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The Flavor Asymmetry in the Polarized Proton Sea

F. M. Steffens
Mackenzie University - FCBEE, Rua da Consolacao 930, 01302-907, S˜ao Paulo, SP, Brazil
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We perform a careful study on the effect of the Pauli blocking to the light polarized antiquark structure of the
proton sea. We develop the formal expressions for the polarized antiquark distributions, highlighting the role
played by quark statistics and the vacuum structure. The ratio involving the polarized antiquarks is calculated.
In particular, it is found that ∆d(x)/∆u(x) should be negative and x independent.

Spin physics has atracted a lot of attention in the last 15
years, both experimentally and theoretically. Since the first
precise results on the proton longitudinal polarized structure
function was released, in the late 1980’s, we have learned a
great deal about how the quarks and gluons combine to pro-
duce the observed spin of the proton [1]. However, we are
still uncertain abou the correct size of the gluon distribution
as well as the decomposition of the quark contribution to the
total spin in terms of its quark and antiquark parts. COM-
PASS at CERN is starting to measure the polarized gluon
distribution directly using a polarized muon beam. On the
quark side, the semi-inclusive program of HERMES has re-
leased some recent results for the quark polarizations of u,
u, d, d, and s + s [2]. There is a good agreement between
their data and parametrizations for the valence distributions
in NLO QCD. However, the antiquark distributions are still
plagued with sizeable statistical uncertainties. In particular,
it is not possible to determine weather the light antiquarks
are flavor asymmetric, as observed in unpolarized scatter-
ing, in the case of polarized distributions.

There are, on the other hand, a strong theoretical moti-
vation for the asymmetry to be present also in the polarized
sector, and this work is devoted to advocate what should
be the most compelling mechanism: the fundamental role
played by the quark statistics in both the polarized and un-

polarized antiquark distributions. This work is a more de-
tailed version of some previously published results [3] on
this problem.

In order to isolate the Pauli blocking effects to the sea
structure of the proton, we work out the formal definition of
the antiquark distributions to a point where some actual pre-
dictions can be made without the introduction of a number
of model parameters. From this point, we are able to study
to what extent Pauli Blocking is a correction or is the main
phenomenon behind the sea asymmetry of the light quarks.

We start with the formal definition of the polarized anti-
quark distribution [4]:

∆q(x) =
p+

2π

∫
dz−e−ixp+z−

< P |ψ+(z−)γ5ψ
†
+(0)|P >c |z+=z⊥=0,(1)

with x > 0. To calculate Eq. (1), we remember that:

ψ†
+γ5ψ+ =

1
2
ψ†(1 + γ0γ3)γ5ψ, (2)

with the field operators expanded in terms of free plane
waves:

�

ψ(�z, t) =
∫

d3k

(2π)3∑
α

[bα�k (t)u(α)(�k)ei�k·�z + dα†
�k

(t)v(α)(�k)e−i�k·�z],

(3)

Using Eqs. (2) and (3) in Eq. (1), we get:
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∆q(x) =
p+

4π

∫
d3k

(2π)3
Uαβ(�k)

∫
dz−e−ixP+z−−i�k·�z

< P |bα†
�k

(0)bβ�k(t)|P >c |z+=z⊥=0

+
p+

4π

∫
d3k

(2π)3
Vαβ(�k)

∫
dz−e−ixP+z−+i�k·�z

< P |dα
�k
(0)dβ†

�k
(t)|P >c |z+=z⊥=0, (4)

�

where Uαβ(�k) = u†α(�k)[1 + γ0γ3]γ5uβ(�k), Vαβ(�k) =
v†α(�k)[1 + γ0γ3]γ5vβ(�k), and the time dependence of the
creation and annihilation operators is calculated from:

bα�k (t) = eiĤtbα�k e
−iĤt, (5)

where bα�k is the time independent operator that destroys a

quark with spin up (down) and momentum �k.
Quarks in the proton are not free and that can be trans-

lated into a complicated vacuum structure where the con-
fined quarks live [5, 6, 7, 8, 9]. In this environment, the free
space vacuum is certainly not a good approximation for the
ground state of the confined quark operators. Instead, one
has to build a new vacuum structure based on bound quark
operators. Following this direction, we extend the work of
Tsushima, Thomas and Dunne [6], to derive general forms
for the polarized antiquark distributions which incorporate
the effects from the modified vacuum. The bound state oper-
ators (denoted by a “*”) and the vacuum of the bound states
are defined such that:

b∗|0∗ >= 0, (6)

d∗|0∗ >= 0. (7)

The bound quark operators can be related to the free quark
operators in the following way:

b�k,α =
m∗

p0

∫
d3p

(2π)3∑
β

[b∗�p,βA
αβ(k, p) + d∗†�p,βB

αβ(k, p)], (8)

d�k,α =
m∗

p0

∫
d3p

(2π)3∑
β

[b∗†�p,βCαβ(k, p) + d∗�p,βDαβ(k, p)], (9)

where the Aβα(k, p),Bβα(k, p), Cαβ(k, p) and Dαβ(k, p)
factors are the overlaps between the bound and free quark
states. The calculation of the anticomutator between the free
and bound operators gives:

{bα�p , bβ†∗�k
} = Aαβ(�p,�k), (10)

and similar for the other operators. Finally, the proton state
is written in terms of the bound quark operators as:

|P >= F [q†∗�p1
q†∗�p2

q†∗�p3
]|0∗ >, (11)

where F [q†∗�p2
q†∗�p2

q†∗�p2
] is a function of the effective quark oper-

ators, with �p1, �p2, �p3 the individual momentum of the three
valence quarks. Although only the valence quarks appear
explicitly in the functional, it is understood that it may be
populated by quark - antiquark pairs. In this way, the nota-
tion only shows the net, or unpaired, number of quarks and
antiquarks.

Thus the action of the free antiquark annihilation opera-
tor in the proton state results in:

dα
�k
|P >= Cαγ |Pq∗�p,γ > −Dαγ |q∗�p1

q∗�p2
q∗�p3

q∗�p,γ >, (12)

and similar for the quark operator. The state |Pq ∗�p,γ > rep-
resents a quark that was created in the original proton state,
while the state |q∗�p1

q∗�p2
q∗�p3

q∗�p,γ > means that one antiquark,
of the original infinite number of pairs present in the proton
state, was destroyed in the proton state, leaving 4 unpaired
quarks in total. When using Eqs. (11) and (12) in the polar-
ized quark distribution, Eq. (4), we see that conservation of
energy momentum impose that the part involving the quark
operators vanish, and we have left only the terms involving
the antiquark operators.

In order to reach any conclusion regarding the sea quark
structure of the proton, we should specify what is the state
|P > in Eq. (4). The proton state, as a bound state of quarks,
has to be built from bound state quark operators acting on
the modified vacuum, as described by Eqs. (6) and (7). The
simplest form one can use for such state is that given by the
SU(6) wave function:

|P 〉 ≡ F [b∗†]|0∗〉
=

1√
18
εαβγ [b∗†(u, ↑, α)b∗†(d, ↓, β)

− b∗†(u, ↓, α)b∗†(d, ↑, β)]b∗†(u, ↑, γ)|0∗〉. (13)

For this simple wave function, where no anti-quarks are
present, we must have no contribution from the term pro-
portional to Dαγ in Eq. (12). In this way, the polarized
antiquark distribution is written as:
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∆q(x) =
m∗

p0

∫
d3k

(2π)3
V αβ(�k,�k) < P |dβ†

�k
|Pq∗�p,α >

C†αγ(�k, �p)δ(x − (EP − EPq + k3)/p+), (14)

where EPq in the eigenstate of the Hamiltonian operator acting on the |Pq ∗
�p,γ > state.

�

Notice that the polarized antiquark distribution comes
from the expectation values involving the bound quark
states. In the case of a proton state built from free quarks
there is no antiquark distributions, as in that case |C|2 → 0.
We can, of course, generate the sea quarks through pertur-
bation theory once we know the quark - gluon vertex from
QCD, a procedure which has actually been implemented
before [10, 11]. In this case, it happens that the quark-
antiquark pairs generated from perturbative gluons produce
an excess of u antiquarks over d antiquarks - in clear con-
tradiction to the naive expectation from the Pauli principle.
The solution to this dilemma is straightforward and will be
presented in a forthcoming work.

To proceed, we need the calculation of the expectation
value between the bound quark states. A direct calculation,
using the SU(6) wave function, gives 4/3 for the polarized
u anti-quarks, and −1/3 for the polarized d anti-quarks. As
all the remaining terms are the same for both distributions,
we naturally have that:

∆d(x)
∆u(x)

= −1
4
. (15)

As the polarized distributions are not affected by pionic
corrections, this result should stand exact for the SU(6)
wave function. Of course, more complicated wave functions
would produce different numerical factors, but it would not
introduce an extra x dependence. In this case, the experi-
mental value for ∆d(x)/∆u(x) should be very close to a
straight line. Finally, there has been previous estimates of
nonperturbative effects from the vacuum structure to the po-
larized distributions. In particular, the Chiral Soliton Model
has been used [8] to predict the shape of the polarized an-
tiquark distribution, and calculations by the Adelaide group
[9] also reproduce the results encapsulated in Eq. (15).

We have seen that developing the formal expression for
the polarized antiquark distribution, Eq. (1), as far as pos-
sible in terms of the quark operators, allows us to derive
some general conclusions about the physics responsible for
the polarized antiquark asymmetry in the proton sea. We see
that the vacuum structure inside the proton, as expressed by

Eq. (12), is decisive in reaching this conclusion. However, it
is not the final story, as Eq. (12) would exist even if quarks
were bosons. The fact that quarks are fermions is funda-
mental, and probably the only sizeable effect, for a future
asymmetry observation in the polarized sea of the proton.
Of course, to extract numbers we need to model the proton
wave function. Using the SU(6) quark wave function, we see
that the x dependence cancels when ratios are taken. Thus,
apart from quark mass effects in the large x region, Eq. (15)
should hold. In this way, the polarized ratio is expected to
be x independent.
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