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Abstract—We consider cooperative spectrum sensing for cog- information among secondary users). However hard dedsion
nitive radios. We develop an energy efficient detector withdw provide as good a performance as soft decisions when the
detection delay using sequential hypothesis testing. Segjutial number of cooperative users increases [5]

Probability Ratio Test (SPRT) is used at both the local nodes Spect . lqorith d at d
and the fusion center. We also analyse the performance of pectrum sensing algorithms used al a node can use a

this algorithm and compare with the simulations. Modelling fixed sample size (one shot) or sequential detection ([T], [1
uncertainties in the distribution parameters are consideed. Slow [[16], [23]). In case of fixed sample size detectors with the
fadin.g. with apd WithOUt pgrfect channel state information at the Comp|ete know|edge of primary SignaL matched filter is the
cognitive radios is taken into account. _ optimal detector([8] that maximises the SNR. When the only
[Keywords- Cognitive Radio, Spectrum Sensing, Cooperatiy€,wn apriori information is the noise power, the energy
Distributed Algorithm, SPRT. detector is optimal[8]. Sequential detection can provieltds
|. INTRODUCTION performance [12]. In the sequential approach one can censid

0tlietecting when a primary turns ON (or OFF) (change detec-

Cognitive Radio has evolved as a working solution for ; he h hesi . hether the pri i O
the scarcity of spectrum due to the proliferation of Wiret-'on) or just the ypot esis testing W eF er the primary
FF. Sequential change detection is well studied [in ([2],

- o : O
less services. Cognitive Radios (CRs) access the spect f . ) ; :
licensed to other service providers opportunisticallyhwiit 1%1]' [12]). In sequential hypothesis testingl([4]l [AAl) one

interference to the existing communication services. R t considers the case where the status of the primary channel is

the Cognitive users sense the spectrum to detect the usiggwn to c_ha_nge bery slov]\clly(,jle.g_;r.\,/d;tezting ocr?upgncy_(_)f a
of the channel by the primary (licensed) users. However dJ trans_mlss!on. sage ot idie 'V bancs by the o_gnlfuve
to the inherent transmission impairments of wireless ch@nnet\_’\'ork IS 'F’e'”g targeted as the f|r§t appllcathn for let
and strict spectrum sensing requirements for Cognitiveid®ad radio. In th|s_ setup Wald;’SequenuaI Probability RaucrstTe
[17] spectrum sensing has become one of the main challen§aERT) Provides the optimal performance for a single node
faced by them. 14], [22]). [23] has an extensive survey of spectrum segsi
Cooperative spectrum sensing ([20].1[23]) in which differe methods. cher spectrum sensing schemes include methods
cognitive radios interact with each other, is proposed as bsed on higher order statistiés J13], wavelet transfoig [

answer to the problems caused by multipath fading, sha@wfﬁnd compressed sensi_ng [19]. ) , .
and hidden node problem in single node spectrum sensin e use the sequential hypothesis testing framework in the

methods. Also it improves the probability of false alarm an operative setup. We use SPRT at each local node and again

the probability of miss-detection. These are achieved i &t the_ fusion center. This has bee_n motivated by our prev_ious
exploitation of spatial diversity among the Cognitive wser algorithm, DualCUSUM used for distributed change detectio

Cooperative spectrum sensing can be either centralized:]-(;\usbwe will d(,:acljl this algorithm DuaISPIﬁT. Howel\(lfr this
distributed [23]. In the centralized algorithm a centraitun"aS D€€N Istu 1€ '.g ([93] anl ,[1?]) asl well. ]Ic?)uft].un: . .([r?]’
gathers sensing data from the Cognitive Radios and idemtif[%‘s]) We aiso provide t eoret!ca analysis o this algant
the spectrum usage ([23]_[15]). On the other hand, in tﬁ@d consider the effect of fading in the channel between j[he
distributed case each secondary user collects obsersatidi'mary and S?CO”daW nodes. We _also madel _the receiver
makes a local decision and sends to a fusion node to make € at the fusion node and use physical layer fusion taceedu
final decision. The information that is exchanged between t € trapsm|SS|on time of the decisions by the local nodes to
secondary users and the fusion node can be a soft deci %fgsmn nodg. , . .
(summary statistic) or a hard decisidn_[15]. Soft decisions | NiS Paper is organised as follows. Section Il describes

can give better gains at the fusion center but also consu & mOFie'- Section Il starts ‘_N'th the DuaISP_RT a_lgorlthm.
higher bandwidth at the control channels (used for shari mulation results and analysis are also provided in Sectio
[IT. Then we consider the case where the SNRs are different

This work is partially supported by a grant from MCIT, Govt. ladia at different Cognitive Radios. The received SNR may or may
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not be known to the CR nodes. In Section IV we introduce wheref; ; is the density ofX}, ; underH; andf  is the
fading at the channel between the primary transmitter aad th density of X}, ; under Hy.

Cognitive Radios. The channel gains may not be available to2) Secondary nodé transmits a constarit; at time k if
the local secondary nodes. Section V concludes the paper. Wi, > 1 or transmitshy whenWy, ; < v, i.e., Yy =
bll{Wk,zZ’Yl} + bol{Wk,LS’YU}

wherev < 0 < 7 and 14 denotes the indicator

We consider a Cognitive Radio system with one primary  fynction of set A. Parametelis , by, 1,70 are chosen
transmitter andL secondary users. Thé nodes sense the appropriately.

channel to detect the spectral holes. The decisions madeeby t 3) ppysical layer fusion is used at the Fusion Centre, i.e.
secondary users are transmitted to a fusion node via a Nultip Y, = ZlL_l Y., + Zi, whereZ, is the iid noise at the
Access Channel (MAC) for it to make a final decision. fusion node.

Let X, be the observation made at secondary usat 4y Finally, Fusion center runs SPRT:
time k. The {Xj,;, k > 1} are independent and identically

Il. SYSTEM MODEL

distributed (iid). It is assumed that the observations ade{ Fr = Fo_1 4+ loglgr (V) /9o (Vi)], Fo=0, (4)
pendent across Cognitive Radios. Based{df},;, n < k}
the secondary usdr transmitsYy,; to the fusion node. It is where g, is the density ofZ; + 1o, the MAC noise at
assumed that the secondary nodes are synchronised so that the fusion node, ang; is the density ofZ;, + u1, o
the fusion node receiveg, = Zlel Yk,l + Zk, WhETE{Zk} a_ndlu1 being design parameters.
is iid receiver noise. The fusion center us@$; } and makes  5) The fusion center decides about the hypothesis at time
a decision. The observatiodsX;} depend on whether the N where
primary is transmitting (Hypothesi&/;) or not (Hypothesis
Hy) as N =inf{k: Fy > 1 or Fj, < o}

X, — Z.1, k=1,2,..., underH, (1) . . ) )

kil = hiSk + Zy, k=1,2,.... underH, and By < 0 < B4. The decision at timeV is H; if

Fyn > 1, otherwiseH,.

wherer, is the channel gain of thé" user,S; is the primary In order to have equaPr4 under both hypothesis, we choose

signal andZy, ; is the observation noise at thie user at time
k. We assume{Z;,;, k > 1} are iid. Let N be the time to
decide on the hypothesis by the fusion node. We assume that
N is much less than the coherence time of the channel &P course Pr4 can be taken different undeH, or H;
that the slow fading assumption is valid. This means that by appropriately choosing:, 4o, B, 0. Any prior in-
is random but remains constant during the spectrum Sens}Bﬂnation available aboutd, or H; can be used to de-

duration. i . . cide constants. Performance of this algorithm depends on
The general problem is to develop a distributed aIgonth?;]Y1 ~0, 81, Bo, b1, bo, i1, 110). Also we choose these parame-

in the above setup which solves the problem: ters such that the probability of false alarfy,, at local nodes

==Y =7 and f1 = —fo = .

min Epp 4 E[N|H,] @) is much lower thanPg 4. A good set of parameters for given
_ SNR values can be obtained from known results of SPRT.
subject toPps < o Deciding at local nodes and transmitting them to the fusion

where H; is the true hypothesig, = {0,1} and P4 is the node reduces the transmission rate and transmit energy used

probability of false alarm, i.e., probability of making aomgy by the Ioca_il nodes in C(_)mmunication with the fusion r_loo_ie.
decision. We will separately consid&{N|H;] and E[N|H). A_Jso, phy3|call layer fusmnlln _Step 3 .reduces transmission
It is well known that for a single node casé & 1) Wald’s time, but requires synchronisation of different local nadé
SPRT performs optimally in terms of reducitgN'|H;] and synchronisation is not possible, then some other algorithm
E[N|Hoy] for a givenPy 4. Motivated by the good performance®-9-» TDMA can be used.

of DualCUSUM in ([1], [7]) and the optimality of SPRT fora DualSPRT (without physical layer synchronization and fu-

single node, we propose using DualSPRT in the next secti®@N receiver noise) has been shown to perform welllin ([9],
and study its performance. [16]). In the rest of the following we analyse the performanc

under our setup.
I1l. DUALSPRTALGORITHM
To explain the setup and analysis we start with the simpl¢ parformance Analysis
case, where the channel gaing=1 for all I's. We will
consider fading in the next section. DualSPRT is as follows: We first provide the analysis fdipp and then forPr 4. The

1) Secondary nodé, runs SPRT algorithm, analysis forEpp is similar to that of DualCUSUM in[[7].
For simplicity, in the following we will takey; = —vy9 = 7,
Wo, =0 B =—Po =B, 1 =—p =pandby = —by = 1. Then

Wi = Wi, +1og [ f1,0 (Xka) /for (Xki)], k> 1(3) Pra under the two hypothesis is same.



Epp Analysis: At the fusion nodeF}, crossess under
H, when a sufficient number of local nodes transmit P, (FA before t)
The dominant event occurs when the number of local nodes oo
transmitting are such that the mean drift of the random walk = ZP{{F;@ <—0yNEI{F, > —9}\161 > kz}P[tl > k]

F}, will just have turned positive. In the following we find the k=1

mean time to this event and then the time to cr@safter > o1 o1

this. TheEpp analysis is same under hypothesis and H; . = > (P[F’“ < =0 Oy {Fn > 03] PO {Fn > _9}])
k=1

Hence we provide the analysis féf, .

At secondary nodd SPRT {W,; k > 0} is a ran- (l—fbn(k))
dom walk. Leté = FEpg, [log (fr (Xk,l)/fo (X;w))] , 02 = 0
Varllog [f1 (Xi1) /fo (Xr.1)]]. We knows > 0. The timer, & E:GWMoﬂﬂ4>—ﬂP[hﬁ n>—@
for W} at each local node to cross the thresheldatisfies k=1 ekt

E[ry] ~ ~/6 for large values ofy (needed for smallPp . (1 _ 3, (k))
Then by central limit theorem we can show that at each node ! v
B &
2
Yoy > / P[Sk < —dfr,_,{—0+ c}dc
T~ NS ) ®) ;( =0 * )
Now, as in [7], we can show that, (1 —2P[Fr-_1 < —9]) (1 - <I>t1(k))
_F
Epp ~ Elt;) + 2= 1 ®) | N _
0; where ®,, is the Cumulative Distribution Function of;.

where; is the drift of the fusion center SPRE), when;j AS We are considering onlyFy, k < t,}, we remove the
local nodes are transmitting; is the point at which the drift dependencies of. (A) is because of the Markov property of
of F}, changes from5; ; to §;, F; = E[F,, ], the mean the random walk. (B) is due to the inequality,
value of Fj, just before transition epoch and Plsup Fy > 0] < 2P[F, > 6]

_ k<n

j=min{i:d; >0 and pF—F < Eltit1] — Elt]}-

for the Gaussian random walk; [4]. Similary we can write

. . _ _an upper bound by replacin@?[N*Z1{F, > —6}] with

An |terat.|v.e method is proposed [2] to calculdigt;] and F; P[Fe_, > —6]. In Tablell we comEJare the lower bound

In gn el;ﬁuerl;t mannelr. is 1 foll d th Vs on Pr4 with the simulation results. We can make this lower
or the above analysis fat',p we followed the ana ys's.boundtighter if we do the same set of analysis for the Ganssia

of DualCUSUM in [7.]. However there are some difference 0 ndom walk between, andt, with appropriate changes and
the SPRT at the fusion center here from the DualCUSUM MNd to the results we already obtained

[7]. But comparison with simulations show that we will get
an acceptable approximations. B. Example
Pr4 Analysis: It can be easily verified that,, defined

i

FaA - > -~ - _ We apply the DualSPRT on the following example and
earlle_r is thek or(_JIer statistics ofL iid ranflhom variables, compare theEpp and P4 via analysis provided above with
7y, (first passage time to threshoidby the!™ node,whose he simulation results. We assume that the pre-changébdistr
probability density function is given ifiX5)) . Thef-4 when oy 1 and the post-change distributigh are Gaussian with
H, is the true hypothesis is given by, different means. This model is relevant when the noise and
Py, (False alarm) = Py, (False alarm before t1) (7) interference are log-normally distributed [20]. This isseful
model whenXj, ; is the sum of energy of a large number of
+Pp, (False alarm between tiand ts) observations at the secondary node at low SNR.
+ Py, (False alarm between ty and t3)+.... Parameters used for simulation are as follows: There are 5
secondary nodesL(= 5), fo ~ N(0,1) and f; ~ N (1,1),
One expects that the first term i1 (7) should be th&hereN(a,b) denote Gaussian distribution with mearand
dominant term. This is becausey, is much smaller than Varianceb. Also fo = fo, and fi = figfor1 <I <L,y =
Pr4 and hence aftefy, the drift of Fj, will be more positive. —70 =7 b1 = —Bo =5, jn = —po = p and bi = —bo = 1.
Therefore the probability of false alarm goes down. We haJ&!® Pra and the correspondingpp are provided in Table

verified this from simulations also. Hence we focus on tHe The parameters are chosen to provide good performance for
first term. the given Pr4. The table also provides the results obtained

via analysis.
Let S, = log[g1 (Yx) /g0 (Yr)] and8 = 3/2u.
' ’ . C. Analysis for different SNRs
ThereforeF, = Sy + So + ... + Si. EveryS;,1 < i < k has

a common term2u (|n case of Gaussiagl and gO) , thus The above analysis is for the case Whﬁ’]}J have the
changing the threshold = 3/2u. Then same distribution for different under the hypothesi&, and



hyp PraSim. PraAnal. EppSim. EppAnal. th . 2

) 0.00195 0.0012 56716 16,1916 at thel (_Z_R node and2n0|sé3k,l N(0,0%). Under onv

HI 0.01610 0.0129 13.928 12.6913 SNR conditiong P, + 02)” ~ ¢* and henceX},; are Gaussian

HO 0.0613 0.0497 11.803 10.583 distributed with mean change undHy and H;. Now taking

HO 0.0031 0.0027 15.1766 11.830 X1 — o? as the data for the detection algorithm at the
TABLE |

node, sinceP,; is unknown we can formulate this problem as

DUALSPRT: ® SONOFE Ppao SIS i . ; )
oA MPARISON OF /DD ARD A OSTAINED VIA ANALYSI a sequential hypothesis testing problem with

(LOWER BOUND ON THE DOMINATING TERM) AND SIMULATION

. . . :0=0; 10> .
H,. However in practice theX;,; for different local nodes Ho:0=0; Hi:0=6 ©)
will often be different because their receiver noise canehawheref is P, and 6, is appropriately chosen.
different variances and / or the path losses from the primaryThe problem
transmitter to the secondary nodes can be different. Theeabo
. . . 0 < ; 10>
analysis for this case needs slight changesHerp, as well Ho:0<00; Hi:6261, (10)
asPra. subject to the error constraints
For the analysis ofEpp one difference is that, ;, | = )
1,...,L are no longer iid. Now the iterative scheme used in Py{rejectHo} < o for 0 < o (11)

Section Il A to calculatel;, and Fj does not work. Thus,
knowing the minimum number of local nodes needed to ma
the mean drift ofF}, positive (say it isi*), we compute the
mean of thei* order statistics of the independent rando

Py{rejectH,1} < 3 for 0 > 6,

If<(()ar exponential family of distributions is well studied ifiL{],
rH‘ZD' The following algorithm of Lai is asymptotically Bag
optimal [11] and hence we use it at the local nodes instead of

variabler, ;,l = 1,..., L via [3]. Then we approximate the SPRT. Letd € A — [a1, as]. Define
Fop by (Bl
. Elt;« —Elti,*fl n Jo (Xi) & fo, (Xk)
) i Wi = max log ———, log————| , (12)
E[tl ] + 51'* (8) ; f@o (Xk) ; f91 (Xk)
For Pr4 analysis we need the distribution of the first order N(g,c) =inf{n: W, > g(nc)} , (13)

statisticst; for 7,,;,l = 1...,L and then use the method h ) . ing threshold :
proposed in Section 1l A. whereg() is a time varying threshold. Its approximate expres-

We provide an example to verify the accuracy of th§ion is_given in[11]. At timeN (g, ¢) decide upont or H,
performance analysis provided above. according as

D. Example ON(g,c) <O or On(g,e) > 0",

There are five secondary nodes with primary to seconda#pered” is obtained by solving(6*,6o) = 1(6",6,), and
channel gain being 0, -1.5, -2.5, -4 and -6 dB respectivelyf A) is the Kullback-Leibler information number. Also for
(corresponding post change means are 1, 0.84, 0.75, 053, d>aussianfy and f, 0, = maz{ay, min[S,/n, as}.
fo ~N(0,1), fo = fo, for 1 <1 < L. Table[l provides the The choice of); in (@) a_ffects the performance &[N|Ho]
Epp and P4 via analysis and simulations. We see a goo@NdE[N |H] for the algorithm[(IR)E(DI3), wherd = N (g, c).

match. For our case wherél, : § = 0, unlike in (I0) whereH, :
6 < 0, E[N|Hy] largely depends upon the valdg. As 6,
PraSim. | PraAnal. | EppSim. | EppAnal. increasesE[N|Hy| decreases anB[N|H;] increases. Iff; €
20Tl Tl o | s (2.7 for all then a good choice f, IS (P — P)/2
36.30e —4 | 35.16e —4 | 27.770 55977 In the distributed setup with received power at the local
TABLE Il nodes unknown, the local nodes will use the Lai’'s algorithm

mentioned above while the fusion node runs the SPRT. All

other details remain same. We call this algorithm GLR-SPRT.
The performance of GLR-SPRT is compared with Dual-

E. Different and unknown SNRs SPRT (where the received powers are assumed known at the

Next we consider the case where the received signal pO\IVé‘[FaI nodfes) for Example i D" inl Tabl%lll.f Interesltingly
is fixed but not known to the local Cognitive Radio noded” N|H,] for GLR-SPRT is actually lower than for DualSPRT

This can happen if the transmit power of the primary is notme[MH@] is higher.

DUALSPRTFOR DIFFERENTSNR’S BETWEEN THE PRIMARY AND THE
SECONDARY USERS COMPARISON OFEpp AND Pr 4 OBTAINED VIA
ANALYSIS AND SIMULATION .

known and / or there is unknown shadowing. Now we limit

hyp EDD PFA =0.1 PFA = 0.05 PFA = 0.01
ourselves to the energy detector where the observafions H1 || DualSPRT 2.06 3177 5.064
are a summation of energy &f samples received by th&" H1 || GLRSPRT 1.425 2.522 4.857
Cognitive Radio node. Then for somewhat lariye the pre HO || DualSPRT| 1.921 3.074 5.184
S . HO || GLRSPRT| 2.745 3.852 6.115
and post change distributions df;; can be approximated
TABLE Il

by Gaussian distributionsfy; ~ N(02,20*/N) and f1; ~
N(P, + 02,2(P, + 0?)?/N), where P, is the received power

COMPARISON BETWEENGLRSPRTAND DUALSPRTFOR DIFFERENT
SNR’S BETWEEN THE PRIMARY AND THE SECONDARY USERS



IV. CHANNEL WITH FADING S0 as to be able to detect when the received SNR is not known

In this section we consider the system where the chann@Rd when there is slow fading channels between the primary
from the primary transmitter to the secondary nodes ha@8d the secondary nodes. Future work should consider amalys
fading (h, # 1). We assume slow fading, i.e., the channdlf the GLR algorithms and optimising over the current setup.
coherence time is longer than the hypothesis testing tinee. W
consider two cases, Case 1: the fading gain is known to the
CR nodes. Case 2: the fad'ng gain Is not known to the C{ﬁ over a MAC using Physical layer fusionth Proc. IEEE Conference,
nodes. ICASSP April 2008.

When the fading gairh; is known to thel!” secondary [2] T. Banerjee, V. Sharma, V. Kavitha and A. K. JayaPrakasd@ener-

de th thi b id d the diff t SNRaIlzed Analysis of a Distributed Energy Efficient Algorithfar Change
node er! I§ Caselcan € considered as the .l eren Detection”, accepted in IEEE Trans. on Wireless Communications
case studied in Section Il C. Thus we only consider Case[® H. M. Barakat and Y. H. Abdelkader, “Computing the mongeaof order
where the channel gaily is not known to thd®® node. statistics from nonidentical random variableStatistical Methods and

] ] applications Springer-Verlag, 2003

We consider the en_ergy qeteCtor setup of Section Il ] P. Billingsley, “Probability and Measure’, Third Edition, Wiley-
However, P, the received signal power at the local node’ Interscience, 1995
! is random. If the fading is Rayleigh distributed théh [5] J.F Crllamberland andV.V.VIeeravalli, “IIDecentraIizeﬂaﬂ:tion in sensorb

. _— . - . networks”, IEEE Trans. Signal Procesvol.51, issue 2, pp.407-416, Fel
has exponential distribution. The hypothesis testing lemb 2003,
becomes [6] K. W. Choi, W. S. Jeon, and D. G. Jeong, “Sequential detacbf
5 5 cyclostationary signal for cognitive radio system&EE Trans. Wireless
Ho: fou ~N(0,0%); Hy : fi~N(0,0%)  (14)

REFERENCES

T. Banerjee, V. Kavitha and V. Sharma, “Energy efficiehage detection

Commun, vol.8, no.9, pp.4480-4485, Sep.2009.
) ] ) o ) ) [7] A. K. Jayaprakasam and V. Sharma, “Cooperative robusjuesetial
whered is random with exponential distribution and is the detection algorithms for spectrum sensing in cognitiveicadin Proc

variance of noise. We are not aware of this problem beiLr}]ige of ICUMT, Oct 2009.
S

. . . . S. M. Kay, “Fundamentals of Statistical Signal Processing: Detettio
handled via sequential hypothesis testing. However we Theory”, Englewood Cliffs:Prentice-Hall, vol.2, 1998.

Lai's algorithm in Section Il E where we tak@ to be the [9] N. Kundargi and A. Tewfik, “Hierarchical Sequential Detien In The
median of the distribution of. such thatP(9 > 91) _ 1/2. Context Of Dynamic Spectrum Access For Cognitive RadiosRroc of

. . . IEEE Electronics, Circuits and Systems, ICE@P.514-517, Dec 2007.
This seems a good choice féh to compromise between (1g] [ Laiy. Fan and H. V. Poor, "Quickest Detection in Caigre Radio: A

E[N|Hy] and E[N|Hy]. Sequential Change Detection Framewoik’Proc of IEEE GLOBECOM
We use this algorithm on an example where= 1,6 = Nov 2008.

= . [11] T. L. Lai, “Nearly optimal sequential tests of compesitypotheses”,
exp(l), Var(Zy) = 1, andL = 5. The performance of this ™ "the annals of Statisticwol.16, no.2, pp.856-886, 1988.

algorithm is compared with that of DualSPRT (with perfedi2] T. L. Lai, “Sequential analysis: Some classical proibdeand new
channel state information) in Taklellv (undHf)) and TabléV challenges (with discussion)Statistica Sinicavol.11, pp.303-408, 2001

. . [13] A. N. Mody, “Spectrum sensing of the DTV signals in theinity of the
(underH,). The Epp andPr 4 Were computed by simulations™ ™ ijeo carrier using Higher Order Statistics”, IEEE Std. 3@/0359r0,

each case by 100000 times and taking the average. We observeuly 2007.
that underH;, for high P4 this algorithm works better than [14] H. V. Poor and O. Hadjiliadis;Quickest Detection”, Cambridge Uni-

. . . versity Press, New York, 2009
DualSPRT with channel state information, but Bs4 de- [15] 7. Quan, S. Cui, H. V. Poor, A. Sayed, “Collaborative ali&nd sensing

creases DualSPRT becomes better and the difference iesreas for cognitive radios”,IEEE Signal Processing Magazineol.25, no.6,
For Hy, GLRSPRT is always worse and the difference is  PP-60-73, November 2008.

| 0 y 36] Y. Shei and Y. T. Su, “A sequential test based coopezatipectrum
almost constant. sensing scheme for cognitive radio#i, Proc. of IEEE Personal, Indoor
and Mobile Radio Communications PIMRSept 2008.

Epp Pra =01 | Pra=0.05 | Pra =0.01 [17] S. Shellhammer, “Numerical Spectrum Sensing Requergsi, IEEE
DualSPRT 1.669 2.497 4.753 Std.8022-06/0088r0, June 2006.
GLRSPRT 3.191 4.418 7.294 [18] Z. Tian and G. B. Giannakis, “A wavelet approach to widleth spectrum
TABLE IV sensing for cognitive radiosjh Proc. IEEE Int. Conf. Cog- nitive Radio

Oriented Wireless Networks and Commun (Crowngaluhe 2006.
[19] z. Tian and G. B. Giannakis, “Compressed sensing forel#hd
cognitive radios,in Proc. IEEE ICASSPvol.4, pp.1357-1360, Apr. 2007.

COMPARISON BETWEENGLRSPRTAND DUALSPRTWITH SLOW-FADING
BETWEEN PRIMARY AND SECONDARY USER UNDERHO.ENERGY
DETECTION STATISTIC IS USED AT THE SECONDARY NODES

[20] V. V. Veeravalli and J. Unnikrishnan, “Cooperative sfyam sensing for

— — — primary detection in cognitive radios|EEE journal on Selected Topics
DuifSJIJDRT PF;‘.MO'I PF?.%Z'OS PF§.41$'06 in Signal Processingpp.1827, Feb 2008.
GLRSPRT 1.62 3.065 WD) [21] A. Wald, “Sequential Analysis” John Wiley and Sons,New York, 1947.
- - . [22] A. Wald and J. Wolfowitz, “Optimum character of the seqtial
TABLE V probability ratio test”,The Annals of Statisticsol.19, pp.326-339, 1948.

COMPARISON BETWEENGLRSPRTAND DUALSPRTWITH SLOW-FADING
BETWEEN PRIMARY AND SECONDARY USER UNDERH1.ENERGY
DETECTION STATISTIC IS USED AT THE SECONDARY NODES

[23] T. Yucek and H. Arslan, “A survey of spectrum sensingoailhms
for cognitive radio applications” |[EEE Communications Surveys and
Tutorials vol.11, no.1, pp.116-130, March 2009.

V. CONCLUSIONS AND FUTURE WORK

We have proposed an energy efficient, distributed coopera-
tive spectrum sensing technique, DualSPRT which uses SPRT
at the cognitive radios as well as at the fusion center. We als
provide analysis of DualSPRT. Next we modify the algorithm
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