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Abstract—This paper considers cooperative spectrum sensing
in Cognitive Radios. In our previous work we have developed
DualSPRT, a distributed algorithm for cooperative spectrum
sensing using Sequential Probability Ratio Test (SPRT) at the
Cognitive Radios as well as at the fusion center. This algorithm
works well, but is not optimal. In this paper we propose an
improved algorithm- SPRT-CSPRT, which is motivated from Cu-
mulative Sum Procedures (CUSUM). We analyse it theoretically.
We also modify this algorithm to handle uncertainties in SNR’s
and fading.
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I. I NTRODUCTION

Presently there is a scarcity of wireless spectrum worldwide
due to an increase in wireless services. Cognitive Radios
are proposed as a solution to this problem. They access the
spectrum licensed to existing communication services (pri-
mary users) opportunistically and dynamically without causing
much interference to the primary users. This is made possible
via spectrum sensing by the Cognitive Radios (secondary
users), to gain knowledge about the spectrum usage by the
primary devices. However due to the strict spectrum sensing
requirements [21] and the various wireless channel impair-
ments spectrum sensing has become the main challenge faced
by the Cognitive Radios.

Cooperative spectrum sensing ([24], [27]) in which different
Cognitive Radios communicate each other exploits spatial
diversity among them effectively. This can largely solve the
problems caused by shadowing, multipath fading and hidden
node problem in spectrum sensing. Moreover it improves the
probability of miss detection and the probability of false alarm.
Cooperative spectrum sensing ([17], [27]) is called centralized,
when a central unit gathers sensing data from the Cognitive
Radios and identifies the spectrum usage. It is distributed if
each local user uses the observations to make a local decision
and sends this to the fusion center to make the final decision.
Secondary users can either transmit a soft decision (summary
statistic) or a hard decision [17]. Soft decisions provide better
performance but at the cost of higher bandwidth consumption
by the control channels between the Cognitive Radio and the
fusion center. However as the number of cooperative users
increases, hard decisions can perform as well [4].
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An extensive survey of spectrum sensing methods is pro-
vided in [27]. Recent spectrum sensing schemes are based
on higher order statistics [14], wavelet transforms [22] and
compressed sensing [23]. One can use a fixed sample size (one
shot) detectors or sequential detectors ([6], [10], [20], [27]).
In fixed sample size detectors, the matched filter is optimal
when there is complete knowledge of the primary signal. When
the only a prior knowledge is about the noise power, then
an energy detector is optimal in Neyman-Pearson criterion
[8]. However sequential detectors perform better. A recent
survey is [12]. The sequential detectors can detect change
or test a hypothesis. Sequential hypothesis testing finds out
whether the primary is ON or OFF, while the sequential change
point detection detects the point when the primary turns ON
(or OFF). Sequential change detection is well studied (see
[2], [10], [12], [15] and the references therein). However the
optimal solution in the distributed setup is still not available.
Sequential hypothesis testing ([5], [9], [20], [28]) is useful
when the status of the primary channel is known to change
very slowly, e.g., detecting occupancy of a TV channel. Usage
of idle TV bands by the Cognitive network is being targeted as
the first application for cognitive radio. In this setup Walds’
Sequential Probability Ratio Test (SPRT) [25] provides the
optimal performance for a single node ([16], [26]). But the
cooperative setup is not well explored.

We consider cooperative spectrum sensing using sequential
hypothesis testing. SPRT is used at both the secondary nodes
and the fusion center. This has been motivated by our pre-
vious algorithm DualCUSUM for change detection [6]. This
algorithm is called DualSPRT and has been studied in ([7],
[9] and [20]). As against [9] and [20], in [7] it has been
analysed theoretically also and has been extended to cover
channel and noise power uncertainties. Cooperative spectrum
sensing via sequential detection is also considered in [28].
But fusion center noise is not modelled in [28]. Similarly
[13] provides the optimal decentralized sequential hypothesis
testing algorithms without considering fusion center noise.
Neither does it consider SNR uncertainty and fading.

Although DualSPRT works well, it is not optimal. In this
paper we improve over DualSPRT. Furthermore we introduce
a new way of quantising the local nodes SPRT decisions. We
call this algorithm SPRT-CSPRT. We extend this algorithm to
cover SNR uncertainties and fading channels. We also provide
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its theoretical analysis.
This paper is organised as follows. Section II describes

the model. Section III starts with the DualSPRT algorithm.
Then we provide SPRT-CSPRT and DualCSPRT algorithms
developed in this paper. We compare their performance. Next
we consider the receiver SNR uncertainty and slow fading
channels. Section IV provides the theoretical analysis and
compares to simulations. Section V concludes the paper.

II. M ODEL

Consider a Cognitive Radio system with one primary trans-
mitter andL secondary users. TheL local nodes sense the
channel to detect the spectral holes. The decisions made by the
secondary users are transmitted to a fusion node via a Multiple
Access Channel (MAC) for it to make the final decision.

Let Xk,l be the observation made at secondary userl at
time k. We assume that{Xk,l, k ≥ 1} are independent
and identically distributed (i.i.d.) and that the observations
are independent across Cognitive Radios. Using the detection
algorithm based on{Xn,l, n ≤ k} the secondary userl
transmitsYk,l to the fusion node. We also assume that the
secondary nodes are synchronised so that the fusion node
receivesYk =

∑L
l=1

Yk,l + Zk, where{Zk} is i.i.d. receiver
noise, it will be assumed to be zero mean Gaussian with
varianceσ2. The fusion center observes{Yk} and decides
upon the hypothesis.

The observations{Xk,l} depend on whether the primary is
transmitting (HypothesisH1) or not (HypothesisH0):

Xk,l =

{

Zk,l, k = 1, 2, . . . , underH0,
hlSk + Zk,l, k = 1, 2, . . . , underH1,

(1)

wherehl is the channel gain of thelth user,Sk is the primary
signal andZk,l is the noise at thelth user at timek. We assume
{Zk,l, k ≥ 1} are i.i.d. . Let the fusion center makes a decision
at timeN . We assume thatN is much less than the coherence
time of the channel so that the slow fading assumption is valid.
This means thathl is random but remains constant during the
spectrum sensing duration.

The general problem is to develop a distributed algorithm
in the above setup which solves the problem:

minEDD
△
= E[N |Hi] , (2)

subject toPFA ≤ α

whereHi is the true hypothesis,i = 0, 1 and PFA is the
probability of false alarm, i.e., probability of making a wrong
decision. We will separately considerE[N |H1] andE[N |H0].
It is well known that for a single node case (L = 1) Wald’s
SPRT performs optimally in terms of reducingE[N |H1] and
E[N |H0] for a givenPFA. Motivated by the good performance
of DualCUSUM in ([1], [6]) and the optimality of SPRT for
a single node, we proposed DualSPRT in [7] and studied its
performance. Now we modify DualSPRT to SPRT-CSPRT and
DualCSPRT and we present the theoretical analysis of this
algorithms.

III. SEQUENTIAL SPECTRUM SENSING ALGORITHMS

We first present DualSPRT which was introduced in our
previous work [7].

A. DualSPRT Algorithm

1) Secondary node,l, runs SPRT algorithm,

W0,l = 0

Wk,l = Wk−1,l + log [f1,l (Xk,l) /f0,l (Xk,l )] , k ≥ 1 (3)

wheref1,l is the density ofXk,l underH1 andf0,l is the
density ofXk,l underH0.

2) Secondary nodel transmits a constantb1 at time k if
Wk,l ≥ γ1 or transmitsb0 whenWk,l ≤ γ0, i.e.,

Yk,l = b11{Wk,l≥γ1} + b01{Wk,l≤γ0}

where γ0 < 0 < γ1 and 1A denotes the indicator
function of set A. Parametersb1, b0, γ1, γ0 are chosen
appropriately.

3) Physical layer fusion is used at the Fusion Centre, i.e.,
Yk =

∑L
l=1

Yk,l+Zk, whereZk is the i.i.d. noise at the
fusion node.

4) Finally, Fusion center runs SPRT:

Fk = Fk−1 + log [g1 (Yk) /g0 (Yk )] , F0 = 0, (4)

whereg0 is the density ofZk+µ0 andg1 is the density
of Zk + µ1, µ0 andµ1 being design parameters.

5) The fusion center decides about the hypothesis at time
N where

N = inf{k : Fk ≥ β1 or Fk ≤ β0}

and β0 < 0 < β1. The decision at timeN is H1 if
FN ≥ β1; otherwiseH0.

B. SPRT-CSPRT Algorithm

In DualSPRT given above, observations to the fusion center
are not always identically distributed. Till the first transmission
from secondary nodes, these observations are i.i.d.∼ N (0, σ2)
whereN (a, b) is the Gaussian pdf with meana and variance
b. But after the transmission from the first local node and
till the transmission from the second node, they are i.i.d.
Gaussian with another mean and same varianceσ2. Thus the
observations at the fusion center are no longer i.i.d. . Since
the optimality of SPRT is known for i.i.d. observations ([26],
[16]), DualSPRT is not optimal.

The following heuristic arguments provide the motivation
of the proposed modifications to DualSPRT. A sample path of
the fusion center SPRT under the hypothesisH1 is given in
Figure 1. If the SPRT sum defined in (4) goes below zero it
delays in crossing the positive thresholdβ1. Hence if we keep
SPRT sum at zero whenever it goes below zero, it reduces
EDD. This happens in CUSUM ([15], [16]). Similarly one
can use a CUSUM type algorithm underH0. Thus we obtain
the following algorithm,

Steps (1)-(3) are same as in DualSPRT. The steps (4) and
(5) are replaced by



4) Fusion center runs two algorithms:

F 1
k = (F 1

k−1 + log [g1 (Yk) /g0 (Yk )] +D1)
+ (5)

F 0
k = (F 0

k−1 + log [g1 (Yk) /g0 (Yk )] +D0)
−, (6)

F 1
0 = 0, F 0

0 = 0, where (x)+ = max(0, x) and
(x)− = min(0, x). D1 andD0 are appropriately chosen
constants to introduce bias to the drift.

5) The fusion center decides about the hypothesis at time
N where

N = inf{k : F 1
k ≥ β1 or F 0

k ≤ β0}

and β0 < 0 < β1. The decision at timeN is H1 if
F 1
N ≥ β1, otherwiseH0.

UnderH1, (5) has a positive drift and hence it approaches the
thresholdβ1 quickly, but underH0, (5) will most probably be
hovering around zero. Similarly underH0, (6) moves towards
β0, but underH1 will be mostly around zero. This means that
PFA for this algorithm is expected to be less compared to
DualSPRT.
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Fig. 1. Sample Path ofFk under SPRT Sum and CSPRT Sum forγ1 = 8,
β1 = 20, µ1 = 1 andµ0 = −1

We consider one more improvement. When a local Cogni-
tive Radio SPRT sum crosses its threshold, it transmitsb1/b0.
This node transmits till the fusion center SPRT crosses the
threshold. If it is not a false alarm, then its SPRT sum keeps
on increasing (decreasing). But if it is a false alarm, then the
sum will eventually move towards the other threshold. Hence
instead of transmittingb1/ b0 the Cognitive Radio can transmit
a higher / lower value in an intelligent fashion. This should
improve the performance. Thus we modify the step (3) in
DualSPRT as follows. Secondary nodel transmits a constant
from {b11, b

1
2, b

1
3, b

1
4} at timek if Wk,l ≥ γ1 or transmits from

{b01, b
0
2, b

0
3, b

0
4} whenWk,l ≤ γ0, as follows :

Yk,l =















































b11 if Wk,l ∈ [γ1, γ1 + 2∆1),
b12 if Wk,l ∈ [γ1 + 2∆1, γ1 + 4∆1),
b13 if Wk,l ∈ [γ1 + 4∆1, γ1 + 6∆1),
b14 if Wk,l ∈ [γ1 + 6∆1,∞),
b01 if Wk,l ∈ [γ0, γ0 − 2∆0),
b02 if Wk,l ∈ [γ0 − 2∆0, γ0 − 4∆0),
b03 if Wk,l ∈ [γ0 − 4∆0, γ0 − 6∆0),
b04 if Wk,l ∈ [γ0 − 6∆0,−∞).

(7)

where ∆1 and ∆0 are the parameters to be tuned at the
Cognitive Radio. The expected drift underH1 (H0) is a good
choice for∆1 (∆0).

We call the algorithm with the above two modifications as
SPRT-CSPRT (with ‘C’ as an indication about the motivation
from CUSUM).

If we use CSPRT at both the secondary nodes and the fusion
center with the proposed quantisation methodology (we callit
DualCSPRT) it works better as we will show via simulations
in Section III C. In the Section IV we will theoretically analyse
SPRT-CSPRT. As the performance of DualCSPRT (Table I) is
nearer to that of SPRT-CSPRT, we analyse only SPRT-CSPRT.

C. Performance Comparison

Throughout the paper we useγ1 = −γ0 = γ, β1 = −β0

andµ1 = −µ0 = µ for the simplicity of the simulation and
analysis.

We apply DualSPRT, SPRT-CSPRT and DualCSPRT on the
following example and compare theirEDD for various values
of PFA. We assume that the pre-change distributionf0 and
the post change distributionf1 are Gaussian with different
means. This type of modelling is relevant when noise and
interference are log-normally distributed [24]. This is also a
useful model whenXk,l is the sum of energy of a large number
of observations at the secondary node at low SNR.

Parameters used for simulation are as follows: There are 5
nodes (L = 5), f0,l ∼ N (0, 1), for 1 ≤ l ≤ L. Primary to
secondary channel gains are 0, -1.5, -2.5, -4 and -6 dB re-
spectively (the corresponding post change means of Gaussian
distribution with variance 1 are 1, 0.84, 0.75, 0.63 and 0.5).
We assumeZk ∼ N (0, 5) and drift of DualSPRT and SPRT-
CSPRT at the fusion center is taken as2µYk, with µ being
1. We also takeD0 = D1 = 0, {b11, b

1
2, b

1
3, b

1
4} = {1, 2, 3, 4},

{b01, b
0
2, b

0
3, b

0
4} = {−1,−2,−3,−4} and b1=−b0=1(for Dual-

SPRT). Parametersγ andβ are chosen from a range of values
to achieve a particularPFA. Table I provides theEDD and
PFA via simulations. We see a significant improvement in
EDD compared to DualSPRT. The difference increases asPFA

decreases. The performance underH0 is similar.

EDD PFA = 0.1 PFA = 0.001 PFA = 5e − 5

DualSPRT 19.74 31.37 34.177

SPRT-CSPRT 15.52 22.59 23.673

DualCSPRT 14.96 21.52 21.88

TABLE I
COMPARISON AMONGDUAL SPRT, SPRT-CSPRTAND DUAL CSPRTFOR
DIFFERENTSNR’S BETWEEN THE PRIMARY AND THE SECONDARY USERS,

UNDERH1



D. Unknown Received SNR and Fading

In this section, now we consider the following setup. We use
energy detector at the Cognitive Radios, i.e, the observations
Xk,l are a summation of energy of pastN1 observations
received by thelth Cognitive Radio node. Then ifN1 is
reasonably large,Xk,l are approximately Gaussian. If the
received SNR at the Cognitive Radio is not known then the
hypothesis testing problem can be approximated as a change
in mean of Gaussian distributions problem, where the meanθ1
underH1 is not known. For this case in [7] we used composite
sequential hypothesis testing proposed in [11] at the secondary
nodes and used SPRT at the fusion node. This was called GLR-
SPRT [7]. Here, to take the advantage of CSPRT at the fusion
node and the new quantisation technique we modify GLR-
SPRT [7] to GLR-CSPRT with appropriate local quantisation.
Thus the secondary node’s hypothesis testing problem, SPRT,
stopping criteria and decision are modified as follows,

H0 : θ = θ0 ; H1 : θ ≥ θ1 . (8)

whereθ0 = 0 andθ1 is appropriately chosen,

Wn,l = max

[

n
∑

k=1

log
f
θ̂n
(Xk)

fθ0(Xk)
,

n
∑

k=1

log
f
θ̂n
(Xk)

fθ1(Xk)

]

, (9)

N = inf {n : Wn,l ≥ g(cn)} , (10)

where g() is a time varying threshold andc is the cost
assigned for each observation. Its approximate expression
is given in [11]. Also for Gaussianf0 and f1, θ ∈ [a1, a2]
and Sn as the summation of observationsXk,l upto time
n, θ̂n = max{a1,min[Sn/n, a2]}. At time N decide upon
H0 or H1 according aŝθN ≤ θ∗ or θ̂N ≥ θ∗ , whereθ∗ is
obtained by solvingI(θ∗, θ0) = I(θ∗, θ1), andI(θ, λ) is the
Kullback-Leibler information number. Here, as the threshold
is a time varying and decreasing function, the quantisation
(7) is changed in the following way: if̂θN ≥ θ∗

Yk,l =















b11 if Wk,l ∈ [g(kc), g(kc3∆)),
b12 if Wk,l ∈ [g(kc3∆), g(kc2∆)),
b13 if Wk,l ∈ [g(kc2∆), g(kc∆)),
b14 if Wk,l ∈ [g(kc∆),∞).

(11)

If θ̂N ≤ θ∗ we will transmit from {b01, b
0
2, b

0
3, b

0
4} under

the same conditions. Here∆ is a tuning parameter and
0 ≤ 3∆ ≤ 1. The choice ofθ1 in (8) affects the performance
of E[N |H0] andE[N |H1] for the algorithm (9)-(10). Asθ1
increases,E[N |H0] decreases andE[N |H1] increases.

The performance comparison of GLR-SPRT and GLR-
CSPRT for the example in Section III C (withZk ∼ N (0, 1))
is given in Table II. Here∆ = 0.25. As the performance under
H1 andH0 are different, we give the values under both. We
can see that GLR-SPRT is always inferior to GLR-CSPRT. For
EDD underH1, interestingly GLR-CSPRT have lesser values
than that of SPRT-CSPRT forPFA > 0.02 (note that SPRT-
CSPRT has complete knowledge of the SNRs), while under
H0 it has higher value than SPRT-CSPRT.

Hyp EDD PFA = 0.1 PFA = 0.05 PFA = 0.01

H1 SPRT-CSPRT 1.615 2.480 4.28

H1 GLR-SPRT 1.597 2.783 5.286

H1 GLR-CSPRT 1.138 2.221 4.533

H0 SPRT-CSPRT 1.533 2.334 4.225

H0 GLR-SPRT 2.985 4.257 7.047

H0 GLR-CSPRT 2.424 3.734 5.72

TABLE II
COMPARISON AMONGSPRT-CSPRT, GLR-SPRTAND GLR-CSPRTFOR
DIFFERENTSNR’S BETWEEN THE PRIMARY AND THE SECONDARY USERS

The above scenario can also occur if the fading channel
gainhl is not known to the Cognitive nodel. Then under slow
fading with Rayleigh distribution and using energy detector at
the Cognitive Radios,f0,l ∼ N (0, σ2) and f1,l ∼ N (θ, σ2)
where θ is random with exponential distribution andσ2 is
the variance of noise. Here we use the GLR-CSPRT with the
composite sequential hypothesis given in (8). The parameter
θ1 is chosen as the median of the distribution ofθ, such
that P (θ ≥ θ1) = 1/2. This seems a good choice forθ1
to compromise betweenE[N |H0] andE[N |H1]. We use the
example given in Section III C withZk ∼ N (0, 1) and
θ ∼ exp(1). Table III provides comparison of DualSPRT,
GLRSPRT and GLRCSPRT. Notice that the comment given
for theEDD in Table II is also valid here.

Hyp EDD PFA = 0.1 PFA = 0.07 PFA = 0.04

H1 DualSPRT 1.74 1.948 2.728

H1 GLR-SPRT 1.62 3.533 9.624

H1 GLR-CSPRT 0.94 1.004 4.225

H0 DualSPRT 1.669 1.891 2.673

H0 GLR-SPRT 3.191 3.849 4.823

H0 GLR-CSPRT 2.615 3.192 4.237

TABLE III
COMPARISON AMONGDUAL SPRT, GLR-SPRTAND GLR-CSPRTWITH

DLOW FADING BETWEEN THE PRIMARY AND THE SECONDARY USERS

IV. PERFORMANCEANALYSIS OF SPRT-CSPRT

EDD andPFA analysis is same underH1 andH0. Hence
we provide analysis underH1 only.

A. PFA Analysis

Let P0 and P1 denote the probability measure underH0

and H1 respectively. Between each change of drift (which
occurs due to the change in number of Cognitive Radios
transmitting to the fusion node and due to the change in
the value transmitted according to the quantisation rule (7))
at the fusion center, underH1, (5) has a positive drift and
behaves approximately like a normal random walk. (6) also
has a positive drift, but due to themin in its expression it
will stay around zero and as the event of crossing negative
threshold is rare (6) becomes a reflected random walk between
each drift change. The false alarm occurs when the reflected
random walk crosses its threshold. UnderH1, let

τβ
△
= inf{k ≥ 1 : F 0

k ≥ β}. (12)

We call τβ the first passage time at the fusion center. Letτγ,l
be the first passage time to thresholdγ by thelth node. Lettk
be thekth order statistics ofL i.i.d. random variables. Then



PFA at the fusion node, whenH1 is the true hypothesis is
given by,

PH1
(False alarm) = PH1

(False alarm before t1) (13)

+PH1
(False alarm between t1and t2)

+PH1
(False alarm between t2 and t3)+....

The main contribution toPFA comes from the first
term.

PH1
(FA before t1)

=

∞
∑

k=1

P (τβ ≤ k, k < t1)

=

∞
∑

k=1

P (τβ ≤ k|k < t1)P (t1 > k) (14)

In the following we computeP0{τβ > x|τβ < t1} andP [t1 >
k]. It is shown in [18] that,

lim
β→∞

P0{τβ > x|τβ < t1} = exp(−λβx), x > 0. (15)

By finding solution to the integral equation obtained via
renewal arguments [19], we can obtain the mean1/λβ of first
passage time,τβ (as done in [1], [2]). LetL(s) be the mean of
τβ with F 0

0 = s andSk = log [g1 (Yk) /g0 (Yk)] +D0. From
the renewal arguments, by conditioning onS0 = z:

L(s) = FS(−s)L(0) + (16)
∫ β

−s

L(s+ z)dFS(z)dz + P [S > β − s].

whereFS is the distribution ofSk before the first transmission
from the local nodes. By solving these equations numerically,
we getλβ = 1/L(0).

Next we consider the distribution oft1. SPRT{Wk,l, k ≥ 0}
is a random walk at each secondary nodel. We assume
f0,l ∼ N (0, σ2

l ) and f1,l ∼ N (θl, σ
2
l ), where θl is the

post change mean andσ2
l is the variance forlth Cognitive

Radio. Let mean and variance of the drift oflth Cogni-
tive Radio beδl = EH1

[log (f1 (Xk,l) /f0 (Xk,l))] , Σ2
l =

V arH1
[log [f1 (Xk,l) /f0 (Xk,l )]] respectively. We knowδl >

0. The timeτγ,l for Wk,l at each local nodel to cross the
thresholdγ satisfiesE[τγ,l] ∼ γ/δl for large values ofγ
(needed for smallPFA). Then by central limit theorem we
can show that at each nodel

τγ,l ∼ N (
2σ2

l γ

θ2l ,
,
8σ4

l γ

θ4l
) . (17)

Thus now (14) equals

≈
∞
∑

k=1

(1− e−λβk)
L
∏

l=1

(1− Φτγ,l
(k))

whereΦτγ,l
is the Cumulative Distribution Function ofτγ,l,

obtained from the Gaussian approximation (17).
Table IV provides comparison ofPFA via simulation and

analysis.

γ β PFASim. PFAAnal. EDDSim. EDDAnal.

15 30 0.0072 0.0065 33.1585 31.7624

12 27 0.00675 0.00613 26.8036 24.9853

14 26 0.01675 0.01624 30.0817 29.1322

TABLE IV
SPRT-CSPRTFOR DIFFERENTSNR’S BETWEEN THE PRIMARY AND THE

SECONDARY USERS: COMPARISON OFEDD AND PFA OBTAINED VIA

ANALYSIS AND SIMULATION . UNDERH1

B. EDD Analysis

In this section we computeEDD theoretically.ti, ith order
statistics of L random variablesτγ,l, 1 ≤ l ≤ L, is the first
time at whichi local nodes are transmitting. Mean ofti can
be find out from the method explained in [3], for the finding
kth central moment of non i.i.d.Lth order statistics.

Betweenti and ti+1 the drift at the fusion center is not
necessarily constant because there are four thresholds (each
corresponds to different quantizations) at the secondary node.
The transmitted value changes after crossing each threshold,
b1 → b2 . . . → b4. Let tji , 1 ≤ j ≤ 3 be the time points at
which a node changes the transmitting values frombj to bj+1

betweenti and ti+1. We assume that the probability of false
alarm at the local nodes,Pfa is very small. Also with a high
probability the secondary node with the lowest mean in (17)
will transmit first, the node with the second lowest mean will
transmit second and so on. In the following we will make
computations under this approximations. The time difference
betweentjthi and tjthi+1

transmission can be calculated if we
take the second assumption (=∆1/δl). We knowE[ti] for every
i from an argument given earlier. Supposelth node transmits
at tthi instant and ifE[ti] + ∆1/δl < E[ti+1] thenE[t1i ] =
E[ti] + ∆1/δl. Similarly if E[t1i ] + ∆1/δl < E[ti+1] then
E[t2i ] = E[t1i ]+∆1/δl and so on. Let us represent the sequence
t = {t1, t11, t

2
1, t

3
1, t2, ..., t

5
5} (entry only for existing ones by

the above criteria) byT = {T1, T2, T3, ...}.
Let µk be the mean drift at the fusion center betweenTk and

Tk+1. ThusTk’s are the transition epochs at which the fusion
center drift changes fromµk−1 to µk. Also let F̄k = E[FTk−1]
be the mean value ofFk just before the transition epochTk.
With the assumption of the very lowPfa at the local nodes and
from the knowledge of the sequencet we can easily calculate
µk for eachTk. Similarly F̄k+1 = F̄k+µk(E[Tk+1]−E[Tk]).
Then,

EDD ≈ E[Tj] +
β − F̄j

µj

(18)

where

j = min{i : µi > 0 and
β − F̄i

µi

< E[Ti+1]− E[Ti]}.

Table IV provides the simulation and corresponding analysis
values. We used the same set-up as in Section III C (with
Zk ∼ N (0, 1))

V. CONCLUSION

We consider the problem of cooperative spectrum sensing
in this paper. We provide improved algorithms SPRT-CSPRT
and DualCSPRT over a recent algorithm DualSPRT. We show
that these algorithms can provide significant improvements.



We provide theoretical analysis of SPRT-CSPRT and compare
to simulations. We further extend these algorithms to cover
the case of unknown SNR and channel fading.

REFERENCES

[1] T. Banerjee, V. Kavitha and V. Sharma, “Energy efficient change detection
over a MAC using Physical layer fusion”,in Proc. IEEE Conference,
ICASSP, April 2008.

[2] T. Banerjee, V. Sharma, V. Kavitha and A. K. JayaPrakasam, “Gener-
alized Analysis of a Distributed Energy Efficient Algorithmfor Change
Detection”, to appear in IEEE Trans. on Wireless Communications.

[3] H. M. Barakat and Y. H. Abdelkader, “Computing the moments of order
statistics from nonidentical random variables”,Statistical Methods and
applications, Springer-Verlag, 2003.

[4] J. F. Chamberland and V. V. Veeravalli, “Decentralized detection in sensor
networks”, IEEE Trans. Signal Proces., vol.51, issue 2, pp.407-416, Feb
2003.

[5] K. W. Choi, W. S. Jeon, and D. G. Jeong, “Sequential detection of
cyclostationary signal for cognitive radio systems,”IEEE Trans. Wireless
Commun., vol.8, no.9, pp.4480-4485, Sep 2009.

[6] A. K. Jayaprakasam and V. Sharma, “Cooperative robust sequential
detection algorithms for spectrum sensing in cognitive radio”, in Proc
of ICUMT, Oct 2009.

[7] Jithin. K. S and V. Sharma, “Cooperative distributed sequential spectrum
sensing”,Submitted to National Conference on Communication (NCC),
Jan 2011.

[8] S. M. Kay, “Fundamentals of Statistical Signal Processing: Detection
Theory”, Englewood Cliffs:Prentice-Hall, vol.2, 1998.

[9] N. Kundargi and A. Tewfik, “Hierarchical Sequential Detection In The
Context Of Dynamic Spectrum Access For Cognitive Radios”,in Proc of
IEEE Electronics, Circuits and Systems, ICECS, pp.514-517, Dec 2007.

[10] L. Lai,Y. Fan and H. V. Poor, ”Quickest Detection in Cognitive Radio: A
Sequential Change Detection Framework”,in Proc of IEEE GLOBECOM,
Nov 2008.

[11] T. L. Lai, “Nearly optimal sequential tests of composite hypotheses”,
The Annals of Statistics, vol.16, no.2, pp.856-886, 1988.

[12] T. L. Lai, “Sequential analysis: Some classical problems and new
challenges (with discussion)”,Statistica Sinica, vol.11, pp.303-408, 2001

[13] Y. Mei, “Asymptotic optimality theory for decentralized sequential
hypothesis testing in sensor networks”,IEEE Trans. Information Theory,
vol.54, no.5, pp.2072-2089, May 2008.

[14] A. N. Mody, “Spectrum sensing of the DTV signals in the vicinity of the
video carrier using Higher Order Statistics”, IEEE Std. 8022-07/0359r0,
July 2007.

[15] E. S. Page, “Continuous inspection schemes”,Biometrika, vol. 41,
no.1/2, pp.100-115, June 1954.

[16] H. V. Poor and O. Hadjiliadis,“Quickest Detection”,Cambridge Uni-
versity Press, New York, 2009.

[17] Z. Quan, S. Cui, H. V. Poor, A. Sayed, “Collaborative wideband sensing
for cognitive radios”,IEEE Signal Processing Magazine, vol.25, no.6,
pp.60-73, November 2008.

[18] H. Rootzen, “Maxima and exceedances of stationary Markov chains”,
Adv. in Appl. Prob., vol.20, no.2, pp.371-390, Jun 1998.

[19] S. Ross,“Stochastic Processes”, 2nd Ed., Wiley, 1996.
[20] Y. Shei and Y. T. Su, “A sequential test based cooperative spectrum

sensing scheme for cognitive radios”,in Proc. of IEEE Personal, Indoor
and Mobile Radio Communications PIMRC, Sept 2008.

[21] S. Shellhammer, “Numerical Spectrum Sensing Requirements”, IEEE
Std.8022-06/0088r0, June 2006.

[22] Z. Tian and G. B. Giannakis, “A wavelet approach to wideband spectrum
sensing for cognitive radios,”in Proc. IEEE Int. Conf. Cog- nitive Radio
Oriented Wireless Networks and Commun (Crowncom), June 2006.

[23] Z. Tian and G. B. Giannakis, “Compressed sensing for wideband
cognitive radios,”in Proc. IEEE ICASSP, vol.4, pp.1357-1360, Apr. 2007.

[24] V. V. Veeravalli and J. Unnikrishnan, “Cooperative spectrum sensing for
primary detection in cognitive radios,”IEEE journal on Selected Topics
in Signal Processing, pp.1827, Feb 2008.

[25] A. Wald, “Sequential Analysis”,John Wiley and Sons,New York, 1947.
[26] A. Wald and J. Wolfowitz, “Optimum character of the sequential

probability ratio test”,The Annals of Statistics, vol.19, pp.326-339, 1948.
[27] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms

for cognitive radio applications” ,IEEE Communications Surveys and
Tutorials, vol.11, no.1, pp.116-130, March 2009.

[28] Q. Zou, S. Zheng, A. Sayed, “Cooperative Sensing via Sequential
Detection”, to appear in IEEE Trans. Signal Proces., 2010


	I Introduction
	II Model
	III Sequential Spectrum Sensing Algorithms
	III-A DualSPRT Algorithm
	III-B SPRT-CSPRT Algorithm
	III-C Performance Comparison
	III-D Unknown Received SNR and Fading

	IV Performance Analysis of SPRT-CSPRT
	IV-A PFA Analysis
	IV-B EDD Analysis

	V Conclusion
	References

