k)′(λ̃k
x+) = x + δ′ and (Λ̃k)′(λ̃k

x−) = x− δ′. From (3.13)

we know that λ̃k
x+ > η and λ̃k

x− < −η for all k ∈ Γ. Therefore, for all k ∈ Γ

Λ̃k∗(x+ δ′) = λ̃k
x+(x+ δ′)− Λ̃k(λ̃k

x+) = λ̃k
x+(x+ δ′)−

∫ λ̃k
x+

0
(Λ̃k)′(z)dz

≥ λ̃k
x+(x+ δ′)− (x+ δ′/2)η − (λ̃k

x+ − η)(x + δ′) = ηδ′/2,

and

Λ̃k∗(x− δ′) = λ̃k
x−(x− δ′)− Λ̃k(λ̃k

x−) = λ̃k
x+(x+ δ′) +

∫ 0

λ̃k
x−

(Λ̃k)′(z)dz

≥ λ̃k
x−(x− δ′) + (x− δ′/2)η + (λ̃k

x+ − η)(x − δ′) = ηδ′/2.

This implies that min{Λ̃k∗(x− δ′), Λ̃k∗(x+ δ′)} ≥ ηδ′/2 for all k ∈ Γ and hence using (3.12)
we get

lim sup
t→∞

sup
k∈Γ

1

t
log P

[

Ỹk,t ∈ Bc
x,δ′
]

≤ −ηδ′/2.

This also means that

lim
t→∞

inf
k∈Γ

P
[

Ỹk,t ∈ Bx,δ′
]

= 1.

This proves (3.11) and hence completes the proof of the theorem. �

Theorem 3.3 allows us to approximate the probability of deviation from 0 of the average
X̄(k, l) for different segments (k, l) when l−k is large. This is a vital component in the proof
of Theorem 2.2.
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Theorem 3.3. If Assumption 2.1 holds then for any measurable set A ⊂ R

(3.14) lim sup
t→∞

sup
k≥0

{

1

t
logP

[

X̄
(

kt, (k + 1)t
)

∈ A
]

+ inf
x∈Ā

Λk∗(x)

}

≤ 0

and

(3.15) lim inf
t→∞

inf
k≥0

{

1

t
logP

[

X̄
(

kt, (k + 1)t
)

∈ A
]

+ inf
x∈A◦

Λk∗(x)

}

≥ 0

where the rate function Λk∗(·) is the Fenchel-Legendre transform of

(3.16) Λk(λ) :=

∫ k+1

k
Λξ

(

(α+ 1)λφyα

(k + 1)α+1 − kα+1
β̄

)

dy,

and Λξ(·) is as defined in (2.1).

Proof. The result will follow once we check that the conditions of Theorem 3.1 hold by setting

Yk,t := X̄(kt, (k + 1)t) =
S((k + 1)t)− S(kt)

N((k + 1)t)−N(kt)
for all t ∈ N, k ∈ R+.

The most complicated part is to check the uniform convergence condition (3.1): for any
0 < ∆ < ∞

(3.17) lim
t→∞

sup
k≥0,|λ|≤∆

∣

∣

∣

∣

Λk(λ)−
1

t
logE exp

{

tλX̄(kt, (k + 1)t)
}

∣

∣

∣

∣

= 0.

We begin by observing that for any u ∈ R

logE
[

exp
{

u
(

S((k + 1)t)− S(kt)
)

}]

= logE



exp







u

(k+1)t
∑

l=kt+1

K
∑

i=1

ni(l)
∑

j=1

Xi,j(l)











= logE



exp







u

(k+1)t
∑

l=kt+1

K
∑

i=1

ni(l)β
T
i Z(l) + u

(k+1)t
∑

l=kt+1

K
∑

i=1

ni(l)
∑

j=1

εi,j(l)











= logE



exp







u

(k+1)t
∑

l=kt+1

K
∑

i=1

ni(l)β
T
i Z(l)









+ logE



exp







u

(k+1)t
∑

l=kt+1

K
∑

i=1

ni(l)
∑

j=1

εi,j(l)









 ,

(3.18)
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where the last equality follows from the independence of the ε’s and the Z’s. To understand
the first component of (3.18), define β =

∑K
i=1 ciβi and note that

logE



exp







u

(k+1)t
∑

l=kt+1

K
∑

i=1

ni(l)β
T
i Z(l)











= logE



exp







u

K
∑

i=1

βT
i

(

(k+1)t
∑

l=kt+1

ni(l)

∞
∑

j=−∞

φkξ(l − j)
)











= logE



exp







u
(

K
∑

i=1

βici

)

·
(

(k+1)t
∑

l=kt+1

⌊lα⌋
∞
∑

j=−∞

φjξ(l − j)
)











= logE



exp







uβ ·
(

∞
∑

j=−∞

ξ(j)

(k+1)t
∑

l=kt+1

⌊lα⌋φl−j

)











=

∞
∑

j=−∞

Λξ



uβ

(k+1)t
∑

l=kt+1

⌊lα⌋φl−j



 .

Using the triangle inequality we get the obvious bound

lim
t→∞

sup
k≥0,|λ|≤∆

∣

∣

∣

∣

Λk(λ)−
1

t
logE exp

{

tλX̄(kt, (k + 1)t)
}

∣

∣

∣

∣

(3.19)

≤ lim
t→∞

sup
k≥0,|λ|≤∆

∣

∣

∣

∣

∣

∣

Λk(λ)−
1

t

(k+1)t
∑

j=kt+1

Λξ





tλ

N((k + 1)t)−N(kt)
β

(k+1)t
∑

l=kt+1

⌊lα⌋φl−j





∣

∣

∣

∣

∣

∣

+ lim
L→∞

lim
t→∞

sup
k≥0,|λ|≤∆

∣

∣

∣

∣

∣

∣

1

t

kt−L
∑

j=−∞

Λξ





tλ

N((k + 1)t)−N(kt)
β

(k+1)t
∑

l=kt+1

⌊lα⌋φl−j





∣

∣

∣

∣

∣

∣

+ lim
L→∞

lim
t→∞

sup
k≥0,|λ|≤∆

∣

∣

∣

∣

∣

∣

1

t

∞
∑

j=(k+1)t+L

Λξ





tλ

N((k + 1)t) −N(kt)
β

(k+1)t
∑

l=kt+1

⌊lα⌋φl−j





∣

∣

∣

∣

∣

∣

+ lim
t→∞

sup
k≥0,|λ|≤∆

∣

∣

∣

∣

∣

∣

∣

∣

1

t

∑

kt−L<j≤kt or
(k+1)t<j≤(k+1)t+L

Λξ





tλ

N((k + 1)t)−N(kt)
β

(k+1)t
∑

l=kt+1

⌊lα⌋φl−j





∣

∣

∣

∣

∣

∣

∣

∣

+ lim
t→∞

sup
k≥0,|λ|≤∆

∣

∣

∣

∣

∣

∣

1

t
logE



exp







tλ

N((k + 1)t)−N(kt)

t
∑

l=1

K
∑

i=1

ni(l)
∑

j=1

εi,j(l)











∣

∣

∣

∣

∣

∣

.

We will prove (3.17) by showing that each of the term in the above expression is equal to
0. For that purpose we make use the following facts:
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(i) there exists M ′ > 0 such that

t((k + 1)t)α

(kt+ 1)α + · · ·+ ((k + 1)t)α
≤ M ′ for all t ≥ 1, k ≥ 0.

(ii) Given any 0 < ǫ < 1/2, there exists κ1 > 0 such that
∣

∣Λξ(u)− Λξ(v)
∣

∣ ≤ κ1‖u− v‖ whenever ‖u‖ ≤ M, ‖v‖ ≤ M and ‖u− v‖ ≤ ǫ,

where ‖ · ‖ denotes the sup-norm on R
K and

M = M ′∆‖β̄‖
∞
∑

k=−∞

∣

∣φk

∣

∣,

(iii) and there exists L ≥ 1 such that
∑

|k|>L |φk| < ǫ/(M ′∆‖β̄‖).

We get (ii) since Λξ(·) is convex and differentiable (cf. Lemma 2.2.5 Dembo and Zeitouni
(1998)) and (iii) follows from the summability of the coefficients (φk).

Define the function ft,k : (k, k + 1) → R by

ft,k(y) := Λξ





tλ

N((k + 1)t)−N(kt)

(

(k+1)t
∑

l=kt+1

⌊lα⌋φl−⌈ty⌉

)

β



 .

and note that

1

t

(k+1)t
∑

j=kt+1

Λξ





tλ

N((k + 1)t)−N(kt)
β

(k+1)t
∑

l=kt+1

⌊lα⌋φl−j



 =

∫ k+1

k
ft,k(y)dy.

Choose t large enough such that kt+ 1 ≤ ⌈ty⌉ − L, ⌈ty⌉+ L ≤ (k + 1)t and
∣

∣

∣

∣

t⌊lα⌋

N((k + 1)t)−N(kt)
−

(α + 1)yα

C((k + 1)α+1 − kα+1)

∣

∣

∣

∣

≤
ǫ

∆‖β‖

(

∞
∑

k=−∞

∣

∣φk

∣

∣

)−1
,

for all k ≥ 0, k + ǫ < y < k + 1− ǫ and ⌈ty⌉ − L ≤ l ≤ ⌈ty⌉+ L. It is easy to check that for
y in this range and |λ| ≤ ∆
∥

∥

∥

∥

∥

∥

tλβ

N((k + 1)t)−N(kt)

(k+1)t
∑

l=kt+1

⌊lα⌋φl−⌈ty⌉ −
tλβ

N((k + 1)t) −N(kt)

⌈ty⌉+L
∑

l=⌈ty⌉−L

⌊lα⌋φl−⌈ty⌉

∥

∥

∥

∥

∥

∥

≤ ǫ

and
∥

∥

∥

∥

∥

∥

tλβ

N((k + 1)t)−N(kt)

⌈ty⌉+L
∑

l=⌈ty⌉−L

⌊lα⌋φl−⌈ty⌉ −
(α+ 1)λyαβ̄

(k + 1)α+1 − kα+1

⌈ty⌉+L
∑

l=⌈ty⌉−L

φl−⌈ty⌉

∥

∥

∥

∥

∥

∥

≤ ǫ

and
∥

∥

∥

∥

∥

∥

(α+ 1)λyαβ̄

(k + 1)α+1 − kα+1

⌈ty⌉+L
∑

l=⌈ty⌉−L

φl−⌈ty⌉ −
(α+ 1)λyαβ̄

(k + 1)α+1 − kα+1

∞
∑

l=−∞

φl

∥

∥

∥

∥

∥

∥

≤ ǫ.

This implies for all k ≥ 0, k + ǫ < y < k + 1− ǫ and |λ| ≤ ∆
∣

∣

∣

∣

Λξ

(

(α+ 1)λφyα

(k + 1)α+1 − kα+1
β̄

)

− ft,k(y)

∣

∣

∣

∣

≤ 3κ1ǫ
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and hence we get
(3.20)

lim
t→∞

sup
k≥0,|λ|≤∆

∣

∣

∣

∣

∣

∣

Λk(λ)−
1

t

(k+1)t
∑

j=kt+1

Λξ





tλ

N((k + 1)t)−N(kt)
β

(k+1)t
∑

l=kt+1

⌊lα⌋φl−j





∣

∣

∣

∣

∣

∣

≤ 3κ1ǫ+4M1ǫ,

where

(3.21) M1 = max

{

Λξ

(

M ′∆‖β‖
∞
∑

k=−∞

∣

∣φk

∣

∣

)

,Λξ

(

−M ′∆‖β‖
∞
∑

k=−∞

∣

∣φk

∣

∣

)}

.

Obviously, since ǫ is arbitrary we get that the limit in (3.20) is 0.
The other parts in (3.19) are handled much easily. Note that for any k ≥ 0

∣

∣

∣

∣

∣

∣

kt−L
∑

j=−∞

Λξ





tλ

N((k + 1)t)−N(kt)
β

(k+1)t
∑

l=kt+1

⌊lα⌋φl−j





∣

∣

∣

∣

∣

∣

≤ κ1M
′∆‖β̄‖

kt−L
∑

j=−∞

(k+1)t
∑

l=kt+1

∣

∣φl−j

∣

∣ ≤ tκ1ǫ

and hence

(3.22) lim
L→∞

lim
t→∞

sup
k≥0,|λ|≤∆

∣

∣

∣

∣

∣

∣

1

t

kt−L
∑

j=−∞

Λξ





tλ

N((k + 1)t) −N(kt)
β

(k+1)t
∑

l=kt+1

⌊lα⌋φl−j





∣

∣

∣

∣

∣

∣

= 0.

Using a similar argument we also get

(3.23) lim
L→∞

lim
t→∞

sup
k≥0,|λ|≤∆

∣

∣

∣

∣

∣

∣

1

t

∞
∑

j=(k+1)t+L

Λξ





tλ

N((k + 1)t)−N(kt)
β

(k+1)t
∑

l=kt+1

⌊lα⌋φl−j





∣

∣

∣

∣

∣

∣

= 0.

Furthermore, it is also easy to check that for every L ≥ 1

lim
t→∞

sup
k≥0,|λ|≤∆

∣

∣

∣

∣

∣

∣

∣

∣

1

t

∑

kt−L<j≤kt or
(k+1)t<j≤(k+1)t+L

Λξ





tλ

N((k + 1)t) −N(kt)
β

(k+1)t
∑

l=kt+1

⌊lα⌋φl−j





∣

∣

∣

∣

∣

∣

∣

∣

≤ lim
t→∞

1

t
2(L+ 1)M1 = 0.(3.24)

For the final part of the proof of (3.17), we note the following facts about Λε(·): Λε(0) = 0,
Λ′
ε(0) = 0 because E(εi,j(t)) = 0, Λε(·) is nonnegative and twice continuously differen-

tiable in a neighborhood of 0. The last fact can be easily derived following Lemma 2.2.5 in
Dembo and Zeitouni (1998). This implies that there exist positive constants κ and η such
that

∣

∣Λε(u)
∣

∣ ≤ κu2 for all |u| ≤ η.
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Choose t large enough such that t∆/N(t) < η. This also means that |tλ/(N((k + 1)t) −
N(kt))| < η for all k ≥ 0 and |λ| ≤ ∆. Hence, we have

∣

∣

∣

∣

∣

∣

logE



exp







tλ

N((k + 1)t)−N(kt)

t
∑

l=1

K
∑

i=1

ni(l)
∑

j=1

εi,j(l)











∣

∣

∣

∣

∣

∣

=

(k+1)t
∑

l=kt+1

K
∑

i=1

ni(l)
∑

j=1

Λε

(

tλ

N((k + 1)t)−N(kt)

)

≤
(

N((k + 1)t)−N(kt)
)

κ
t2λ2

(

N((k + 1)t) −N(kt)
)2 ,

This immediately gives us

lim
t→∞

sup
k≥0,|λ|≤∆

∣

∣

∣

∣

∣

∣

1

t
logE



exp







λ

N((k + 1)t)−N(kt)

t
∑

l=1

K
∑

i=1

ni(l)
∑

j=1

εi,j(l)











∣

∣

∣

∣

∣

∣

≤ lim
t→∞

κ sup
k≥0,|λ|≤∆

tλ
(

N((k + 1)t)−N(kt)
) = 0.(3.25)

and that completes the proof of (3.17).
It is simpler to check the other conditions of Theorem 3.1. Note that we can find M such

that

(3.26)
yα

(k + 1)α+1 − kα+1
≤ M for all k ≥ 0, k ≤ y ≤ k + 1.

This implies that for any ∆ > 0

sup
k≥0,|λ|≤∆

∣

∣

∣Λk(λ)
∣

∣

∣ < ∞,

and this combined with (3.17) shows that the condition (3.2) holds.
Next we check that Λk(·) is differentiable. Since Λξ(·) is finite everywhere, by Lemma 2.2.5

in Dembo and Zeitouni (1998) we get that Λξ(·) is differentiable and

Λ′
ξ(η) =

E
[

ξ(0)eη·ξ(0)
]

E
[

eη·ξ(0)
]

For any δ satisfying 0 < ‖δ‖ < 1

ze(η+δ)·z − zeη·z → 0 and ‖ze(η+δ)·z − zeη·z‖ ≤ h(z) := ‖z‖eη·z(e‖z‖ + 1).

Since E[h(ξ(0))] < ∞ using the dominated convergence theorem we get that E[ξ(0)eλξ(0)] is
continuous. This implies that Λ′

ξ(·) is continuous. Now we can use the Leibniz integral rule

(cf. Theorem 7.40 in Apostol (1974)) to get that Λk(·) is differentiable and

(Λk)′(λ) :=

∫ k+1

k

(α+ 1)φyα

(k + 1)α+1 − kα+1
β̄ · Λ′

ξ

(

(α+ 1)λφyα

(k + 1)α+1 − kα+1
β̄

)

dy
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It is easy to see that ‖Λ′
ξ(η)‖ → ∞ whenever ‖η‖ → ∞. This combined with (3.26) shows

that (3.3) holds. Finally, (3.4) follows from the fact that Λ′
ξ(·) is continuous on compact sets

and (3.26). This completes the proof of the theorem. �

4. Proof of Theorem 2.2 and Required Lemmas

Proof of Theorem 2.2. We will first prove the lower inequality in (2.4). The inequality is
obvious when I∗ = 0. Also, if A is nonempty then I∗ < ∞ from Assumption 2.1. So it
suffices to consider 0 < I∗ < ∞. We will use the simple inclusion bound: for all m ≥ 1 and
r ≥ 1

{Tr(A) ≤ m} ⊂
∞
⋃

l=r

m−1
⋃

j=0

{

X̄(j, j + l) ∈ A
}

.

Thus we get

P
[

Tr(A) ≤ m
]

≤
∞
∑

l=r

m−1
∑

j=0

P
[

X̄(j, j + l) ∈ A.
]

Lemma 4.1 below shows that the Λk∗(x) are an increasing function of k for fixed x. Lemma 4.2,
which builds on this, gives the existence of a K0 such that

inf
x∈Ā

Λk∗(x) ≥ inf
x∈Ā

Λ∗(x)− ǫ/3 = I∗ − ǫ/3 for all k ≥ K0.

We can also find, from Lemma 4.3, a constant I > 0 such that I ≤ infx∈Ā Λk∗(x) for all
k ≥ 0. Now for any 0 < ǫ < I, by Theorem 3.3 we can get T ≥ 1 such that for all l ≥ T and
all k ≥ 0

P
[

X̄
(

kl, (k + 1)l
)

∈ A
]

≤ exp

{

−l

(

inf
x∈Ā

Λk∗(x)− ǫ/3

)}

This gives us for r ≥ T

P
[

Tr(A) ≤ m
]

≤
∞
∑

l=r

m−1
∑

j=0

P
[

X̄(j, j + l) ∈ A
]

≤
∞
∑

l=r

K0l
∑

j=0

P
[

X̄(j, j + l) ∈ A
]

+
∞
∑

l=r

m−1
∑

j=K0l

P
[

X̄(j, j + l) ∈ A
]

≤
∞
∑

l=r

K0le
−l(I−ǫ/3) +m

∞
∑

l=r

e−l(I∗−2ǫ/3).

Now set m = ⌊er(I∗−ǫ)⌋ and note that

∞
∑

r=1

P
[

Tr(A) ≤ ⌊er(I∗−ǫ)⌋
]

≤ T +

∞
∑

r=T

∞
∑

l=r

K0le
−l(I−ǫ/3) +

∞
∑

r=T

er(I∗−ǫ)
∞
∑

l=r

e−l(I∗−2ǫ/3) < ∞.
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Hence, using the Borel-Cantelli lemma we get

lim inf
r→∞

log Tr(A)

r
≥ I∗ − ǫ a.s.

The lower inequality in (2.4) is thus proved by letting ǫ → 0.
Also observe that, using the relation {Tr(A) ≤ m} = {Rm(A) ≥ r} we get

lim sup
t→∞

Rt

log t
≤

1

I∗
a.s.

In order to prove the upper bound in (2.4) it suffices to consider the case I∗ < ∞. In that
case the set A has nonempty interior. Define two new random variables by

Y ′
k,t := β

∑(k+1)t
j=kt+1

∑(k+1)t
l=kt+1⌊l

α⌋φl−jξ(j)

N((k + 1)t)−N(kt)
and Y ′′

k,t := X̄(kt, (k + 1)t)− Y ′
k,t,

where, as before, β =
∑K

i=1 ciβi. For a set A and η > 0, define

A(η) :=
{

x : d(x,Ac) > η
}

,

and d(x,Ac) is the distance from the point x to the complement Ac. Now observe that for
any positive integers r and q with q > r

P
[

Tr(A) > q
]

≤ P
[

X̄(kr, (k + 1)r) /∈ A, k = 0, . . . , ⌊q/r⌋
]

≤ P
[

Y ′
k,r /∈ A(η), k = 0, . . . , ⌊q/r⌋

]

+

⌊q/r⌋
∑

l=1

P
[

|Y ′′
k,r| > η

]

and since Y ′
k,r, k = 0, 1, . . . ⌊q/r⌋ are independent

=

⌊q/r⌋
∏

k=0

(

1− P
[

Y ′
k,r ∈ A(η)

]

)

+

⌊q/r⌋
∑

l=1

P
[

|Y ′′
k,r| > η

]

≤ exp
(

−

⌊q/r⌋
∑

k=0

P
[

Y ′
k,r ∈ A(η)

]

)

+

⌊q/r⌋
∑

l=1

P
[

|Y ′′
k,r| > η

]

.

From the arguments following (3.20) it is easy to check that the law of Y ′
k,t satisfy large

deviation principle uniformly over k ≥ 0 with rate function Λk∗(·). We can therefore, get
T ≥ 1 such that

1

t
log P

[

Y ′
k,t ∈ A(η)

]

≥ − inf
x∈A(η)

Λk∗(x)− ǫ/4 for all t ≥ T, k ≥ 0.

Lemma 4.1(ii) then implies

1

t
logP

[

Y ′
k,t ∈ A(η)

]

≥ − inf
x∈A(η)

Λ∗(x)− ǫ/4 for all t ≥ T, k ≥ 0.

Hence for η > 0 small enough

1

t
log P

[

Y ′
k,t ∈ A(η)

]

≥ −I∗ − ǫ/2 for all t ≥ T, k ≥ 0.
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Therefore, by setting qr = ⌈er(I
∗+ǫ)⌉ and using the above inequality we get that

∞
∑

r=1

exp
(

−

⌊qr/r⌋
∑

k=0

P
[

Y ′
k,r ∈ A(η)

]

)

≤ T +
∞
∑

r=T

exp
(

−
er(I

∗+ǫ)

r
e−r(I∗+ǫ/2)

)

≤ T +
∞
∑

r=T

exp
(

−
erǫ/2

r

)

< ∞.(4.1)

Furthermore, note that for ǫ > 0 and η > 0 such that the above holds

lim sup
t→∞

sup
k≥0

1

t
log P

[

|Y ′′
k,t| > η

]

≤ −λη + lim sup
t→∞

sup
k≥0

1

t
logE

[

λt|Y ′′
k,t

]

= −λη.

The last equality follows from the steps used in the proof of Theorem 3.3. Now by choosing
λ > (I∗ + ǫ)/η we get

(4.2)

∞
∑

r=1

⌊qr/r⌋
∑

l=1

P
[

|Y ′′
k,r| > η

]

≤
∞
∑

r=1

⌊qr
r

⌋

sup
k≥0

P
[

|Y ′′
k,r| > η

]

< ∞.

Combining (4.1) and (4.2) we get

∞
∑

r=1

P
[

Tr(A) > q
]

< ∞.

Finally by applying the first Borel-Cantelli lemma and then letting ǫ → 0 we complete the
proof of the upper bound of (2.4). The lower bound in (2.5) is again proved using the same
identity {Tr(A) ≤ m} = {Rm(A) ≥ r}. Hence the proof is complete. �

Lemma 4.1. (i) For any λ ∈ R, Λk(λ) is a decreasing function of k.
(ii) For any x ∈ R, Λk∗(x) is an increasing function of k.

Proof. Suppose Fk is the distribution function of the random variables

Uk :=
(α+ 1)(k + U)α

(k + 1)α+1 − kα+1
where U ∼ Uniform(0, 1), k ≥ 0.

Observe that E(Uk) = 1 for all k ≥ 0. Also, for any non-negative random variable X with
mean 1 and distribution FX , define the Lorenz function

LX(p) :=

∫ p

0
F−1
X (u)du, for all 0 ≤ p ≤ 1.

Note that the Lorenz function of Uk is given by

LUk
(p) =

(k + p)α+1 − kα+1

(k + 1)α+1 − kα+1
, for all 0 ≤ p ≤ 1.
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and

∂

∂k
LUk

(p) =
(α+ 1)

[

(k + p)α ((k + 1)α(1− p) + kαp)− kα(k + 1)α
]

((k + 1)α+1 − kα+1)2
> 0

for all k ≥ 0 and 0 ≤ p ≤ 1. This implies that

LUk′
(p) ≥ LUk′′

(p) for all 0 ≤ p ≤ 1, k′ ≥ k′′

which means that Uk is decreasing in Lorenz order as k increases. Hence by (Arnold, 1980,
Theorem 3.2, p.37) and using the fact that Λξ(·) is convex and continuous we get that

Λk(λ) = E
[

Λξ

(

λφUkβ̄
)]

is decreasing in k.
Part (ii) of the lemma follows easily from part (i) using the definition of Fenchel-Legendre

transform. �

Lemma 4.2. For any measurable set A ⊂ R and ǫ > 0 there exists K0 such that

inf
x∈A

Λk∗(x) ≥ inf
x∈A

Λ∗(x)− ǫ for all k ≥ K0

where Λk∗(·) and Λ∗(·) are as described in Theorem 3.3 and Theorem 2.2, respectively.

Proof. Fix any ǫ > 0. From the arguments leading to (3.9) we can find M1 > 0 such that

inf
x∈A

Λ∗(x) = inf
x∈A∩[−M1,M1]

Λ∗(x).

Lemma 4.1(ii) then gives us

inf
x∈A

Λk∗(x) = inf
x∈A∩[−M1,M1]

Λk∗(x) for all k ≥ 0.

Using Assumption 2.1 we get M2 > 0 such that |λ| > M2 implies |(Λ0)′(λ)| > 2M1. Since
Λk(·) converges locally uniformly to Λ(·) we know that there exists K0 such that

(4.3) sup
λ∈[−M2,M2]

∣

∣

∣Λk(λ)− Λ(λ)
∣

∣

∣ < ǫ/4 for all k ≥ K0.

Now, for any x ∈ [−M1,M1] we can get λx ∈ [−M2,M2] such that λxx−Λ(λx) > Λ∗(x)− ǫ/4
and therefore for all k ≥ K0

Λk∗(x) ≥ λxx− Λk(λx) ≥ λxx− Λ(λx)− ǫ/4 ≥ Λ∗(x)− ǫ/2.

This implies for all k ≥ K0

inf
x∈A∩[−M1,M1]

Λk∗(x) ≥ inf
x∈A∩[−M1,M1]

Λ∗(x)− ǫ

and that completes the proof. �

Lemma 4.3. For any measurable set A ⊂ R

(4.4) inf
x∈A

Λ∗(x) > 0 implies inf
k≥0

inf
x∈A

Λk∗(x) > 0.
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Proof. Using Lemma 4.1(ii) it suffices to show that (4.4) implies infx∈A Λ0∗(x) > 0. Fix any
x 6= 0. Since Λ0(λ) is strictly convex and finite everywhere and (Λ0)′(0) = 0, we get that if
(Λ0)′(λ0

x) = x then λ0
x 6= 0. Then Λ0∗(x) = λ0

xx−Λ0(λ0
x) 6= 0. If for some measurable A ⊂ R

then
inf
x∈A

Λ0∗(x) = 0 implies 0 ∈ Ā.

That would imply infx∈A Λ∗(x) = 0. This proves the lemma. �
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