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Antihyperon Polarization in Inclusive Processes at High Energies
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We propose a model that we believe is the main source of the antihyperon polarization in high-energy proton-
nucleus inclusive reactions. The polarization is originated by the final-state interactions between the antihyper-
ons and other produced particles in these collisions (predominantly pions). The model is based on two elements:
the low-energy pion-hyperon interaction (described by chiral effective Lagrangians) and the statistical fluctua-
tions plus expansion of the background matter.

In 1976, Bunce and collaborators [1], studying theΛ in-
clusive production

p + Be → Λ + X , (1)

with 200 GeV protons, whereX represents the not observed
particles, verified that theΛ polarization was significantly
different from zero (and negative, reaching values close to
20%). These results were totally unexpected [2], because
there were indications that polarization effects should van-
ish at high energies and hadron polarization was believed to
be a low energy phenomenon.

Since then, many similar experiments have been per-
formed [3]-[6], that confirmed these results and have shown
also that both hyperons and antihyperons produced are po-
larized in this kind of reaction. However, the variety of be-
havior of the polarizations has caused many problems to the
theoretical understanding of the experimental data ([7]-[9]
for example), specially in the antihyperon case. Since these
models are based in direct mechanisms for hyperon produc-
tion (the initial proton becomes a hyperon, by some mech-
anism, such as quark recombination [7], for example) the
final antihyperon polarization practically vanishes.

The first model that was able to produce polarized an-
tihyperons, was the one proposed by Y. Hama and T. Ko-
dama [10] and it was based in the hydrodynamical model.
The hyperon is produced inside a medium composed of hot
hadronic matter (produced in the collision process) and in-
teracts with it. This interaction was represented by an optic
potential. With this model, the antihyperon data were quite
well reproduced. Nevertheless, the model left some ques-
tions in open, such as the need of different potentials for
different hyperons and their interpretations.

Aiming to study these questions, a new model was de-
veloped, [11], based in [10]. The hyperon was considered
to be produced unpolarized (as an average effect) in the in-
terior of a hot hadronic matter, now considered as a fluid
composed of particles (predominantly pions). The hyperon
(or antihyperon) interacts with the other hadrons (instead of
considering a potential as it was done in [10]), and becomes
polarized due to these final state interactions. The remain-
der of this work will be devoted to the presentation of the

main features of this model, and the results of theΛ andΞ
+

polarizations (the calculations to theΣ
−

polarization are in
progress).

To build a model with the cited characteristics, two el-
ements must be considered: the microscopic interactions,
that happen inside the hadronic matter, and the calculation
of averages, considering the fluid in expansion. A brief de-
scription of these elements will be made below.

Currently, it is well known that models based on chi-
ral Lagrangians describe very accurately many low energy
hadronic processes, as for example theπN interactions [12].
Thus, this seems to be the most reliable treatment to be fol-
lowed in studying the low energyπY interactions [13].

The most important processes in theπΛ, πΣ and πΞ
interactions (at low energies) are shown in the Figs. 1, 2
and 3. The expressions resulting from the calculations of
the diagrams (and a review of the formalism) may be found
in [13], where the sigma term was introduced simply as a
parametrization. In recent studies [12], [14], it was shown
that theσ term may be understood in terms of loops of pi-
ons, and then, in the calculation of the diagrams 1c, 2c and
3c, the expressions from [15], [16] have been used.
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Figure 1.πΛ interaction.
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Figure 2.πΣ interaction.
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Figure 3.πΞ interaction.

Calculating the diagrams of the Figs. 1-3, we obtain a
scattering matrix of the form [13]

M ba
I =

T ba
I

8π
√

s
= fI(θ) + ~σ.n̂gI(θ) , (2)

from which we can calculate the polarizations and the angu-
lar distributions with

dσ

dΩ
=

1
k2

{|f |2 + |g|2} , (3)

~P = −2
Im(f∗g)
|f |2 + |g|2 n̂ . (4)

Now, let us turn our attention to the second element of
the model, that is to determine the average effect of the el-
ementary interactions in high energy processes, using a hy-
drodynamical treatment. In fact, there are two averages to
be made. The first one is in relation to a fluid element. The
particles, produced thermally inside a fluid element interact,
then become polarized. The second average is necessary
due to the fact that the fluid is in expansion, so, their el-
ements have different velocities. The transverse expansion
effect [17], [18] will also be considered, because, as it is well
known, it is an important characteristic of a hydrodynamical
description of high energy hadronic collisions.

For this purpose, the idea is to suppose that in addition
to the longitudinal expansion, that will obey a rapidity dis-
tributiondN/dα (whereα is the longitudinal rapidity of the
fluid element), the fluid has also a transverse expansion with
a rapidityαt of this element, that obeys another distribution,
dN/dαt.

Consequently, the average polarization may be calcu-
lated by the expression

〈~P 〉 =

∫ {(
~P dσ

dt

)
R1

+ ... +
(

~P dσ
dt

)
RN

}
Gdτ

∫ {(
dσ
dt

)
R1

+ ... +
(

dσ
dt

)
RN

}
Gdτ

, (5)

where theRi reactions, elastic and with charge exchange,
are considered, in the interactions of the hyperons with
π+, π− and π0 (the considered reactions are listed in
[13]). These particles are produced with initial momenta~π′0
(pions) and~Λ′0 (hyperons) obeying statistical distributions
(Fermi-Dirac and Bose-Einstein). The hyperon emerges
with final momentum~Λ′ and the energies are respectively
E′

π0
, E′

0 eE′. Then, the factorG can be written as

G =
(d2N/dα dαt)(

exp
(

E′π0
T

)
− 1

)(
exp

(
E′0
T

)
+ 1

)Λ′20 π′20

×δ

(
E′

0 + E′
π0
− E′ −

√
m2

π + (~π′0 + ~Λ′0 − ~Λ′)2
)

,

(6)
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Figure 4. Parametrization ofdσ/dα compared with the data from
[19]. (1) is calculated with the text parameters, and (2), withβ=5.

and the integration element is

dτ = dα dαt d~Λ′0d~π
′
0 . (7)

In order to calculate the average polarization (5), we
must know the forms of the rapidity distributions of the fluid
elements. It is possible to obtain these distributions, by con-
sidering the pion rapidity distribution

dσ

dy
=

∫
dσ

dα
(α)

dσ

dy′
(y − α) dα , (8)

as a convolution of the rest-frame rapidity distribution
dσ/dy′, and the fluid rapidity distribution,dσ/dα (that we
want to know).

The momentum distribution with respect to the fluid el-
ement (considering the thermal production of pions) is

dσ

d~pπ
=

1
Eπ

dσ

dy′d~pt
=

1

e
Eπ
T − 1

(9)

that after some manipulations [11] gives

dσ

dy′
∼ Ce−β′y′ (10)
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Figure 5.Λ andΞ polarizations, with variations of theβ parameter
(fluid rapidity distribution) and verifying the effect of the resonance
Ξ∗(1620).

with β′ ∼ 0.62.
Supposing thatdσ/dα may be described by a sum of

gaussian functions

dσ

dα
= A[e−β(α−α0)

2
+ e−β(α+α0)

2
] , (11)

inserting this expression in (8), integrating and fitting the pa-
rametersA, β andα0, we can compare the results with the
experimental data from ISR [19] . The results are shown in
Fig. 4.

We obtained the parameters for 491 GeV (A = 1.03,
α0 = 1.0 andβ = 1.0) and 1030 GeV (A = 0.85, α0 = 1.0
andβ = 0.7) incident protons. Our real interest is for a 800
GeV beam, so, we must interpolate the results. The obtained
values wereA = 0.93, α0 = 1.0 andβ = 0.85, and these
values will be used in the average polarization calculation.

The transverse rapidity distributiondσ/dαt will be as-

sumed to be [17],

1
chαtshαt

dσ

dαt
= Ae−βtα

2
t , (12)

with βt = 6.6.
The numerical results from the calculation of the aver-

age polarization, from Eq (5), toΛ andΞ
+

are shown in
Fig. 5.

We can observe that forΛ the fit was very good (fact that
is independent ofβ). ForΞ

+
we verified the effect of the pa-

rameterβ and included the next resonance,Ξ
∗
(1620), that

provided a good accord with the experimental data. Calcula-
tions of theΣ

−
polarization are in progress, and preliminary

results show that the next resonance,Λ
∗
(1520) is not so im-

portant.

References

[1] G. Bunceet al., Phys. Rev. Lett.36, 1113 (1976).

[2] G. Giacomelli,Phys. Rep.23, 123 (1976).

[3] B. Lundberget al., Phys. Rev. D40, 3557 (1978).

[4] R. Ramerikaet al., Phys. Rev. D33, 3172 (1986).

[5] P.M. Ho et al., Phys. Rev. D44, 3402 (1991).

[6] A. Moreloset al.,Phys. Rev. Lett.71, 2172 (1993).

[7] T. A. DeGrand and H. I. Miettinen,et al., Phys. Rev. D24,
2419 (1981).

[8] J. Soffer and N. A. T̈ornqvist, Phys. Rev. Lett.68, 907
(1992).

[9] S. M. Troshin and N. E. Tyurin, Phys. Rev. D55, 1265
(1997).

[10] Y. Hama and T. Kodama, Phys. Rev. D48, 3116 (1993).

[11] C. C. Barros Jr.Doctor thesis, IFUSP (2001).

[12] T. Becher and H. Leutwyler,hep-ph/0103263; Eur. Jour.
Phys. C9, 643 (1999).

[13] C. C. Barros Jr. and Y. Hama, Phys. Rev. C63, 065203
(2001).

[14] M. R. Robilotta, Phys. Rev. C63, 0340 (2000).

[15] C. C. Barros Jr. and M. R. Robilotta,hep-ph/0209213.

[16] C. C. Barros Jr., Phys. Rev. D68, 034006 (2003).

[17] Y. Hama and F. S. Navarra, Z. Phys. C53, 501 (1992).

[18] Y. Hama, Nuovo Cim. A46, 569 (1978).

[19] W. Bell et al.,Z. Phys. C27, 191 (1985).


