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In this paper, we relate the coupling of Markov chains, at the basis of perfect sampling meth-
ods, with damage spreading, which captures the chaotic nature of stochastic dynamics. For two-
dimensional spin glasses and hard spheres we point out that the obstacle to the application of
perfect-sampling schemes is posed by damage spreading rather than by the survey problem of the
entire configuration space. We find dynamical damage-spreading transitions deeply inside the para-
magnetic and liquid phases, and we show that critical values of the transition temperatures and
densities depend on the coupling scheme. We discuss our findings in the light of a classic proof that
for arbitrary Monte Carlo algorithms damage spreading can be avoided through non-Markovian
coupling schemes.

PACS numbers:

I. INTRODUCTION

Chaos manifests itself in Hamiltonian dynamical sys-
tems when any two nearby initial configurations drift
apart with time. Chaos can also be defined for cellu-
lar automata and for Markov chain algorithms. In these
dynamical systems, following Kauffman [1], the drifting-
apart of configurations is termed “damage spreading”. In
contrast, for “regular” dynamics, two nearby initial con-
figurations become identical after a finite time, and re-
main indistinguishable from then on. For Markov-chain
Monte Carlo algorithms, the closely related case where
the entire space of initial configurations becomes identical
is termed “coupling”. Once it has coupled, the Markov
chain has lost all correlations with the initial configura-
tion. The coupling of Markov chains has risen to great
prominence when Propp and Wilson used it for a per-
fect sampling method for Markov chains named “Cou-
pling From The Past” (CFTP)[2]. When applicable, this
method overcomes the problem of estimating the corre-
lation time of a Monte Carlo calculation. In the present
article, we shall discuss the fruitful connection between
damage spreading and coupling [3].

In systems with N elements (spins, hard spheres, etc),
the configuration space generally grows exponentially
with N , and CFTP thus faces two distinct challenges.
First, it must survey the entire configuration space in
order to prove coupling. Second, it must avoid damage
spreading which would cause the coupling time to ex-

plode: it would become much larger than the correlation
time as any two configurations have a very small proba-
bility for finding each other in a large space.

The surveying problem is avoided in systems with
a special property called “partial order”, as for ex-
ample the ferromagnetic Ising model under heat-bath
dynamics[2, 4]. For more general systems (without par-
tial order, but with local update algorithms), such as spin
glasses and hard spheres, a recent “patch” algorithm in-
spired by numerical block scaling ideas [3, 5] allows us to
rigorously follow a superset of all initial conditions until

it couples. This algorithm generates only modest over-
heads of memory and CPU time [3]. It was found that
the coupling can be established after a time evolution
very close to the coupling time.

The second problem, the explosion of the coupling time
related to damage spreading, poses the veritable obsta-
cle to the application of CFTP ideas. Damage spreading
has been studied in many physical systems, in partic-
ular spin glasses [6]. In several spin glass models with
heat-bath dynamics, it is now well established that a dy-
namical damage-spreading transition occurs at a critical
temperature, βds, located in the paramagnetic phase[7]:
the dynamic is regular at temperatures higher than 1/βds

and chaotic at lower temperatures. Even for the two-
dimensional ±J Ising spin glass, which has a thermody-
namic phase transition at T = 0 [8–11], the transition to
chaos takes place at finite temperature [7]. We study in
this paper the damage spreading of spin glasses and hard
spheres for different algorithms.

II. RANDOM WALKS IN HIGH DIMENSIONS

Before analyzing two-dimensional spin glasses and
hard spheres, we illustrate coupling and damage spread-
ing in a simple Markov chain algorithm that can be in-
terpreted either as a random walk in an N -dimensional
hypercubic lattice, as the dynamics of N distinguish-
able non-interacting particles in a one-dimensional lattice
of length L, or as N non-interacting Potts spins with
L states. For the random walk (see Fig. 1), each N -
dimensional lattice site i = {i0, . . . , iN−1} is described
by integers ik ∈ {0, . . . , L − 1} with periodic boundary
conditions in the ik . The particle can hop from site i to
one of i’s nearest neighbors in direction k, j = i±δk, with
δk = {0, . . . , 1, 0, . . .} (periodic boundary conditions are
again understood). The probability for moving from i to
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j is

p(i → j) =











1
3N

for j = i± δk
1
3

for j = i

0 otherwise

. (1)

The simulation thus samples at each time step one dimen-
sion, k, among the N available ones (it moves in “x”, or
“y” or “z”, etc). In dimension k, it then hops with prob-
abilities 1/3 each to the left or to the right, or remains
on the same site. Equation (1) also describes N distin-
guishable non-interacting particles on a one-dimensional
lattice of length L, again with periodic boundary condi-
tions: At time t, a randomly chosen particle k hops to
the left or to the right, or it remains on the same site,
each with probability 1/3, as above.
A two-configuration coupling is a random process

p̃(i → j, i′ → j′) for the joint evolution of two random
walks such that integrating over one of them yields the
original random walk of Eq. (1) for the other. After they
meet, the two configurations evolve in the same way. The
simplest choice for a coupling is the product ansatz,

p̃(i → j, i′ → j′) =











p(i → j)p(i′ → j′) if i 6= i′

p(i → j) if i = i′, j = j′

0 otherwise

,

(2)
where the two random walks evolve independently from
each other if they are on different sites i and i′, but stay
together once they have met (j = j′ if i = i′). To imple-
ment this coupling for any number of configurations, one
samples at each time step independent random moves at
each site, so that particles on the same site experience the
same randomness. In the above-mentioned representa-
tion of particles on the one-dimensional line, we consider
the coupling of two N -particle systems, again described

τ
coup

t

i1
0

L i20
L

FIG. 1: Coupling of random walks in a periodic N-
dimensional hypercubic lattice of length L. After the time
τcoup, the two random walks evolve identically. The chaotic
coupling of Eq. (2) is shown. For the regular coupling of
Eq. (3), the displacement at time t is in the same direction k,
and it is a function of ik only.

by Eq. (2), as the independent evolution, at time t, of
the LN possible configurations of the system. Naturally,
the coupling time scales as LN whereas the correlation
time (in sweeps) behaves as L2.

An alternative coupling consists in sampling, at time
t, one dimension k common to all random walks. The
two-configurations coupling scheme is then

p̃(ik → jk, i
′
k → j′k)

=











p(ik → jk)p(i
′
k → j′k) if ik 6= i′k

p(ik → jk) if ik = i′k, jk = j′k
0 otherwise

(3)

so that two configurations i and j with ik = i′k will pre-
serve this common coordinate (jk = j′k). In the rep-
resentation of N particles on a one-dimensional lattice,
the same particle k is selected for each configuration,
and for two different configurations, the particles labelled
k stay together once they have met on the same site.
The dynamics is then regular and the coupling time is
τcoup/N ∼ a logN (see Fig. 2). The logarithmic behav-
ior is explained by the fact that particles move indepen-
dently from each other, the coupling time for the entire
system is thus the maximum of the N coupling times for
each particle.
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FIG. 2: Chaotic and regular couplings for the random walk
in a N-dimensional hypercubic lattice of length L = 5 (see
Eqs (2) and (3), respectively). The random process for a
single random walk is defined by Eq. (1) in both cases. Inset :
Number of configurations vs. time as a function of the number
Ninit of initial configurations, for N = 6, L = 5 for the chaotic
coupling. The same realization of the coupling of Eq. (3) is
used for all runs.

In conclusion, we see that the sameN -dimensional ran-
dom walk of Eq. (1), with a correlation time of order L2,
allows two very different coupling, chaotic and regular.
In spin glasses and hard spheres, these regimes are real-
ized for the same coupling at different temperatures.
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III. SPIN GLASS

The random walk considered in Section II can also be
considered as an L-state Potts model at infinite temper-
ature evolving under heat-bath dynamics.
The product ansatz of Eq. (2) would correspond to the

independent evolution of the spin configurations, and it
is clearly chaotic. With the coupling of Eq. (3), in con-
trast, all spins evolve and couple independently at β = 0,
and the global coupling time is again the maximum of the
coupling times of the individual spins. The Monte Carlo
dynamics is thus regular, and the diagram of Fig. 2 car-
ries over to the general case with L ≥ 2. At finite tem-
peratures β, the energy of a spin configuration is given
by

E = −
∑

〈i,j〉

Jijsisj .

We first consider heat-bath dynamics, which consists in
choosing one spin sk and updating it with probabilities

π(sk = ±1) =
1

1 + exp (∓2hkβ)
, (4)

where the field on site k is given by hk =
∑

l Jklsl. The
coupling is defined by the use of the same random num-
bers for each configurations.
For the two-dimensional ferromagnetic Ising model (all

Jij = 1, L = 2), the dynamics remains regular at all
temperatures. Below the Curie temperature, τcoup is
very large, but so is the correlation time τcorr, and the
partial order implies that the complexity of τcoup/τcorr
≤ O(logN) [2]. For the two-dimensional ±J Ising spin
glass, the quenched random interactions satisfy Jij =
Jji = ±1 with equal probability. Although this model is
paramagnetic for all finite temperatures, Campbell and
de Arcangelis[7] found a damage-spreading transition for
the heat-bath algorithm at βds ≃ 0.59. In previous work
[3, 5], we succeeded in coupling large systems down to this
temperature using the patch algorithm. We showed that
the patch algorithm’s upper bound on the coupling times
agrees well with the lower bound obtained from a partial-
coupling approach, where one checks coupling for a finite
number Ninit of random initial conditions rather than for
the entire configuration space (Ninit = 2N). As shown in
the inset of Fig. 3, for one realization of the random pro-
cess, the coupling time does not vary if Ninit & 10, and
the coupling time for Ninit = 1000 equals the coupling
time for the entire configuration space.
In the main graph of Fig. 3, we show the coupling

time τcoup/N as a function of N at constant temper-
ature. A dynamical phase transition is again seen at
the damage-spreading temperature βds = 0.58. In the
chaotic phase, τcoup/N grows exponentially with N , but
only logarithmically in the regular phase. The dynam-
ical phase transition in this model (without a spin glass
phase at finite β), although not mathematically proven,
appears firmly established. It is without influence on
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FIG. 3: Disorder-averaged coupling time for the heat-bath
algorithm of the two-dimensional ±J Ising spin glass. Inset:
Saturation phenomenon for N = 642 spins at β = 0.56.

single-particle properties. To illustrate this point, we ver-
ify that the correlation time τcorr/N , computed with the
autocorrelation function

q(t) =
1

N

N
∑

i=0

〈si(0)si(t)〉 , (5)

remains constant in the chaotic phase and only τcoup/τcorr
diverges with N → ∞.
After the heat-bath algorithm, we now discuss the

Metropolis algorithm, where individual spins sk are
flipped with a probability depending on their local field.
In the standard implementation, spin flips are accepted
with a probability equal to 1 at infinite temperature. To
allow coupling at any β we use

p(sk → −sk) =
2

3
min(1, exp(−2βskh)). (6)

At each step the same spin k is updated for all copies of
the system. For this dynamics, several coupling schemes
can be set up. If the same random number γ is used
for each configuration, the coupling does not take place,
as two opposite configurations will always stay opposite.
We adapt the regular coupling of Eq. (3) and use two
independent random numbers, γ1 for “up” spins and γ2
for “down” spins. The coupling time has then the same
qualitative behavior as in Fig. 3, logarithmic at high tem-
peratures and exponential at low temperatures, but with
a critical temperature βds = 0.33. The Metropolis al-
gorithm, with this coupling scheme, has thus a higher
dynamical critical temperature than the heat-bath algo-
rithm, with which it shares all the qualitative features.
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This confirms that the dynamic damage-spreading tran-
sition is algorithm dependent. One may also choose the
random numbers in the Metropolis algorithm using γ for
sk = 1 and 1−γ for sk = −1. This scheme correlates op-
posite spins better and the critical temperature is found
to be βds = 0.52. This results shows that, like for the ran-
dom walk in Section II, the same Markov-chain allows for
qualitatively different coupling.

IV. HARD SPHERES

After spin glasses, we now consider another key
model in statistical physics, namely hard spheres. This
model’s Hamiltonian dynamics, realized in the event-
driven molecular dynamics algorithm [4, 12], is chaotic
for all densities and for all N [4, 13, 14]. In this section,
we will present several Monte Carlo algorithms for hard
spheres, which allow for coupling of the entire configura-
tion space. Two of the algorithms remain regular below a
finite critical packing fraction, ηds, in the limit N → ∞.
In the following discussion we are not concerned with
algorithmic efficiency of the implementation, and only
concentrate on the coupling properties.

A. Birth-and-death algorithm

In the grand-canonical birth-and-death Monte Carlo
algorithm, particles are placed inside the box at random
positions x = (xk, yk) at rate λ if no overlaps with pre-
viously placed disks are generated. The life time of each
disk is sampled from an exponential distribution with
rate 1. One realization of the algorithm is represented in
the diagram of Fig. 4. The mean number 〈N〉 of particles
in this system is controlled by the activity λ.
This model’s state space is infinite, but the survey of all

possible initial conditions is nevertheless feasible [5, 15].
For any realization of the algorithm, the possible config-
urations at time t are a subset of the finite set produced
from a horizontal cut in the diagram of Fig. 4. The patch
algorithm again yields sharp upper bounds for τcoup [5].
Surprisingly, this algorithm for hard disks remains regu-
lar below a finite density ηds in the limit N → ∞ [15, 16].

1. Damage spreading for the birth-death algorithm

We again study damage spreading in this model by
applying the same Monte Carlo dynamics (same choice
of xi, ti, τi) to Ninit random hard-sphere initial conditions
at time t = 0 with life times sampled from an exponential
distribution. The data shown in Fig. 5 again indicate a
dynamical phase transition between the regular regime at
packing fractions η < ηds ≃ 0.29 and the chaotic regime
above ηds. This density corresponds to the limiting den-
sity found with the patch algorithm [5].

x y

t

0

LL

FIG. 4: Grand-canonical birth-and-death algorithm for hard
disks. Disk i is placed at time ti and at position xi = (xi, yi)
if no overlap is generated with previously placed disks. It
disappears at time ti + τi. The configuration space of this
system is infinite, yet the possible configurations at time t are
a subset of the finite set produced from a horizontal cut in
this diagram.
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FIG. 5: Coupling time of the birth-and-death algorithm
of Fig. 4 for two-dimensional hard spheres (estimated with
Ninit = 100).

B. ”Labelled displacement” algorithm

A canonical version of the birth-and-death algorithm
is the “labelled displacement” algorithm where, at times
t = 0, 1, 2, . . . , a randomly chosen particle k is moved to
a random position xk, if this move creates no overlaps.
We see clear evidence of a dynamical phase transition at
a critical density ηds ≃ 0.13 (see Fig. 6), which is smaller
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than for the closely related birth-and-death algorithm.
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FIG. 6: Coupling time for the labelled displacement algo-
rithm. The dynamical transition to chaos occurs at a lower
density than for the birth-and-death algorithm of Fig. 5.

C. Spot algorithm

t = 0 t = 1 τcoup = 2

 : spot

FIG. 7: Spot algorithm for hard spheres: The randomly cho-
sen spot position defines the attempted move of a disk inside
the spot. The spot radius satisfies σspot ≤ σ, and at most
one disk is moved at time t. An example with N = 1 and
σspot = σ is shown.

We finally study the coupling for a Markov-chain sim-
ilar to the Metropolis algorithm: the spot algorithm.
The Metropolis algorithm for N hard spheres consists
in moving, at time t, a particle k by a random vector
δ = (δx, δy). As the configuration space is continuous,
the coupling probability is zero if one uses a naive cou-
pling scheme. The following spot algorithm is more suc-
cessful (although we will show its coupling is chaotic at
all densities): at time t, it places a spot, a disk-shaped re-
gion with radius σspot ≤ σ, at a random position xs. The

spot contains at most one disk center, and the move con-
sists in placing this disk at xs, if this creates no overlap
with other particles (See Fig. 7). The spot algorithm sat-
isfies detailed balance, and it generates the same moves
as the Metropolis algorithm. Moreover, as illustrated in
Fig. 7, it succeeds in coupling. However, as shown in
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FIG. 8: Coupling time τcorr of the spot algorithm for N hard
disks (estimated with Ninit = 100) as a function of packing
fraction eta. For all η, the coupling time is exponential in N ,
and we conjecture the coupling to be chaotic. The inset shows
the coupling times for the spot algorithm in one dimension as
a function of N at constant η.

Fig. 8, the coupling time of the spot algorithm is an ex-
ponential function of N for all densities: the coupling is
always chaotic.

V. CONCLUSION

In conclusion, we have in this paper studied the rela-
tionship between the coupling of Markov chains, which is
of critical importance for the subject of perfect sampling,
and damage spreading, which exposes the chaotic nature
of the Monte Carlo dynamics.
For the two-dimensional ±J Ising spin glass, which

lacks an equilibrium phase transition at finite temper-
atures, we confirm the existence of a dynamical phase
transition at βds ≃ 0.58 [7] for the heat-bath algorithm.
For lower temperatures the coupling time explodes. The
Metropolis algorithm has the same damage spreading be-
havior but with higher critical temperatures: βds ≃ 0.33
or βds ≃ 0.52 for two simple coupling schemes. All
damage-spreading transitions for this system are deeply
inside the paramagnetic phase.
For the two-dimensional hard-sphere system, we ana-

lyzed three local Monte Carlo algorithms, the birth-and-
death algorithm, inspired from Poisson point processes,
its canonical version (the “labelled displacement” algo-
rithm), and the spot algorithm, a straightforward adap-
tation of the Metropolis algorithm. The first algorithm
shows a regular regime only for packing densities below
ηds ≃ 0.29, the coupling time was then of the same order
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of magnitude as the correlation time. The canonical ver-
sion of the birth-and-death algorithm had a critical den-
sity of ηds ≃ 0.13. These transition densities are again
deeply in the liquid phase.
Both for spin glasses and for hard spheres, the rigorous

survey of the configuration space[3] remains feasible for
all temperatures and densities. The application of perfect
sampling methods to these challenging problems is thus
not so much limited by the surveying problem, as the
patch algorithm allows to track the evolution of the entire
configuration space, but more by damage spreading, the
underlying chaotic nature of the Monte Carlo dynamics.
In this context, it is of great interest that Griffeath

[17] has constructed a coupling that always remains reg-

ular: It realizes the coupling at time t and at position
Xt of two Markov chains that have started at time t = 0
at configurations X0 and X ′

0 with the minimum of the
probabilities to go from X0 or from X ′

t to Xt. Griffeath’s
coupling is non-Markovian and very difficult to construct
in practice, but it may point the way to couplings that re-
main regular at lower temperatures and higher densities
than the naive couplings we discussed in this paper.
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