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Abstract. The spatial search problem consists in minimizing the nuobseps
required to find a given site in a network, under the restoistihat only oracle
gueries or translations to neighboring sites are allowe@ pibpose a quantum
algorithm for the spatial search problem on a triangulartlaé with NV sites
and torus-like boundary conditions. The proposed algntitis a special case
of the general framework for abstract search proposed bya&nid, Kempe and
Rivosh [Kempe et al. 2005] (AKR) and Tulsi [Tulsi 2008], dpdlto a trian-
gular network. The AKR-Tulsi formalism was employed to sti@atthe time
complexity of the quantum search on the triangular latt&@{/N log N).

Resumo. O problema de busca espacial consiste em minimizatmero de
passos necedsos para encontrar um determinaddtis de uma rede, com a
restricio de que apenas consultas acoulo ou deslocamento para ogiss
adjacentes & permitidos. Propomos um algoritmoantico para o problema
de busca espacial em uma malha triangular coimvéertices com condiges
de contorno do tipo toro. O algoritmo propos& um caso particular do
método proposto por Ambainis, Kempe e Rivash [Kempe et ab]2@KR) e
Tulsi [Tulsi 2008]. O formalismo AKR-Tulsi foi utilizado gamostrar que a
complexidade de tempo da buscégtica na malha triangulaé O (/N log N).

1. Introduction

The spatial quantum search problem consists of using londhny operations to
search for one (or more) nodes within a set /of spatially arranged sites with an
implicit notion of distance between them. The search nodesidentified by the
non-zero values of a binary function (the oracle), as usudie spatial search prob-
lem [Ambainis and Aaronson 2003] incorporates the resbricthat, in one step, one
can either query the oracle at the current site or advancengghboring site. It has
been pointed out by Benioff [Benioff 2002] that in a two-dinséonal network under this
restriction, Grover’s search [Grover 1996], [Grover 19fidvides no advantage over a
classical search due to the intrinsic non-locality of Gr®a/gymmetrization. Ambainis et
al. proposed a generalized formalism for quantum walk (Q#géell spatial search algo-
rithms and worked out the specific case of a two-dimensioaadésian network, obtain-
ing aO(v/N log N) algorithm [Kempe et al. 2005], to which we shall refer to asRAK
Tulsi has proposed an improvement to AKR which requires aillargubit and leads to
an O(y/Nlog N) algorithm in two dimensions [Tulsi 2008]. However, it is rigtown
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whether the optimal solution 8(+/N) for the two-dimensional spatial search problem.
In contrast, it is known that the optimal solution is acheuehigher dimensions, such as
3D-grid [Kempe et al. 2005] and the SKW algorithm [ShenvileP&03], which searches
an item withinN' = 2" sites arranged in am—dimensionaln > 2) hypercube.

There are three ways to cover the plane with regular polygsmsares, hexagons
and triangles. The resulting regular networks differ intklegreed (number of connec-
tions per node) which i$, 3 and6 respectively. As mentioned before, for the rectangular
grid (d = 4) the AKR search algorithm i©(v/N log N). A QW-based spatial search al-
gorithm of orderO(v/N log N) has recently been implemented for a two-dimensional
hexagonal networKd = 3) [Abaletal. 2010]. Both algorithms can be improved to
O(v/N log N) with Tulsi's modification. These results suggest that thgrele or con-
nectivity of a regular network does not affect the perforoenf a QW-based search
algorithm.

In this work, a new search algorithm for the case of a triaagoetwork is pro-
posed and analyzed. The proposed algortithm is a specrlotdke general framework
for abstract search [Kempe et al. 2005, Tulsi 2008], so weleyripe AKR-Tulsi formal-
ism to show that the time complexity of the quantum searchhenttiangular lattice is
O(v/Nlog N). This provides further evidence that the degree of the uyidgrnetwork
does not affect the performance of the quantum algorithm.

The paper is organized as follows. In Section 2 we discussntpéementation
of a QW on the triangular network. In Sectioh 3 we analyze itine tomplexity of this
search algorithm. In Sectidm 4 we perform a numerical amabyfsthe algorithm. Finally
in Sectiorl b we present our conclusions.

2. QW on atriangular Network

Let us considerV sites arranged in a triangular network covering a two-disiamal
region, as shown in Figuké 1. The network/sV x /N and periodic boundary conditions
are assumed. A site on the lattice is located by two inte@ars:,) according to

r = nja; + noay, (1)

wherea; anda, are unit vectors forming 0° angle, as indicated in Figuté 1. These
integers are such that € [0,v/N — 1] for i = 1,2 and thus each of them take&V
different values.

These sites define an orthonormal set of quantum state seftor, n.) }, which
span anN—dimensional Hilbert spacH . At a given site, there are six possible direc-
tions of motion which we label with an integgre [0, 5], as indicated in Figurgl 1. The
orthonormal state$|;)} span a six-dimensional Hilbert spadé, which we shall re-
fer to as the “coin” subspace. The Hilbert space for this [@ohbH = He ® Hp, is
6/ N—dimensional. A generic state vector is expressed as

5 VN-1
‘\I]> :Z Z Q.7 ‘j7ﬁ>7 (2)

7=0 n1,m2=0

where thes; , are complex amplitudes which satisfy the normalizationst@int and we
have introduced the shorthand notatioee (nq, ns).



Figure 1. A v/N x+/N triangular network (here N = 36). The N sites form a Bravais
lattice and the six directions of motion are labelled by an in teger j € [0, 5].

The standard QW on this network is implemented with a unigamiution opera-
tor of the form
U=S5-(C®Ip) 3)

where S is a shift operator irf{ (to be specified below)/ is the identity operation
in Hp andC' is a unitary coin operation ift{c. The useful coin operation for spatial
search problems [Kempe et al. 2005, Shenvi et al. 2003] isé€icoin, whose matrix
elements for a—dimensional space arféﬁ?) = % — 0,;. For the particular cas¢ = 6, it

is given by

-2 1 1 1 1 1
1 -2 1 1 1 1
1 11 -2 1 1 1
6) — —
G 3 11 1 -2 1 1 ()
11 1 1 =2 1
11 1 1 1 =2

Thus we us&’ = G(©. The shift operator implements single-step displacemactiag
on the ketgj; ny, ny) in the form

S|0;n1,n9) = 351+ 1,n9),

S|1;ny,n9) = |4;n1 4+ 1,0y — 1),

S|2;n1,n9) = |5;n1,n9 — 1),

S|3;n1,n9) = 10;n7 — 1,n9), (5)
Sl4;n1,n9) = |1;ng —1,ng+ 1),

S|5;n1,n9) = [2;n9,n9 + 1).

Note thatS inverts the coin state. This invertion is crucial for the@éncy of the search
algorithm described in the next section. Finally, the dyitanof the QW is obtained by
applyingU repeatedlyfW(m)) = U™|¥(0)) for some integen.



The standard QW is best analyzed in the Fourier-transfoispade. Let us con-
sider the reciprocal lattice vectofg;, g»}, which satisfy the usual requirements from
condensed matter physics [Kittel 1995]

2m
gz"ajZ\/—N

A site in thisreciprocal latticeis located by

dij- (6)

k = kg1 + kogo, (7)

with k,, k, integers in0, v/N —1]. Let us use the notation= (1, k) and write a generic
state vector in the Fourier representation as

) =D il k). (8)
j.k
The ketsj, k) and|j, 7) are related by the discrete Fourier transform
. 1 4

k) = 1) | —=)D e ™ 9
|7)1F) 1) (W; | >> 9)

: : 1 S
ny = — ) €Tk 10
|7)17) 1) NG ; k) (10)

and one can check that|n) = w™* //N wherew = €™/VN and - k = niky + noks.
The action ofS on the kets|j, k) of the Fourier representation can be obtained from
eqgs.[®) as

S[0,k) = wh3,k), S|,k = whk4 k),
S|2,k) = w*[5,k), S[3,k) = w0, k), (11)
S|4 k) = w1 k), SI5, k) = wh2,k).

Thus, in the k—representationS acts diagonally, i.e. S = >_; Si|k)(k|, where

S, = (k|S|k) is the reduction ofS to Hc. Therefore, the evolution operator, €@l (3),
is also diagonal in the Fourier representation and can bessed ag/ = > U,;|l%><l%\,
whereU; = (k|U|k) acts inH{c. The matrix elements of the reduced operator can be
calculated from eg[{{11), with the result

wk wk wk —2w k1 wk wk
w*k1+k2 w*k1+k2 w*k1+k2 w*k1+k2 _2w*k1+k2 w*k1+k2
1 wh? wh? wh? wh? wh? —2uwk2
Up= 3 _owk whkt wkt wkt wk wh (12)
wklfkg _2wk17k2 wlmsz wk‘1fk2 wk1*k2 wklfk‘z
w2 w2 —w k2 ke wke wk

The characteristic polynomial factors as

PA) = (A —1)*(A+1)*(A? — 2cos(fp)\ + 1), (13)



whered,. is defined by
1 . . -
cos(by) = 3 (cos(kl) + cos(ky) + cos(ky — k2)> , (14)

andk; = % fori = 1,2. The eigenvalues are1 (twice each) and®&’. Let us denote
by |v41) and|vy;) the normalized eigenvectors Of associated with the eigenvalues
and e, respectively. Thefvy,, k = 0) and|v.y, k) are eigenvectors dff associated

with the same eigenvalues, wh¢l%$ is defined in eq[{9).

3. Time complexity of the search algorithm

We shall use Tulsi’s version [Tulsi 2008] of the frameworktloé abstract search algo-
rithm [Kempe et al. 2005] to analyze the time complexity of a sealgorithm on the
triangular network. We assume that there is a single markex/|t), which we want

to find. The search algorithm uses a conditional coin opamativhich acts as-I- on
the searched sitd) and asG(® otherwise. Thus, the modified evolution operator is
U =S-C' whereC’ acts inH{ as just described, i.e.

C'=—Ic@ [+ > GO o |n). (15)
At

AKR [Kempe et al. 2005] have shown that the evolution of thedified quantum walk
U’ may be analyzed using the eigenspectrum of the standard @Wtiewm operatorU.
This fact actually reduces the analysis of the search dlgorio a tractable eigenproblem
for the unitary operatol.

The evolution operatdr’” can be written in another form, useful for Tulsi’s mod-
ified algorithm. This modification requires an extra regiggs ancilla qubit) used as a
control for the operatorg; andU. Using eq.[(1b), one can show tlidt= U - R; , where
R; = Ign — 2|uc, 1) (ue, | , andU is given by eq.[(B). The operators acting on the ancilla
register are described in Figure 2, wher£ is the negative of Pauli’s operator and

X; = < cosd sind )’ (16)

—sind cosd

wherecosd o< 1/+/log N.

1) — X, TXgT—Z—

jue) —
Ri U
up) ——__ o

Figure 2. Tulsi’s circuit diagram for the one-step evolutio n operator of the quan-
tum walk search algorithm.



The new evolution operator is
U'=(—Za1)-CU)- (X] 1) C(R;) - (Xs® 1), (17)

where C'(U) and C(R;) are the controlled operations shown in Figlie 2 dnd the
identity operator irf{. We will show that/” must be iterated (/N log N) times, taking
|1)|uc)|up) as the initial condition, in order to maximize the overlaghwihe search
element.

The expression for the controllgg} is C(R;) = Ion — 2|1, uc, 1){1,uc, t|. Let
us define

0,) = X][1) = —sin & |0) + cosd 1), (18)
then we define a new reflection operator
Ri=(X]®I)-C(Ry) - (X5 @ I) = Lian — 2|61, uc, 1) (61, uc, 1. (19)
The effective target state is
|_> |517u07 > (20)
Let us define B
U=(-Z&lI)-CU). (22)
Note that
010)ver, k=0) = —|0)|var, k =0), (22)
Ull)|ver, k=0) = F|1)|ve, k= 0) (23)
and ) ) - A
Ulj)lver, k) = —(=1)7€%|j) var, k), (24)

for j = 0, 1. The eigenspectrum @f is determined from the eigenspectrumaf

The search algorithm consists in applyitij repeatedly taking the initial condi-
tion as

W) = |11,k = 0) = |1, uc, up) FZ” j.7), (25)

where|uc) and|up) are the uniform superposition in the coin and position spaee
spectively. The initial condition can be preparedify/N) time steps. The number of
iterations ofU” is given byw/2«, wherea is defined in the following way. The eigen-
values ofU” that are different from 1 have the fornt@, where0 < «; < /2. Then
a = min{ay, as,--- }. AKR have shown that it is possible to estimat&knowing the
eigenspectrum of the evolution operator

The first step is to decompose the target state in the eigisntfas, that is, we
have to calculate the coefficients such that

01, uc,f) = f\% fza]k(u,m, B+l vos b)) +

J,k#40
b(|0, vy, k= 0)+1[0,v_, k= 0)) +c|]l,v_, k= 0). (26)



Coefficientsh andc are related to the-1-eigenspace. Coefficients are real. In order
to satisfy these conditions, eigenvectdfs ., k) must be chosen appropriately. The
procedure is the following. Ifuc|v,,) has a non-zero phasé ethen|j, v, k) must
be redefined to €|}, v, ., k). The same procedure must be performedjto_;, k).
After those redefinitions, ed._(R6) is valid. For the trialagunetwork, a straightforward
calculation yields

ajr = (jlor){vsluc)
— %((j—l)siné—l—jcosé). (27)

This result is remarkably similar to the result obtained tlog 2D grid. Note that the
corresponding expression for the honeycomb lattice [Abal.€2010] is more complex,
because it depends @n

AKR have shown thatr can be determined using the expression

Loof |y (28)
a 1 —cosfy |’

4.k#0

whenN >> 1. Using eq.[(27), the expression inside the above squaremaypte calcu-
lated using

1 1 N 1 2w —e B 5 1
-y — o —— dkodk) ———. 29
2%1—@591@ 16(7?—5)2//8 T~ cos b, (29)

where we have use}’, , — 5)2 ff2” ® dkydky with ¢ = 271/2/N < 1. Using
eq. [14) and < 1, eq. @) can be approximated by

3N 1 2m—e 2m—e d];] 9
——2/ de/ o NNlog(l)NNlogN.
16 ™ € £ k?% + k% - kle €
Since the number of iterations bf is 7 /2a, we conclude that the time complexity of the

search algorithm i®) (/N log N).
The overlap of the final state after= 7 /2« iterations ofU” with the target state

is
(01, uc, 1| (U")'[o)| = ©(1) (30)
as calculated in [Tulsi 2008].

4. Simulation of the search algorithm
A generic state in the extended space is

:Zzajvﬁ‘o’j’ﬁ>+bjyﬁ|17j7ﬁ>7 (31)
j N

wherea, b are the amplitudes of the state vector extended to incluglttiimensional
Hilbert space associated with the ancilla qubit.
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Figure 3. Left panel: probability of finding the searched sta te against the number
of time steps for spatial search with (thin line) and without (thick line) Tulsi's mod-
ification for N = 400. Right panel: tyax against /Nlog N using Tulsi’'s search.
Note the approximately linear dependence.

It is straightforward to show that the operatdf in eq. [1T) defines the following
map:
1

ajpn = —Q5+ gént Z (g sin? 0 — byjcosdsind) (32)
¢

- 1

bia = ; G,(fl) Z Sk | b + géﬁ/i ; (agisindcosd — by ;cos®6)
whereJ, ; is a Kronecker-delta which selects the searched state. rilas allows the
simulation of the abstract search algorithm in a digital pater. The initial condition is
taken to be1)|uc)|up), and the effective target state|is = |6,)|uc)|t), as explained in
the last section.

Fortran 90 was chosen as programming language becauseidgsaiseful tools
for large matrix computations and intrinsic functions fongplex vector algebra. A par-
allel programming approach using OpenMP was implemented.

We present the results of the simulations in Figlites 3 andhd.I&ft panel in Fig-
ure[3 shows the time evolution of the probability of finding earched staté(t| V) g
both for an algorithm with Tulsi’'s modification (thin curvebased on/” defined in
eq. [1T), and without it (thick curve), basedGh= S-C" with the modified coin operator
defined in eq.[(Z5). Note that Tulsi’'s search yields a smaatbeve, the first maximum
of which is reached later but the maximum probability of figlthe searched element
is higher than with the usual spatial search. A change initihres the local derivative
was used to find the maximum point. In the right panel of Fig@iréhe time at which
the maximum probability is reached for Tulsi’'s search isttgld against//N log N. A
straight-line fit to this data has a correlation coeffici®Ait= 0.9988.

In order to test whether the overlap with the searched sitelisi’s search is con-
stant for large, in Figure[# we plot this overlag{f|(U")"= |1, uc, up)|*, againsty.
After an initial decay, forN > 2000 the overlap is found to stabilize at approximately
0.773. These simulations show that Tulsi’s search in a triangoéawork works as ex-
pected.
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Figure 4. Probability of finding the marked vertex | (£|(U")'m<* |1, uc, up)|* against
N.

5. Summary and conclusions

In this work the problem of quantum spatial search on a peritveb-dimensional trian-
gular network has been considered for the first time. In troblem, a searched item is to
be located in a regular triangular network withelements. A quantum walk operator for
this network has been defined and its explicit Fourier repridion has been found. Its
eigenproblem was solved exactly and these results haveussehto estimate the over-
lap and running times of the algorithm, according to the gaimed search formalism
[Kempe et al. 2005]. This formalism gives a powerful insightthe runtime of the algo-
rithm for large values ofV. In order to check our analytical results and to gain further
knowledge on the detailed performance of the spatial searethave implemented its
simulation on a classical computer, using standard patatbniques. This allowed us to
obtain results for high values of and see how fast the convergence to the theoretical ex-
pectations actually is. The simulations where implemebt&t for a modified quantum
walk search and for Tulsi’'s search, which uses an extra @shat control register.

Both spatial search algorithms are found to requaie/N log N) steps to reach
the point at which a measurement yields the searched statecanstant probability.
However, this result is obtained with a constant overlaghwhie searched state, in the
case of Tulsi’s search.

Previous work for the spatial search problem in a plane hasidered the case
of a square grid [Kempe et al. 2005] and an hexagonal gridl[Abal. 2010]. For both
quantum algorithms the ordér(,/N log V) was found. In a sense, this work completes
the program for the spatial search problem, by providingigtails of a search in a trian-
gular grid. Since these regular graphs have different @efgre- 4 for rectanglesd = 3
for hexagons and = 6 for triangles), this completes the proof that the degreerefalar
graph does not affect the performance of a spatial searchitg.

A search algorithm implemented on a real network will havedpe with loss of
symmetry due to imperfections. The issue of how robust tlifgerent spatial search



protocols are when it comes to searching when a fractionefittks in the network is
missing is still an important open question which remainduiture work.
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