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2Laboratório Nacional de Computação Cientı́fica - LNCC,
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Abstract. The spatial search problem consists in minimizing the number of steps
required to find a given site in a network, under the restriction that only oracle
queries or translations to neighboring sites are allowed. We propose a quantum
algorithm for the spatial search problem on a triangular lattice with N sites
and torus-like boundary conditions. The proposed algortithm is a special case
of the general framework for abstract search proposed by Ambainis, Kempe and
Rivosh [Kempe et al. 2005] (AKR) and Tulsi [Tulsi 2008], applied to a trian-
gular network. The AKR-Tulsi formalism was employed to showthat the time
complexity of the quantum search on the triangular lattice isO(

√
N logN).

Resumo. O problema de busca espacial consiste em minimizar o número de
passos necessários para encontrar um determinado sı́tio de uma rede, com a
restrição de que apenas consultas ao oráculo ou deslocamento para os sı́tios
adjacentes s̃ao permitidos. Propomos um algoritmo quântico para o problema
de busca espacial em uma malha triangular comN vértices com condiç̃oes
de contorno do tipo toro. O algoritmo propostóe um caso particular do
método proposto por Ambainis, Kempe e Rivosh [Kempe et al. 2005] (AKR) e
Tulsi [Tulsi 2008]. O formalismo AKR-Tulsi foi utilizado para mostrar que a
complexidade de tempo da busca quântica na malha triangulaŕeO(

√
N logN).

1. Introduction

The spatial quantum search problem consists of using local unitary operations to
search for one (or more) nodes within a set ofN spatially arranged sites with an
implicit notion of distance between them. The search nodes are identified by the
non-zero values of a binary function (the oracle), as usual.The spatial search prob-
lem [Ambainis and Aaronson 2003] incorporates the restriction that, in one step, one
can either query the oracle at the current site or advance to aneighboring site. It has
been pointed out by Benioff [Benioff 2002] that in a two-dimensional network under this
restriction, Grover’s search [Grover 1996], [Grover 1997]provides no advantage over a
classical search due to the intrinsic non-locality of Grover’s symmetrization. Ambainis et
al. proposed a generalized formalism for quantum walk (QW) based spatial search algo-
rithms and worked out the specific case of a two-dimensional cartesian network, obtain-
ing aO(

√
N logN) algorithm [Kempe et al. 2005], to which we shall refer to as AKR.

Tulsi has proposed an improvement to AKR which requires an ancilla qubit and leads to
anO(

√
N logN) algorithm in two dimensions [Tulsi 2008]. However, it is notknown
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whether the optimal solution isO(
√
N) for the two-dimensional spatial search problem.

In contrast, it is known that the optimal solution is achieved in higher dimensions, such as
3D-grid [Kempe et al. 2005] and the SKW algorithm [Shenvi et al. 2003], which searches
an item withinN = 2n sites arranged in ann–dimensional(n > 2) hypercube.

There are three ways to cover the plane with regular polygons: squares, hexagons
and triangles. The resulting regular networks differ in their degreed (number of connec-
tions per node) which is4, 3 and6 respectively. As mentioned before, for the rectangular
grid (d = 4) the AKR search algorithm isO(

√
N logN). A QW-based spatial search al-

gorithm of orderO(
√
N logN) has recently been implemented for a two-dimensional

hexagonal network(d = 3) [Abal et al. 2010]. Both algorithms can be improved to
O(

√
N logN) with Tulsi’s modification. These results suggest that the degree or con-

nectivity of a regular network does not affect the performance of a QW-based search
algorithm.

In this work, a new search algorithm for the case of a triangular network is pro-
posed and analyzed. The proposed algortithm is a special case of the general framework
for abstract search [Kempe et al. 2005, Tulsi 2008], so we employ the AKR-Tulsi formal-
ism to show that the time complexity of the quantum search on the triangular lattice is
O(

√
N logN). This provides further evidence that the degree of the underlying network

does not affect the performance of the quantum algorithm.

The paper is organized as follows. In Section 2 we discuss theimplementation
of a QW on the triangular network. In Section 3 we analyze the time complexity of this
search algorithm. In Section 4 we perform a numerical analysis of the algorithm. Finally
in Section 5 we present our conclusions.

2. QW on a triangular Network
Let us considerN sites arranged in a triangular network covering a two-dimensional
region, as shown in Figure 1. The network is

√
N×

√
N and periodic boundary conditions

are assumed. A site on the lattice is located by two integers(n1, n2) according to

r = n1a1 + n2a2, (1)

wherea1 anda2 are unit vectors forming a60o angle, as indicated in Figure 1. These
integers are such thatni ∈ [0,

√
N − 1] for i = 1, 2 and thus each of them takes

√
N

different values.

These sites define an orthonormal set of quantum state vectors,{|n1, n2〉}, which
span anN–dimensional Hilbert spaceHP . At a given site, there are six possible direc-
tions of motion which we label with an integerj ∈ [0, 5], as indicated in Figure 1. The
orthonormal states{|j〉} span a six-dimensional Hilbert space,HC , which we shall re-
fer to as the “coin” subspace. The Hilbert space for this problem, H = HC ⊗ HP , is
6N–dimensional. A generic state vector is expressed as

|Ψ〉 =
5
∑

j=0

√
N−1
∑

n1,n2=0

aj,n̂ |j, n̂〉, (2)

where theaj,n̂ are complex amplitudes which satisfy the normalization constraint and we
have introduced the shorthand notationn̂ ≡ (n1, n2).



Figure 1. A
√
N×

√
N triangular network (here N = 36). The N sites form a Bravais

lattice and the six directions of motion are labelled by an in teger j ∈ [0, 5].

The standard QW on this network is implemented with a unitaryevolution opera-
tor of the form

U = S · (C ⊗ IP ) (3)

whereS is a shift operator inH (to be specified below),IP is the identity operation
in HP andC is a unitary coin operation inHC . The useful coin operation for spatial
search problems [Kempe et al. 2005, Shenvi et al. 2003] is Grover’s coin, whose matrix
elements for ad–dimensional space areG(d)

ij = 2
d
− δij . For the particular cased = 6, it

is given by

G(6) =
1

3

















−2 1 1 1 1 1
1 −2 1 1 1 1
1 1 −2 1 1 1
1 1 1 −2 1 1
1 1 1 1 −2 1
1 1 1 1 1 −2

















. (4)

Thus we useC = G(6). The shift operator implements single-step displacementsacting
on the kets|j;n1, n2〉 in the form

S|0;n1, n2〉 = |3;n1 + 1, n2〉,
S|1;n1, n2〉 = |4;n1 + 1, n2 − 1〉,
S|2;n1, n2〉 = |5;n1, n2 − 1〉,
S|3;n1, n2〉 = |0;n1 − 1, n2〉, (5)

S|4;n1, n2〉 = |1;n1 − 1, n2 + 1〉,
S|5;n1, n2〉 = |2;n1, n2 + 1〉.

Note thatS inverts the coin state. This invertion is crucial for the efficiency of the search
algorithm described in the next section. Finally, the dynamics of the QW is obtained by
applyingU repeatedly|Ψ(m)〉 = Um|Ψ(0)〉 for some integerm.



The standard QW is best analyzed in the Fourier-transformedspace. Let us con-
sider the reciprocal lattice vectors{g1, g2}, which satisfy the usual requirements from
condensed matter physics [Kittel 1995]

gi · aj =
2π√
N
δij . (6)

A site in thisreciprocal latticeis located by

k = k1g1 + k2g2, (7)

with k1, k2 integers in[0,
√
N−1]. Let us use the notation̂k = (k1, k2) and write a generic

state vector in the Fourier representation as

|Ψ〉 =
∑

j,k̂

fj,k̂|j, k̂〉. (8)

The kets|j, k̂〉 and|j, n̂〉 are related by the discrete Fourier transform

|j〉|k̂〉 = |j〉
(

1√
N

∑

n̂

e−ik·r|n̂〉
)

(9)

|j〉|n̂〉 = |j〉





1√
N

∑

k̂

eik·r|k̂〉



 (10)

and one can check that〈k̂|n̂〉 = ωn̂·k̂/
√
N whereω ≡ e2πi/

√
N andn̂ · k̂ = n1k1 + n2k2.

The action ofS on the kets|j, k̂〉 of the Fourier representation can be obtained from
eqs. (5) as

S|0, k̂〉 = wk1|3, k̂〉, S|1, k̂〉 = wk1−k2|4, k̂〉,
S|2, k̂〉 = w−k2|5, k̂〉, S|3, k̂〉 = w−k1|0, k̂〉,
S|4, k̂〉 = w−k1+k2 |1, k̂〉, S|5, k̂〉 = wk2|2, k̂〉.

(11)

Thus, in the k̂–representationS acts diagonally, i.e. S =
∑

k̂ Sk|k̂〉〈k̂|, where
Sk = 〈k̂|S|k̂〉 is the reduction ofS to HC . Therefore, the evolution operator, eq. (3),
is also diagonal in the Fourier representation and can be expressed asU =

∑

k̂ Uk̂|k̂〉〈k̂|,
whereUk̂ = 〈k|U |k〉 acts inHC . The matrix elements of the reduced operator can be
calculated from eq. (11), with the result

Uk̂ =
1

3

















w−k1 w−k1 w−k1 −2w−k1 w−k1 w−k1

w−k1+k2 w−k1+k2 w−k1+k2 w−k1+k2 −2w−k1+k2 w−k1+k2

wk2 wk2 wk2 wk2 wk2 −2wk2

−2wk1 wk1 wk1 wk1 wk1 wk1

wk1−k2 −2wk1−k2 wk1−k2 wk1−k2 wk1−k2 wk1−k2

w−k2 w−k2 −2w−k2 w−k2 w−k2 w−k2

















. (12)

The characteristic polynomial factors as

P (λ) = (λ− 1)2(λ+ 1)2(λ2 − 2 cos(θk)λ+ 1), (13)



whereθk is defined by

cos(θk) ≡
1

3

(

cos(k̃1) + cos(k̃2) + cos(k̃1 − k̃2)
)

, (14)

andk̃i ≡ 2πki
m

for i = 1, 2. The eigenvalues are±1 (twice each) and e±iθk . Let us denote
by |ν±1〉 and|ν±k〉 the normalized eigenvectors ofUk̂ associated with the eigenvalues±1

and e±iθk , respectively. Then|ν±1, k̂ = 0〉 and|ν±k, k̂〉 are eigenvectors ofU associated
with the same eigenvalues, where|k̂〉 is defined in eq. (9).

3. Time complexity of the search algorithm

We shall use Tulsi’s version [Tulsi 2008] of the framework ofthe abstract search algo-
rithm [Kempe et al. 2005] to analyze the time complexity of a searchalgorithm on the
triangular network. We assume that there is a single marked vertex |t̂〉, which we want
to find. The search algorithm uses a conditional coin operation, which acts as−IC on
the searched site|t̂〉 and asG(6) otherwise. Thus, the modified evolution operator is
U ′ = S · C ′, whereC ′ acts inH as just described, i.e.

C ′ = −IC ⊗ |t̂〉〈t̂|+
∑

n̂ 6=t̂

G(6) ⊗ |n̂〉〈n̂|. (15)

AKR [Kempe et al. 2005] have shown that the evolution of the modified quantum walk
U ′ may be analyzed using the eigenspectrum of the standard QW evolution operatorU .
This fact actually reduces the analysis of the search algorithm to a tractable eigenproblem
for the unitary operatorU .

The evolution operatorU ′ can be written in another form, useful for Tulsi’s mod-
ified algorithm. This modification requires an extra register (an ancilla qubit) used as a
control for the operatorsRt̂ andU . Using eq. (15), one can show thatU ′ = U ·Rt̂ , where
Rt̂ = I6N − 2|uC, t̂〉〈uC, t̂| , andU is given by eq. (3). The operators acting on the ancilla
register are described in Figure 2, where−Z is the negative of Pauli’sZ operator and

Xδ =

(

cos δ sin δ
− sin δ cos δ

)

, (16)

wherecos δ ∝ 1/
√
logN .

|uP 〉

Xδ X†
δ −Z

Rt̂

t

U

|1〉

|uC〉

t

Figure 2. Tulsi’s circuit diagram for the one-step evolutio n operator of the quan-
tum walk search algorithm.



The new evolution operator is

U ′′ = (−Z ⊗ I) · C(U) · (X†
δ ⊗ I) · C(Rt̂) · (Xδ ⊗ I), (17)

whereC(U) andC(Rt̂) are the controlled operations shown in Figure 2 andI is the
identity operator inH. We will show thatU ′′ must be iteratedO(

√
N logN) times, taking

|1〉|uC〉|uP 〉 as the initial condition, in order to maximize the overlap with the search
element.

The expression for the controlledRt̂ is C(Rt̂) = I12N − 2|1, uC, t̂〉〈1, uC, t̂|. Let
us define

|δ1〉 ≡ X†
δ |1〉 = − sin δ |0〉+ cos δ |1〉, (18)

then we define a new reflection operator

R̄t̂ ≡ (X†
δ ⊗ I) · C(Rt̂) · (Xδ ⊗ I) = I12N − 2|δ1, uC, t̂〉〈δ1, uC , t̂|. (19)

The effective target state is
|t̄〉 = |δ1, uC , t̂〉. (20)

Let us define
Ū = (−Z ⊗ I) · C(U). (21)

Note that

Ū |0〉|ν±1, k̂ = 0〉 = −|0〉|ν±1, k̂ = 0〉, (22)

Ū |1〉|ν±1, k̂ = 0〉 = ± |1〉|ν±1, k̂ = 0〉 (23)

and
Ū |j〉|ν±k, k̂〉 = −(−1)je±iθk |j〉|ν±k, k̂〉, (24)

for j = 0, 1. The eigenspectrum of̄U is determined from the eigenspectrum ofU .

The search algorithm consists in applyingU ′′ repeatedly taking the initial condi-
tion as

|Ψ0〉 ≡ |1, ν1, k̂ = 0〉 = |1, uC, uP 〉 =
1√
6N

∑

j,n̂

|1, j, n̂〉, (25)

where|uC〉 and |uP 〉 are the uniform superposition in the coin and position spaces re-
spectively. The initial condition can be prepared inO(

√
N) time steps. The number of

iterations ofU ′′ is given byπ/2α, whereα is defined in the following way. The eigen-
values ofU ′′ that are different from 1 have the form e±iαj , where0 < αj ≤ π/2. Then
α = min{α1, α2, · · · }. AKR have shown that it is possible to estimateα knowing the
eigenspectrum of the evolution operatorŪ .

The first step is to decompose the target state in the eigenbasis of Ū , that is, we
have to calculate the coefficientsak such that

|δ1, uC, t̂〉 =
1√
N
|Ψ0〉+

1√
N

∑

j,k 6=0

aj,k

(

|j, ν+k, k̂〉+ |j, ν−k, k̂〉
)

+

b (|0, ν+, k̂ = 0〉+ |0, ν−, k̂ = 0〉) + c|1, ν−, k̂ = 0〉. (26)



Coefficientsb andc are related to the−1-eigenspace. Coefficientsaj,k are real. In order
to satisfy these conditions, eigenvectors|j, ν+k, k̂〉 must be chosen appropriately. The
procedure is the following. If〈uC |ν+k〉 has a non-zero phase eiλ, then|j, ν+k, k̂〉 must
be redefined to e−iλ|j, ν+k, k̂〉. The same procedure must be performed to|j, ν−k, k̂〉.
After those redefinitions, eq. (26) is valid. For the triangular network, a straightforward
calculation yields

aj,k = 〈j|δ1〉〈ν±|uC〉

=
1√
2

(

(j − 1) sin δ + j cos δ
)

. (27)

This result is remarkably similar to the result obtained forthe 2D grid. Note that the
corresponding expression for the honeycomb lattice [Abal et al. 2010] is more complex,
because it depends onk.

AKR have shown thatα can be determined using the expression

1

α
= O





√

√

√

√

∑

j,k 6=0

a2j,k
1− cos θk



 , (28)

whenN ≫ 1. Using eq. (27), the expression inside the above square rootmay be calcu-
lated using

1

2

∑

k 6=0

1

1− cos θk
≈ N

16

1

(π − ε)2

∫∫ 2π−ε

ε

dk̃2dk̃1
1

1− cos θk
. (29)

where we have used
∑

k 6=0 → N
8

1
(π−ε)2

∫∫ 2π−ε

ε
dk̃1dk̃2 with ε = 2π

√

2/N ≪ 1. Using
eq. (14) andε ≪ 1, eq. (29) can be approximated by

3N

16

1

π2

∫ 2π−ε

ε

dk̃2

∫ 2π−ε

ε

dk̃1

k̃2
1 + k̃2

2 − k̃1k̃2
∼ N log

(

2π

ε

)

∼ N logN.

Since the number of iterations ofU ′ is π/2α, we conclude that the time complexity of the
search algorithm isO(

√
N logN).

The overlap of the final state aftert = π/2α iterations ofU ′′ with the target state
is

|〈δ1, uC , t̂|(U ′′)t|Ψ0〉| = Θ(1) (30)

as calculated in [Tulsi 2008].

4. Simulation of the search algorithm

A generic state in the extended space is

|Ψ〉 =
∑

j

∑

n̂

aj,n̂ |0, j, n̂〉+ bj,n̂ |1, j, n̂〉, (31)

wherea, b are the amplitudes of the state vector extended to include the 2-dimensional
Hilbert space associated with the ancilla qubit.
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Figure 3. Left panel: probability of finding the searched sta te against the number
of time steps for spatial search with (thin line) and without (thick line) Tulsi’s mod-
ification for N = 400. Right panel: tMAX against

√
N logN using Tulsi’s search.

Note the approximately linear dependence.

It is straightforward to show that the operatorU ′′ in eq. (17) defines the following
map:

ãj,n̂ = −aj,n̂ +
1

3
δn̂,t̂
∑

ℓ

(

aℓ,t̂ sin
2 δ − bℓ,t̂ cos δ sin δ

)

, (32)

b̃j,n̂ =
∑

k,l

G
(6)
k,l

∑

n̂′

Sj,k,n̂,n̂′

[

bl,n̂′ +
1

3
δn̂′,t̂

∑

ℓ

(

aℓ,t̂ sin δ cos δ − bℓ,t̂ cos
2 δ
)

]

whereδn̂,t̂ is a Kronecker-delta which selects the searched state. Thismap allows the
simulation of the abstract search algorithm in a digital computer. The initial condition is
taken to be|1〉|uC〉|uP 〉, and the effective target state is|t̄〉 = |δ1〉|uC〉|t̂〉, as explained in
the last section.

Fortran 90 was chosen as programming language because it provides useful tools
for large matrix computations and intrinsic functions for complex vector algebra. A par-
allel programming approach using OpenMP was implemented.

We present the results of the simulations in Figures 3 and 4. The left panel in Fig-
ure 3 shows the time evolution of the probability of finding the searched state,

∣

∣〈t̄|Ψ〉
∣

∣

2
,

both for an algorithm with Tulsi’s modification (thin curve), based onU ′′ defined in
eq. (17), and without it (thick curve), based onU ′ = S ·C ′ with the modified coin operator
defined in eq. (15). Note that Tulsi’s search yields a smoother curve, the first maximum
of which is reached later but the maximum probability of finding the searched element
is higher than with the usual spatial search. A change in the sign of the local derivative
was used to find the maximum point. In the right panel of Figure3, the time at which
the maximum probability is reached for Tulsi’s search is plotted against

√
N logN . A

straight-line fit to this data has a correlation coefficientR2 = 0.9988.

In order to test whether the overlap with the searched site inTulsi’s search is con-
stant for largeN , in Figure 4 we plot this overlap,

∣

∣〈t̄|(U ′′)tmax |1, uC, uP 〉
∣

∣

2
, againstN .

After an initial decay, forN > 2000 the overlap is found to stabilize at approximately
0.773. These simulations show that Tulsi’s search in a triangularnetwork works as ex-
pected.
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5. Summary and conclusions

In this work the problem of quantum spatial search on a periodic two-dimensional trian-
gular network has been considered for the first time. In this problem, a searched item is to
be located in a regular triangular network withN elements. A quantum walk operator for
this network has been defined and its explicit Fourier representation has been found. Its
eigenproblem was solved exactly and these results have beenused to estimate the over-
lap and running times of the algorithm, according to the generalized search formalism
[Kempe et al. 2005]. This formalism gives a powerful insighton the runtime of the algo-
rithm for large values ofN . In order to check our analytical results and to gain further
knowledge on the detailed performance of the spatial search, we have implemented its
simulation on a classical computer, using standard parallel techniques. This allowed us to
obtain results for high values ofN and see how fast the convergence to the theoretical ex-
pectations actually is. The simulations where implementedboth for a modified quantum
walk search and for Tulsi’s search, which uses an extra qubitas a control register.

Both spatial search algorithms are found to requireO(
√
N logN) steps to reach

the point at which a measurement yields the searched state with constant probability.
However, this result is obtained with a constant overlap with the searched state, in the
case of Tulsi’s search.

Previous work for the spatial search problem in a plane has considered the case
of a square grid [Kempe et al. 2005] and an hexagonal grid [Abal et al. 2010]. For both
quantum algorithms the orderO(

√
N logN) was found. In a sense, this work completes

the program for the spatial search problem, by providing thedetails of a search in a trian-
gular grid. Since these regular graphs have different degree (d = 4 for rectangles,d = 3
for hexagons andd = 6 for triangles), this completes the proof that the degree of aregular
graph does not affect the performance of a spatial search algorithm.

A search algorithm implemented on a real network will have tocope with loss of
symmetry due to imperfections. The issue of how robust thesedifferent spatial search



protocols are when it comes to searching when a fraction of the links in the network is
missing is still an important open question which remains for future work.
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