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Chiral Perturbation Theory is considered as a very precise method when applied to pion-nucleon scattering near
threshold and in the unphysical region since in these cases the pion momenta are small. In this framework, third
order calculation yields a non-relativistic scattering amplitude with nine free parameters. From the fact that the
resulting partial-wave amplitudes do not respect elastic unitarity relation, one has that the phase-shift definition
is ambiguous. In this article, we present the comparison of the model with experimental data for two different
phase-shift formulas and we conclude that the results are very sensitive to phase-shift definition.

1 Introduction

Although QCD is widely accepted as the fundamental gauge
theory underlying the strong interactions, we still lack the
analytical tools forab initio descriptions of low-energy
properties and processes. However, new techniques have
been developed to extend the results of the current-algebra
days andsystematicallyexplore corrections to the soft-pion
predictions based on symmetry properties of QCD Green
functions.

The starting point is a theorem by Weinberg stating that
a perturbative description in terms of the most general ef-
fective Lagrangian containing all possible terms compatible
with assumed symmetry principles yields the most general
S matrix consistent with the fundamental principles of quan-
tum field theory and the assumed symmetry principles [1].

The method to go beyond the soft-pion predictions is
called chiral perturbation theory (ChPT) [2] and describes
the dynamics of Goldstone bosons in the framework of an
effective field theory, which provides a systematic method
for discussing the consequences of the global flavor symme-
tries of QCD at low energies.

This method has been sucessfully applied to meson de-
cay and meson-meson scattering, with the help of Wein-
berg’s power counting scheme. This scheme establishes that
any given diagram behaves asED, whereD ≥ 2 is de-
termined by the structure of the vertices and the topology
of the diagram in question. For a given value ofD, Wein-
berg’s formula unambiguously determines to which order in
the momentum and quark mass expansion the Lagrangian
needs to be known.

Chiral Perturbation Theory faces problems when

baryons are to be introduced in the formalism. This comes
about because the nucleon mass is not small even in the
chiral limit and thus the characteristic parametermπ/4πfπ

does not control the low energy expansion any more. A
method called Heavy Baryon Chiral Perturbation Theory
(HBChPT) was invented to allow one to introduce static
baryons in ChPT formalism [3] and to describe the dynam-
ics of baryons at low energies: static properties such as
masses or magnetic moments, form factors, or, eventually,
more complicated processes, such as pion-nucleon scatter-
ing, Compton scattering, pion photoproduction etc.

In this paper we analyse low energy pion-nucleon phase-
shifts derived from HBChPT. Working at orderO(p3),
the resulting amplitude[4] depends onnine free parameters
which can be adjusted to fit theS− andP− partial-wave
phase-shifts to the experimental data[5]. It is known that
elastic unitarity is violated at that order of the calculation,
so that phase-shift definition is arbitrary. From our present
analysis we conclude that the fits are very sensitive to the
phase-shift definition. In section II we present the method
of HBChPT applied to pion-nucleon scattering and the re-
sulting amplitudes. In section III we present the fitting pro-
cedure and the conclusions.

2 HBChPT and pion-nucleon scatter-
ing

We are interested in the baryon-to-baryon transition ampli-
tude in the presence of external fields

F(~p ′, ~p; v, a, s, p) = 〈~p ′; out|~p ; in〉cv,a,s,p, ~p 6= ~p ′,
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determined by the Lagrangian

L = L0
QCD+Lext = L0

QCD+q̄γµ(vµ+γ5a
µ)q−q̄(s−iγ5p)q.

The functionalF consists of connected diagrams only. For
example, the matrix elements of the axial-vector currents
A (or similarly for vector currentsV ) between one-baryon
states is given by

〈~p ′|Aµ,a(x)|~p 〉 =
δ

iδaa
µ(x)

F(~p ′, ~p; v, a, s, p)
∣∣∣∣
v=0,a=0,s=M,p=0

,

whereM = diag(mu, md,ms) denotes the quark-mass ma-
trix and

V µ,a(x) = q̄(x)γµ λa

2
q(x), Aµ,a(x) = q̄(x)γµγ5

λa

2
q(x).

The fields entering the Lagrangian are assumed to transform
under irreducible representations of the subgroupH which
leaves the vacuum invariant whereas the symmetry groupG
of the Hamiltonian or Lagrangian is nonlinearly realized.

The physical observables are invariant under field trans-
formations, so that we chooseΨ to denote the nucleon field
andU the SU(2) matrix containing the pion fields. We de-
noteu2(x) = U(x), and define the nonlinear realization:
u′2 = Ru2L+ andΨ′ = u′−1RΨ. whereR andL are ma-
trices ofSU(2)L ⊗ SU(2)R group.

The local character of the transformation implies that we
need to introduce a covariant derivative by adding the con-
nection

Γµ =
1
2

[
u†(∂µ − irµ)u + u(∂µ − ilµ)u†

]
,

to the ordinary derivative. AtO(p) there exists another Her-
mitian building block, the so-called vielbein

uµ ≡ i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
,

which under parity transforms as an axial vector. The most
general Lagrangian with the smallest number of derivatives
is given by

L(1)
πN = Ψ̄

(
iD/−m +

gA

2
γµγ5uµ

)
Ψ.

At this point we introduce the basic formalism. The tran-
sition amplitude forπa(q) + N(p) → πb(q′) + N(p′) scat-
tering is given by

T ab = ū(p′)
(

Aab(s, t, u) +
1
2
(q′ + q′′) Bab(s, t, u)

)
u(p).

The nonrelativistic reduction is

T ' χ′+
[
A +

(
Eπ +

~q 2 + ~q
′ · ~q

2m

)
B + i

~σ · ~q ′ × ~q

2m
B

]
χ.

The decompositionAab = δabA+ + 1
2 [τ b, τa]A−, and

similarly for B, obeys the following crossing proper-
ties: A

±
(s, t, u) = ±A

±
(u, t, s) and B

±
(s, t, u) =

∓B
±
(u, t, s). The total isospin amplitudes areA1/2 =

A+ + 2A− andA3/2 = A+ −A− and similarly forB.
For elastic scattering one must have

Im f±I `(s) = |~q| |f±I `(s)|2, (1)

wheref±I ` are the partial wave amplitudes constructed from
the Dirac amplitudes.

Let us turn to the tree-level calculation to theπN scat-
tering amplitude. Using the approximation

u ' 1 + i
~τ · ~φ
2F0

, uµ ' −~τ · ∂µ
~φ

F0
,Γµ ' i

4F 2
0

~τ · ~φ× ∂µ
~φ,

we get the Lagrangian

L = −1
2

g
A

F0
Ψ̄γµγ5τ

b∂µφbΨ− 1
4F 2

0

Ψ̄γµεcdeτ
cφd∂µφeΨ.

From the nucleon pole contribution we obtain the resulting
amplitudes

A+ =
g2

A

F 2
0

m, A− = 0, B+ = −g2
A
m

F 2
0

ν

ν2 − ν2
B

and B− =
1

2F 2
0

− g2
A

2F 2
0

− g2
A
m

F 2
0

ν

ν2 − ν2
B

.

We are going to show that this corresponds to the leading
order heavy-baryon result.

The heavy-baryon formulation of ChPT consists of an
expansion in terms of small external momentum. Clearly it
cannot simply be the four-momentum of the initial and final
nucleons, because their energy components are not small.
Instead, one separates an external nucleon four-momentum
into a large piece of the order of the nucleon mass and a
small residual component.

Let us introduce the so-called velocity-dependent fields.
Usingvµ with the propertiesv2 = 1, v0 ≥ 1 and the projec-
tors2P± = 1± v, we define

Nv ≡ eimv·xPv+Ψ, andHv ≡ eimv·xPv−Ψ,

so thatΨ(x) = e−imv·x [Nv(x) +Hv(x)]. The fieldsNv

andHv are often called the light and heavy components of
the fieldΨ.

The lowest-order Lagrangian is

L(1)
πN = N̄v [iv ·D + gASv · u]Nv,

where the spin matrixSµ = i
2γ5σ

µνvν satisfiesv · S = 0.
When comparing to the relativistic Lagrangian, one sees that
the nucleon mass has disappeared from the leading-order
Lagrangian. It only shows up in higher orders as powers
of 1/m. In the power counting schemeL(1) counts asO(q),
because the covariant derivativeDµ and the chiral vielbein
uµ both count asO(q). The four-momenta of the initial and
final nucleons are written asp = mv + k andp′ = mv + k′,
respectively, withv · k = 0 = v · k′ to leading order in1/m.
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Using the expansions of the connection and the vielbein,
the lowest order relevant part of the interaction Lagrangian
is

Lint = −gA

F0
N̄Sµ~τ · ∂µ

~φN − 1
4F 2

0

vµN̄~τ · ~φ× ∂µ
~φN .

The corresponding Feynman rules for the vertices, for a sin-
gle incoming pion with momentumq and isospina and for
an incoming pion withq, a and an outgoing pion withq′, b,
are, respectively:

−gA

F0
Sv · qτa and

v · (q + q′)
4F 2

0

εabcτ
c

the last gives rise to a contact term. The results for direct
channel nucleon pole term effectively reduces to that of a
two-component theory as in the Foldy-Wouthuysen trans-
formation.

By performing a nonrelativistic reduction, one verifies
that, at leading order inm, the relativistic Lagrangian and
the heavy-baryon Lagrangian indeed generate the sameπN
scattering amplitude. This equivalence follows from an ex-
pansion of the functionsA(+) andB(+) because both con-
tain terms of orderm.

So far we have concentrated on the leading-order,m-
independent, heavy-baryon Lagrangian. However, it is clear
that the Lagrangian also generates terms of higher order in
1/m and additional new chiral structures of higher orders in
momentum. The1/m correction resulting from the leading
Lagrangian is

L(2) =
1

2m
N̄

[
(v ·D)2 −D2 − igA{S ·D, v · u} −

g2
A

4
(v · u)2 +

1
2
εµνρσvρSσ (iuµuν)

]
N .

At O(q2) the heavy-baryon Lagrangian contains another
contribution which may be obtained as the projection of the
relativistic Lagrangian onto the light components,

N̄ [
c1tr(χ+) + c2(v · u)2 + c3u · u + c4[Sµ

v , Sν
v ]uµuν

]N ,

whereχ± = u†χu† ± uχ†u andχ = 2Bmq.
The Lagrangian at orderO(q3) is computed in the tree

approximation. Its various constants get renormalized in or-
der to absorb the divergences of one loop calculation.

Ψ̄
{

d1 + d2

4m

(
[uµ, [Dν , uµ]]Dν + [uµ, [Dµ, uν ]]Dν

))

+
d3

12m3
[uµ, [Dν , uλ]]DµDνDλ +

d5

2m
[χ−, uµ]Dµ

+
d14

4m
σµν〈[Dλ, uµ]uν〉Dλ +

d15

4m
σµν〈uµ[Dν , uλ]〉Dλ

+
d16

2
γµγ5〈χ+〉uµ +

d18

2
γµγ5[Dµ, χ−]

}
Ψ.

3 Fit Procedure and Conclusions

The full one-loop amplitude to orderq3 is obtained after
mass and coupling constant renormalization, and the per-
tinent formulas can be found in refs.[6, 7]. The final result
can be separated into the tree, loop and counterterm contri-
butions. The last one introducesnineparameters that can be
used to fit the amplitudes to the experimental data[5].

Now we arrive to the main point of this exercise. As we
mentionned before, for a given isospinI, the phase shifts
δI
l±(s) can be extracted from the partial waves via

f I
l±(s) =

1
2i|~q|

[
exp(2iδI

l±)− 1
]
. (2)

For vanishing inelasticity, the phase shifts are real. More-
over, from the heavy baryon approach, the imaginary parts
stemming from the loop contributions at orderq3 fulfill per-
turbative unitarity. In terms of the partial wave amplitudes
this reads

Im f
I(3)
l (s) = |~qπ |

(
Re f

I(1)
l (s)

)2

, (3)

Usually, in effective field theory aplications[8], one defines
the phase-shifts by

δI
l±(s) = arctan

(|~q |Re f I
l±(s)

)
. (4)

Alternatively, we will adopt the definition

δI
l±(s) = arctan

Im f I
l±(s)

Re f I
l±(s)

. (5)

Our proposal is to study the sensivity of the fit procedure
to the phase-shift definition. The main motivation is that
some low energy constants play important role in the the-
oretical evaluation of many physical constants. If the fit-
ting procedure was unambiguous, one could have, by phase-
shift fit, a powerful method to access several LECs values.
Our strategy was to fixnine free parameters in order to fit
the HBChPT amplitudes tosix S- and P-wave experimental
phase-shifts. In order to do that we use the definition (4) for
low values (below200 MeV) of the pion three–momentum
in the lab system, called~qπ, with normqπ,

qπ =

√
1

4m2

(
s−M2

π −m 2
)2 −M2

π .

Once fixed the LECs values, we plot the resulting partial-
wave phase-shifts from the definition (2) as well.

The resulting values of thenineparameters fixed by a si-
multaneous fit ofsix low-energy phase-shifts are: c1 = -1.57,
c2 = 3.00, c3 = -6.05, c4 = 3.55,d̄1 + d̄2 = 4.57,d̄3 = -4.67,
d̄5 = 0.197,d̄14 − d̄15 = -8.49 andd̄18 = 2.89.

We observe, by inspection of the figures, that the results
are sensitive to phase-shift definition. We repeated the com-
parison with all model parameters kept equal to zero and we
show the results in the same figures. We conclude that the
results remain very sensitive with phase-shift definition.

We intend to perform a similar analysis using the am-
plitudes obtained by the unitarization program of current al-
gebra [9]. We recall that those amplitudes have imaginary
parts satisfying eq. (3).
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Figure 1. S-wave phase-shifts (in degrees) as functions of pion
lab momentum (in GeV); with phase-shift definitons (4) (a with
adjusted parameters andac with vanishing ones) and (2) (respec-
tively, b andbc, as for the previous definition).

Figure 2.J = 1/2 P-wave phase-shifts (in degrees) as functions of
pion lab momentum (in GeV); with phase-shift definitons (4) and
(2); curve labels as in Fig. 1.

Figure 3.J = 3/2 P-wave phase-shifts (in degrees) as functions of
pion lab momentum (in GeV); with phase-shift definitons (4) and
(2); curve labels as in Fig. 1.
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