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Abstract—This paper considers cooperative spectrum sensing An extensive survey of spectrum sensing methods is pro-
in Cognitive Radios. In our previous work we have developed vided in [27]. Recent spectrum sensing schemes are based
DualSPRT, a distributed algorithm for cooperative spectium o pigher order statistics [114], wavelet transforms] [22§ an

sensing using Sequential Probability Ratio Test (SPRT) athte - . h
Cognitive Radios as well as at the fusion center. This aigatim  COMPressed sensing [23]. One can use a fixed sample size (one

works well, but is not optimal. In this paper we propose an Shot) detectors or sequential detectors ([6]. [10]) [2@F]].
improved algorithm- SPRT-CSPRT, which is motivated from Cu-  In fixed sample size detectors, the matched filter is optimal
mulative Sum Procedures (CUSUM). We analyse it theoreticdt.  when there is complete knowledge of the primary signal. When
We also_ modify this algorithm to handle uncertainties in SNRs the only a prior knowledge is about the noise power, then
and fading. . . : an energy detector is optimal in Neyman-Pearson criterion
Keywords- Cognitive Radio, Spectrum Sensing, Cooperatiie ;
o 4 8]. However sequential detectors perform better. A recent
Distributed Algorithm, SPRT. : ; .
survey is [12]. The sequential detectors can detect change

I. INTRODUCTION or test a hypothesis. Sequential hypothesis testing finds ou

Presently there is a scarcity of wireless spectrum worldwid/hether the primary is ON or OFF, while the sequential change
due to an increase in wireless services. Cognitive Radip@int detection detects the point when the primary turns ON
are proposed as a solution to this problem. They access i OFF). Sequential change detection is well studied (see
spectrum licensed to existing communication services- (pfel: (10, [12], [15] and the references therein). Howevee t
mary users) opportunistically and dynamically withoutsiag optimal golu'uon in th_e dlstr_lbuted setup is stlll_ not :_mmlle.
much interference to the primary users. This is made passiticauential hypothesis testing I([5L.] [9]. [20]. [28]) is tde
via spectrum sensing by the Cognitive Radios (secondé’f'}lﬂen the status of the_ primary channel is known to change
users), to gain knowledge about the spectrum usage by ¥§8Y Slowly, e.g., detecting occupancy of a TV channel. @sag
primary devices. However due to the strict spectrum sensifiidle TV bands by the Cognitive network is being targeted as
requirements[21] and the various wireless channel impaffi® first application for cognitive radio. In this setup Wld
ments spectrum sensing has become the main challenge facgguéntial Probability Ratio Test (SPRT)[25] provides the
by the Cognitive Radios. optimal performance for a single nodé ([1€], [26]). But the

Cooperative spectrum sensing ([24].[27]) in which differe COOPerative setup is not well explored. , _
Cognitive Radios communicate each other exploits spatial/Vé consider cooperative spectrum sensing using sequential
diversity among them effectively. This can largely solve thhypothesis testing. SPRT is used at both th_e secondary nodes
problems caused by shadowing, multipath fading and hidg@Rd the fusion center. This has been motivated by our pre-
node problem in spectrum sensing. Moreover it improves tHius algorithm DualCUSUM for change detection [6]. This
probability of miss detection and the probability of falsare. algorithm is called DualSPRT and has been studiedlin ([7],
Cooperative spectrum sensing ([17],[[27]) is called céizid, [9] and [20]). A; against[[9] and [20], in_[7] it has been
when a central unit gathers sensing data from the Cogniti¢g@lysed theoretically also and has been extended to cover
Radios and identifies the spectrum usage. It is distributedCfi@nnel and noise power uncertainties. Cooperative spactr
each local user uses the observations to make a local deci§i§"SINg via sequential detection is also considered_in. [28]
and sends this to the fusion center to make the final decisi@!t fusion center noise is not modelled in_[28]. Similarly
Secondary users can either transmit a soft decision (supnmbl Provides the optimal decentralized sequential hypsith
statistic) or a hard decisioR [17]. Soft decisions provieedr (€Sting algorithms without considering fusion center 80is
performance but at the cost of higher bandwidth consumptidigither does it consider SNR uncertainty and fading.
by the control channels between the Cognitive Radio and the/\lthough DualSPRT works well, it is not optimal. In this

fusion center. However as the number of cooperative us&&P€r we improve over DualSPRT. Furthermore we introduce
increases, hard decisions can perform as viell [4]. a new way of quantising the local nodes SPRT decisions. We

call this algorithm SPRT-CSPRT. We extend this algorithm to
This work is partially supported by a grant from MCIT, Govt. ladia cover SNR uncertainties and fading channels. We also peovid
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its theoretical analysis. Ill. SEQUENTIAL SPECTRUM SENSING ALGORITHMS
This paper is organised as follows. Section Il describes\ye first present DualSPRT which was introduced in our
the model. Section Ill starts with the DualSPRT algorithmyreyious work [7].
Then we provide SPRT-CSPRT and DualCSPRT algorithms i
developed in this paper. We compare their performance. Néxt DualSPRT Algorithm
we consider the receiver SNR uncertainty and slow fading1) Secondary nodé, runs SPRT algorithm,
channels. Section IV provides the theoretical analysis and
compares to simulations. Section V concludes the paper. Wo, =0

Wiy = Wiy +log [fr.0 (Xkg) /foq (Xki)], k> 1(3)

wheref ; is the density ofX}, ; underH; andf , is the
density of X}, ; under Hy.

Secondary nodé transmits a constarit; at time k if
Wi > v or transmitshy when Wy, ; < o, i.e.,

Il. MODEL

Consider a Cognitive Radio system with one primary trans-
mitter and L. secondary users. The local nodes sense the 2)
channel to detect the spectral holes. The decisions madeby t
secondary users are transmitted to a fusion node via a Neultip
Access Channel (MAC) for it to make the final decision. Yo = bilyw, ;>3 T boliw, 1 <v0)

Let X, ; be the observation made at secondary usat
time k. We assume tha{X,;, ¥ > 1} are independent
and identically distributed (i.i.d.) and that the obseiwvas
are independent across Cognitive Radios. Using the detecti
algorithm based on{X, ;, n < k} the secondary uset
transmitsY;, ; to the fusion node. We also assume that the
secondary nodes are synchronised so that the fusion nod
receivesY; = le Y1 + Zi, where{Z,} is i.i.d. receiver
noise, it will be assumed to be zero mean Gaussian with Fy = Fp—1 +1oglg1 (Yx) /g0 (Yr)], Fo=0, (4)
variances?. The fusion center observgs’.} and decides
upon the hypothesis.

The observation$ X ;} depend on whether the primary is
transmitting (Hypothesig#/;) or not (Hypothesisi):

wherev < 0 < 7, and 14 denotes the indicator
function of set A. Parameters, by, 1,70 are chosen
appropriately.

3) Physical layer fusion is used at the Fusion Centre, i.e.,
Yi = 321, Yii + Zi, whereZ,, is the i.i.d. noise at the
fusion node.

2) Finally, Fusion center runs SPRT:

whereg is the density ofZ;, + 1o andg; is the density
of Z + u1, po andpy being design parameters.
5) The fusion center decides about the hypothesis at time
N where
_ Zy1, k=1,2,..., underHy, .
X’“’l_{ hiSk + Zi1, k=1,2,..., underHy, @ N =inf{k: Fy > b1 or F}, < fo}
and 8y < 0 < By. The decision at timeV is H; if

whereh; is the channel gain of th&" user,S;, is the primary Fy > B;: otherwisef
N Z P1, 0-

signal andZ;, ; is the noise at th&" user at time:. We assume
{Zy1,k > 1} arei.i.d. . Let the fusion center makes a decisioB. SPRT-CSPRT Algorithm

attimeN. We assume thaV is much less than the coherence In DualSPRT given above, observations to the fusion center

time of the channel so that the slow fading assumption I$’h’a“are not always identically distributed. Till the first tramission

This means thth is rangiom but remains constant during the. | secondary nodes, these observations aredi(0, o2)

spectrum sensing d“”"“?”- . . whereN (a,b) is the Gaussian pdf with meanand variance

, The general problem is to develop a distributed a'go“th@? But after the transmission from the first local node and

in the above setup which solves the problem: till the transmission from the second node, they are i.i.d.
. A Gaussian with another mean and same variarfcélhus the

min Epp = E[N|H] , (2)  observations at the fusion center are no longer i.i.d. . &Sinc
subject t0Pp4 < a the optimality of SPRT is k_nown for i.i.d. observations ([26
[16]), DualSPRT is not optimal.

where H; is the true hypothesis, = 0,1 and Pr4 is the The following heuristic arguments provide the motivation

probability of false alarm, i.e., probability of making aamg of the proposed modifications to DualSPRT. A sample path of

decision. We will separately conside{N|H;] and E[N|H,]. the fusion center SPRT under the hypotheSisis given in

It is well known that for a single node casé & 1) Wald's Figure[d. If the SPRT sum defined inl (4) goes below zero it

SPRT performs optimally in terms of reducidg N|H,] and delays in crossing the positive threshgid Hence if we keep

E[N|H,] for a givenPr 4. Motivated by the good performanceSPRT sum at zero whenever it goes below zero, it reduces

of DualCUSUM in ([1], [6]) and the optimality of SPRT for Epp. This happens in CUSUM [([15]/ [16]). Similarly one

a single node, we proposed DualSPRTIin [7] and studied itan use a CUSUM type algorithm und&g. Thus we obtain

performance. Now we modify DualSPRT to SPRT-CSPRT artlde following algorithm,

DualCSPRT and we present the theoretical analysis of thisSteps (1)-(3) are same as in DualSPRT. The steps (4) and

algorithms. (5) are replaced by



4) Fusion center runs two algorithms:

bi if Wk,l S [’}/1,’71 —|—2A1),
1 _ 1 —+ b2 if Wk_’l S [’}/1 + 2A1,’71 +4A1),
Fl = (Fly +log g1 (Yi) /g0 (Yi)| + D))" (5) i A oA
Yo, = b}l If Wi € [’Yl + 6A1,OO), )
0 o B ’ b9 !f Wit € [70,7 — 2A0),
Fy = (Fy—y +loglg1 (Yi) /90 (Y& )] + Do), (6) b if Wiy € [yo — 200,70 — 44),
bg if Wk_’l € [’}/0 — 4A0,’}/0 — GAQ),
Fl = 0,FY = 0, where (z)* = max(0,z) and b if Wii € [y — 640, —0).
()~ = min(0,z). D; and D, are appropriately chosenwhere A; and A, are the parameters to be tuned at the
constants to introduce bias to the drift. Cognitive Radio. The expected drift unddy (Hy) is a good
5) The fusion center decides about the hypothesis at timleoice forA; (Ag).
N where We call the algorithm with the above two modifications as

SPRT-CSPRT (with ‘C’ as an indication about the motivation
from CUSUM).

If we use CSPRT at both the secondary nodes and the fusion
center with the proposed quantisation methodology (weitall
and By < 0 < Bi. The decision at timeV is H; if DualCSPRT) it works better as we will show via simulations
F3 > 1, otherwiseH,. in Section Il C. In the Section IV we will theoretically aryake

SPRT-CSPRT. As the performance of DualCSPRT (Table I) is

Under H,, (8) has a positive drift and hence it approaches thearer to that of SPRT-CSPRT, we analyse only SPRT-CSPRT.
thresholdB; quickly, but underfy, (@) will most probably be

hovering around zero. Similarly undéf,, (8) moves towards C- Performance Comparison

N =inf{k: Fl > B or F{ < o}

Bo, but underH; will be mostly around zero. This means that Throughout the paper we usg = —vy = v, /1 = —fo
Pr4 for this algorithm is expected to be less compared ®nd iy = —pp = p for the simplicity of the simulation and
DualSPRT. analysis.

We apply DualSPRT, SPRT-CSPRT and DualCSPRT on the
following example and compare theitpp for various values
0 ‘ of Pr,. We assume that the pre-change distributjgnand
o | the post change distributiofiy are Gaussian with different
means. This type of modelling is relevant when noise and
interference are log-normally distributed [24]. This is@la
useful model whetX, ; is the sum of energy of a large number
of observations at the secondary node at low SNR.
Parameters used for simulation are as follows: There are 5
nodes { = 5), fo, ~ N(0,1), for 1 <[ < L. Primary to
secondary channel gains are 0, -1.5, -2.5, -4 and -6 dB re-
spectively (the corresponding post change means of Gaussia
0 s ® rime ®) 1 o 5 distribution with variance 1 are 1, 0.84, 0.75, 0.63 and.0.5)
We assumeZ;, ~ N (0,5) and drift of DualSPRT and SPRT-
Fig. 1. Sample Path of}, under SPRT Sum and CSPRT Sum far=38, CSPRT at the fusion center is taken &sY;, with 1 being
A1 =20, =1anduo = —1 1. We also takeDy = Dy = 0, {b1, b}, 03,01} = {1,2,3,4},
{69,09,69, 09} = {—1,—-2, -3, —4} and b;=—bo=1(for Dual-
SPRT). Parametersand are chosen from a range of values
We consider one more improvement. When a local Cogné achieve a particulaPr 4. Table[] provides theZpp and
tive Radio SPRT sum crosses its threshold, it transtits,. Pr4 via simulations. We see a significant improvement in
This node transmits till the fusion center SPRT crosses tl#&,, compared to DualSPRT. The difference increase3as
threshold. If it is not a false alarm, then its SPRT sum keepgcreases. The performance undkgyris similar.
on increasing (decreasing). But if it is a false alarm, tHen t

sum will eventually move towards the other threshold. Hence Duifs%RT PF{;ZO'I PF‘glz?’O?'OOl PF?’;{’;?‘ >
instead of transmitting,/ b the Cognitive Radio can transmit SPRT-CSPRT 1552 5559 353673

a higher / lower value in an intelligent fashion. This should DualCSPRT 14.96 21.52 21.88
improve the performance. Thus we modify the step (3) in TABLE |

DualSPRT as follows. Secondary nobl&ransmits a constant CoMPARISON AMONGDUAL SPRT, SPRT-CSPRAND DUAL CSPRTFOR
from {b%, b%, b%, béll} at tlmek |f Wk,l Z Y1 or transmits from DIFFERENTSNR’S BETWEEN THE PRIMARY AND THE SECONDARY USERS

UNDER H
{69,69, 69,09} when Wy ; < o, as follows : !



i i Hyp Epp Pra=0.1] Pra=0.06 | Ppa =0.01

D. Unknown Received SNR and Fading H, | SPRT-CSPRT 1615 5150 98

In this section, now we consider the following setup. We us¢_H: GLR-SPRT 1.597 2.783 5.286

e e . [ Hi || GLR-CSPRT 1.138 2.221 4.533

energy detector at the Cognitive Radios, i.e, the obs«matl T I SPRT-CSPRTT 1533 5331 Tooe

Xk_,l_are a summation o_f_ energy of pasf; obser_vatlo_ns 2 GLR-SPRT 5.085 1957 =047

received by thel’® Cognitive Radio node. Then ifV; is Hy || GLR-CSPRT 2.424 3.734 5.72
reasonably largeX;; are approximately Gaussian. If the TABLE II

received SNR at the Cognitive Radio is not known then th@ompARISON AMONGSPRT-CSPRT, GLR-SPRAND GLR-CSPRTFOR
hypothesis testing problem can be approximated as a CharngéERENTSNR’s BETWEEN THE PRIMARY AND THE SECONDARY USERS

in mean of Gaussian distributions problem, where the néigan

underH; is not known. For this case inhl[7] we used composite The above scenario can also occur if the fading channel
sequential hypothesis testing proposed.in [11] at the skryn gain i; is not known to the Cognitive node Then under slow
nodes and used SPRT at the fusion node. This was called Glf&ding with Rayleigh distribution and using energy deteeto
SPRT [7]. Here, to take the advantage of CSPRT at the fusitire Cognitive Radiosfy; ~ N(0,02) and f1; ~ N(0,0?)
node and the new quantisation technique we modify GLR¢here # is random with exponential distribution anef is
SPRT [7] to GLR-CSPRT with appropriate local quantisationthe variance of noise. Here we use the GLR-CSPRT with the
Thus the secondary node’s hypothesis testing problem, SPBdmposite sequential hypothesis given[ih (8). The paramete
stopping criteria and decision are modified as follows, f, is chosen as the median of the distribution &f such
that P(§ > 6;) = 1/2. This seems a good choice féx

Ho:0="00; Hi:0=06:. ®)  to compromise betweeR[N|Ho] and E[N|H,]. We use the
wheref, = 0 and#; is appropriately chosen, example given in Section Il C with7, ~ A(0,1) and
. . 6 ~ exp(l). Table[ provides comparison of DualSPRT,
Ap—— Zl Xk) Zlog 14, (X&) 9) GLRSPRT and GLRCSPRT. Notice that the comment given
fgo k) — fo. (X)) | for the Epp in Table[l is also valid here.
=inf{n:W,; > g(en)} , (20) Hyp Epbp Pra=0.1 ] Ppa =0.07 | Pra=0.04
H; DualSPRT 1.74 1.948 2728
where g() is a time varying threshold and is the cost Hy GLR-SPRT 1.62 3.533 9.624
assigned for each observation. Its approximate expressi ngl GE')-R'ICSISD';T 0.94 1.004 4.225
is given in [11]. Also for Gaussiarfy and f1, 6 € [a1, as] e s é:?g? é:gié i:g;g
anq S, as the summation of observations,; upto time H, GLR-CSPRT 2.615 3192 1.937
n, 0y = mazx{ay, min[S,/n,as]}. At time N decide upon TABLE IlI

Hy or Hy, according a9y < 6* or O > 6" , wheref* iS  CompARISON AMONGDUALSPRT, GLR-SPREND GLR-CSPRTWITH
obtained by solvingl(@*, 600) — 1(9*, 601), and 1(97 )\) iS the DLOW FADING BETWEEN THE PRIMARY AND THE SECONDARY USERS
Kullback-Leibler information number. Here, as the thrddho I\V. PERFORMANCEANALYSIS OF SPRT-CSPRT

is a time varying and decreasing function, the quantlsauonE

@ is changed in the following way: iy > 0% and Pr4 analysis is same undéf; and Hy. Hence

we provide analysis unddi; only.

A. Pr 4 Analysis

1
2} :]]: %’“’l E {ggkc;A(kC?li)Q)A)) Let Py and P, denote the probability measure unddp

Ye = 7. ol I ’ (11) and H; respectively. Between each change of drift (which
b3 !f Wi € l9(ke2A), g(kelr)), occurs due to the change in number of Cognitive Radios
b}l if Wk,l S [g(kCA) )

transmitting to the fusion node and due to the change in
If 6y < 6* we will transmit from {59,53,59,5} under the value transmitted according to the quantisation ru)¢ (7
the same conditions. Heré\ is a tuning parameter andat the fusion center, undeff;, (8§) has a positive drift and
0 < 3A < 1. The choice of; in (8) affects the performancebehaves approximately like a normal random walk. (6) also
of E[N|H,] and E[N|H,] for the algorithm [®){(10). Ag); has a positive drift, but due to thein in its expression it
increasesE [N |H,| decreases an8[N|H;| increases. will stay around zero and as the event of crossing negative
The performance comparison of GLR-SPRT and GLRhreshold is rare {6) becomes a reflected random walk between
CSPRT for the example in Section Il C (with, ~ A/(0,1)) each drift change. The false alarm occurs when the reflected
is given in Tabl€ll. Here\ = 0.25. As the performance underrandom walk crosses its threshold. Undéy, let
H, and H, are different, we give the values under both. We
can see that GLR-SPRT is always inferior to GLR-CSPRT. For A 0
Epp underHy, interestingly GLR-CSPRT have lesser values 7o = nf{k =12 Fy > . (12)
than that of SPRT-CSPRT faPr4 > 0.02 (note that SPRT- We call 75 the first passage time at the fusion center. Lgt
CSPRT has complete knowledge of the SNRs), while undee the first passage time to thresheltly thel*"* node. Lett;,
Hy it has higher value than SPRT-CSPRT. be thek!" order statistics of. i.i.d. random variables. Then



vy B PFASim. PFAAnal. E'DDSim. EDDAnal.

Pr4 at the fusion node, wheil/; is the true hypothesis is

_ 15 [ 30 | 0.0072 0.0065 33.1585 31.7624
given by, 12 | 27 | 0.00675 | 0.00613 26.8036 24.9853
14 [ 26 | 0.01675 | 0.01624 30.0817 29.1322
Py, (False alarm) = Py, (False alarm before t1) (13)
TABLE IV
+ Py (False alarm between tiand tz) SPRT-CSPRTFOR DIFFERENTSNR’S BETWEEN THE PRIMARY AND THE
! SECONDARY USERS COMPARISON OFEpp AND Pr 4 OBTAINED VIA
+ Py, (False alarm between to and t3)+.... ANALYSIS AND SIMULATION . UNDER H
The main contribution to Pry comes from the first o EDL_’ AnaI.yS|s .
term. In this section we comput&pp theoretically.t;, i** order
statistics of L random variables, ;,1 < [ < L, is the first
Pu, (FA before t1) time at whichi local nodes are transmitting. Mean gfcan
- be find out from the method explained in [3], for the finding
= S Pl <kk<t) k' central moment of non i.i.dL' order statistics.

Betweent; andt;,, the drift at the fusion center is not

k=1
oo necessarily constant because there are four thresholdk (ea
= ZP(Tﬂ < klk <t1)P(t1 > k) (14) corresponds to different quantizations) at the secondadgn
k=1 The transmitted value changes after crossing each thiashol
In the following we compute® {75 > z|7s < t;} andP[t; > 01 = ba... — by Let#;, 1 < j < 3 be the time points at
k). It is shown in [18] that, which a node changes the transmitting values fégno b, 4

. betweent; andt; ;. We assume that the probability of false
51520 Po{rp > zlrp <t1} = exp(=Agz),2>0.  (15) alarm at the local nodes?;, is very small. Also with a high

_probability the secondary node with the lowest mearid (17)

By f|nd||ng SOIU“:T‘[,:S the mtegrbatl _eqtl;atlor; obta:cnf_edt V'&/ill transmit first, the node with the second lowest mean will
renewal argument; [19], we can obtain the meaR, of firs transmit second and so on. In the following we will make

passi\ﬁe;:)mf;ﬁ (asd(ils?ni '{1 (], [2%2' Lem(‘? be th; m[e__zan of computations under this approximations. The time diffeeen
7g With Fy = 5 and Sy, = log [g1 (Yk) /g0 (Yi)] + Do. From betweent!”" and /!", transmission can be calculated if we

the renewal arguments, by conditioning 5 = =: take the second assumptionXs/4;). We knowE(¢;] for every

L(s) = Fs(—s)L(0) + (16) i from an argument given earlier. Suppdée node transmits
3 at t!" instant and ifE[t;] + A1/6 < E[tiz1] then E[t}] =
/ L(s + z)dFs(z)dz + P[S > § — s]. Elt;] + Ay/6;. Similarly if E[t}] + A1/6 < E[tiy1] then
oF E[t?] = E[t}]+A1 /6, and so on. Let us represent the sequence

whereFs is the distribution ofS;, before the first transmission; _ {t1,t1,12,¢3 15, ...,13} (entry only for existing ones by
from the local nodes. By solving these equations numeyicalihe above criteria) by = {7}, 7%, Ts, ...}

we getAs =1/L(0). Let 1 be the mean drift at the fusion center betwégrand

_ Nextwe consider the distribution 6f. SPRT{W}.;,k > 0}  7,., ThusT}’s are the transition epochs at which the fusion
is a random walk at each secondary nadeWe assume center drift changes fromy,_1 to ju;. Also let Fy, = E[Fr, 1]
fox ~ N(0,0f) and frg o~ N(Gl,_a?), where 0, is the pe the mean value of}, just before the transition epodh.
post change mean angf is the variance fo_dth Cognitive  \ith the assumption of the very lowy,, at the local nodes and
Radio. Let mean and variance of the drift oft Cogni-  from the knowledge of the sequentae can easily calculate
tive Radio bed, = Ep, [log (fi (Xk1)/fo (Xx)] + 5f = 1, for eachTy,. Similarly Fiy1 = Fy -+ pu (E[Thsr] — E[T3)).
Varw, [log[fi1 (Xk1) / fo(Xk1)]] respectively. We know; > Then B

0. The timer,; for W}, at each local nodé to cross the B8 —F}
threshold~ satisfies E[r.,;] ~ ~/d, for large values ofy Epp =~ E[T;] + T
(needed for smallPr,4). Then by central limit theorem we

(18)

can show that at each node where _
2 2 8 4 : . — ﬂ — Fz : _ :
Tt~ N( 52177 22’7) _ (17) j=min{i: p; >0 and ” < E[T;1+1] — E[T}]}.
e !
Table[1M provides the simulation and corresponding analysi
Thus now [T#) equals values. We used the same set-up as in Section Il C (with
[e'S) L
Zr ~ N(0,1
~ Z(l — e Mek) H(l - d. (k) g .1
k=1 =1 V. CONCLUSION
where®,_, is the Cumulative Distribution Function ef, ;, We consider the problem of cooperative spectrum sensing
obtained from the Gaussian approximatibnl (17). in this paper. We provide improved algorithms SPRT-CSPRT

Table[1M provides comparison aPr4 via simulation and and DualCSPRT over a recent algorithm DualSPRT. We show
analysis. that these algorithms can provide significant improvements



We provide theoretical analysis of SPRT-CSPRT and compdze] Q. Zou, S. Zheng, A. Sayed, “Cooperative Sensing viausetial
to simulations. We further extend these algorithms to cover Detection”,to appear in IEEE Trans. Signal Proce2010
the case of unknown SNR and channel fading.
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