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Abstract

It is shown that delta hedging provides the optimal traditigtegy in terms of minimal re-
quired initial capital to replicate a given terminal paywffa continuous-time Markovian con-
text. This holds true in market models where no equivalerdllmartingale measure exists but
only a square-integrable market price of risk. A new prolitghineasure is constructed, which
takes the place of an equivalent local martingale measuarerder to ensure the existence of
the delta hedge, sufficient conditions are derived for thesgary differentiability of expecta-
tions indexed over the initial market configuration. Theargity often discussed phenomenon
of “bubbles” is a special case of the setting in this papeve&xs examples at the end illustrate
the techniques described in this work.

1 Introduction

In a financial market an investor usually has several tradirajegies at her disposal to obtain a
given wealth at a specified time. For example, if the investants to cover a short-position of
one stock tomorrow at the cheapest costs today, it is géye optimal for her to buy the stock
today. There might be a trading strategy which requiresitesal capital but replicates the exact
stock price tomorrow. In this paper we show that optimalitrgétrategies in the sense of minimal
required initial capital can be represented as delta hedges

This paper has been motivated by the problem of finding tradirategies to exploit relative
arbitrage opportunities, which arise naturally in the feavork of Stochastic Portfolio Theory
(SPT). For that, we generalize the results of Fernholz andtas |(2010)’s paper “On optimal
arbitrage”, where specifically the market portfolio is exaed, to a wide class of terminal wealths
which can be optimally replicated by delta hedges. For amview of SPT and a discussion of
relative arbitrage opportunities, we recommend the maqayby Fernholz (2002) and the survey
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paper by Fernholz and Karatzas (2009). The problem inwegstighere is directly linked to the
question of computing hedges of contingent claims, whichideen studied within the Benchmark
Approach (BA) developed by Eckhard Platen and co-authoedd, our results generalize some
results in the BA and provide tools to compute the so-calledl“world prices” of contingent
claims under that approach. The monograph by Platen andiH2@06) provides an excellent
overview of the BA.

We shall not restrict ourselves to markets which satisfy“the free lunch with vanishing
risk” (NFLVR) condition or, more precisely, the “No arbiga for general admissible integrands”
(NA) condition[l Thus, we cannot rely on the existence of an equivalent loeatingale measure
(ELMM), which we would have otherwise done. However, we khahstruct another proba-
bility measure which takes the place of the “risk-neutraasure. There are several reasons
why we do not assume an ELMM a priori. First of all, there does always exist a statisti-
cal test to check from the stock price observations wheth@oban ELMM exists as shown in
Karatzas and Kardaras (2007), Example 3.7. Secondly, exagnarbitrage possibilities instead
of excluding them a priori is of interest in itself. Furthegaments and empirical evidence in
favor of considering models without an ELMM are discusselandaras|(2008), Section 0.1 and
Platen and Hulley (2008), Section 1. An economic equililrimodel for such models is provided
in lLoewenstein and Willaro (2000a). In the spirit of thespgra we shall impose some restric-
tions on the arbitrage opportunities and exclude a priorde®which imply “unbounded profit
with bounded risk”, which can be recognized by a typical agen

There have been several recent papers treating “bubblésivmnodels guaranteeing NFLVR;
a very incomplete list consists of the work by Loewensteith @fillarc (2000b), Cox and Hobson
(2005)/ Heston et al. (2007), Jarrow et al. (2007, 2010)aRdIProtter (2007), and Ekstrom and Tysk
(2009). A bubble is usually defined as the difference betwieemarket price of a tradeable asset
and its smallest hedging price. The analysis here contaesdse of bubbles but is more general,
since it also allows for models without an ELMM. To wit, whtlee bubbles literature concentrates
on one stock whose price process is modelled as a strict loagingale, we consider markets
with several assets and with the stochastic discount faistelf being represented by a (possibly
strict) local martingale. In the case of an asset with a keibilir contribution is limited to the
explicit representation of the optimal replicating stggtas a delta hedge. We shall also discuss in
this context the reciprocal of the three-dimensional Bgssmess as the standard example for a
bubble.

We set up our analysis in a continuous-time Markovian cdntexvit, we focus on stock price
processes whose mean rates of return and volatility caaffisionly depend on time and on the
current market configuration. Since we do not rely on a mgaiie representation theorem, we
are able to allow for a bigger number of driving Brownian mas than number of stocks. This
generalizes the ideas|of Fernholz and Karatzas (2010) mptma large set of payoffs but also to
a bigger number of models for the specific case of the marketgtio. We shall prove that the
cheapest hedging strategy for European contingent clameovided by a classical delta hedge.
This is of course well-known in the case of an ELMM and is hettereded to models which allow
for arbitrage and are not necessarily complete. In thisexdntve provide sufficient conditions

We refer to the monograph by Delbaen and Schachermayer)2808 thorough introduction to NA, NFLVR
and other notions of arbitrage. Since we shall assume tistesxde of a square-integrable market price of risk, we
implicitly impose that NFLVR fails if and only if NA fails; conpare Karatzas and Kardaras (2007), Proposition 3.2.



to ensure the differentiability of the hedging price, gatieng results by Heath and Schwe|zer
(2000), Janson and Tysk (2006), and Ekstrom and Tysk (2008is set of conditions might be

also of interest for models satisfying NFLVR. Since the catagtions for the optimal trading strat-

egy under the “real-world” measure are often too involvewd] since we cannot always rely on an
ELMM, we derive a non-equivalent change of measure inclgidigeneralized Bayes’ rule.

The next section introduces the market model and tradirajesfies. Sectiohl 3 provides a
discussion about the market price of risk. Secfibn 4 cost#tie precise representation of an
optimal strategy to hedge a non path-dependent Europein atad sufficient conditions for the
differentiability of the hedging price. A modified put-cadbrity follows directly. We suggest
in Section b a change to some non-equivalent probabilitysameathat simplifies computations.
Sectiorl 6 provides several examples and Se€lion 7 draws comeusions.

2 Market model and trading strategies

In this section we introduce the market model and tradingtegjies. We take the point of view
of a small investor who takes positions in a frictionlessricial market with finite horizory'.
We shall use the notatioR? := {s = (s1,...,s4)" € R%s; > 0, foralli = 1,...,d} and
assume a market where the stock price processes are moaelesitive continuous Markovian
semimartingales. That is, we consider a financial masket= (5;(-),..., Sa4(-))" of the form

dSi(t) = Si(t) (M(t, S(t)dt + > it S(t))de(t)> 1)

k=1

foralli = 1,...,d andt € [0,7] starting atS(0) € R% and a money markeB(-). Herey :
0,7] x RL — R denotes the mean rate of return and[0, 7] x RZ — R¥X the volatility. Both
functions are assumed to be measurable.

For the sake of convenience we only look at discounted (fafyvarices and set the interest
rates constant to zero, that 3(-) = 1. The flow of information is modelled by a right-continuous
filtration F = {F(t) }o<i<r such thatV (-) = (W1 (-),..., Wxk(-))" is a K-dimensional Brownian
motion with independent components. In Sectibn 5 we shalbse more conditions on the filtra-
tion IF and the underlying probability spa€e The underlying measure and its expectation will be
denoted byP andE, respectively.

We only consider mean rates of retyrrand volatilitieso which imply that the stock prices
S1(+),- -+, S4(+) exist and are unique and strictly positive. More preciségnoting bya(-,-) =
o(-,-)a'(-,-) the covariance process of the stocks, we impose the almastrgagrability condi-
tion

d_ T
> [ e S0 + it S0 e < .

Next, we introduce the notion of trading strategies and @ased wealth processes to be able
to describe formally delta hedging below. We denote the remalb shares held by an investor
with initial capitalv > 0 at timet by n(t) = (n:(t),...,n4(t))" and callp(-) atrading strategy
or in short, astrategy We assume thaj(-) is progressively measurable with respectftand



self-financing. This yields for the corresponding wealtbgass’*"(-) the dynamics

d
dVUI(t) = _Z mi(£)dS;(t)

forall ¢t € [0,7] andV""(0) = v. To ensure that’""(-) is well-defined and to exclude doubling
strategies we restrict ourselves to trading strategiestwaatisfyl/7(¢) > 0 for all t € [0, 7] and
the almost sure integrability condition

Z/ (8) s (O)paa(t, S|+ S2 (O (Daia(t, S(1))) dt < oo.

3 Market priceof risk and stochastic discount factor

This section discusses two important components of theeharkdel. We assume that the market
model of [1) implies anarket price of risk (MPR)which generalizes the concept of the Sharpe
ratio to several dimensions. More precisely, an MPR is an@sgively measurable proce%s),
which maps the volatility structure on the mean rate of retugn That is,

p(t, S(t)) = olt, S(8)0(t) (2)

forall t € [0, 7] holds almost surely. We furthermore assume #gtis square-integrable, to wit,

T
/0 1008)]2dt < o 3)

almost surely. An MPR does not have to be uniquely determirigdiqueness is intrinsically
connected to completeness, which we need not assume. Inageinénitely many MPRs may
exist. An example for non-uniqueness is given followinggersition 1 below.

The existence of an MPR is a central assumption in both thes®& Platen and Heath, 2006,
Chapter 10) and SPT (see Fernholz and Karatzas, 2009, S&gtidt is exactly this assumption
which enables us to discuss hedging prices, as we do beloge &iexcludes scalable arbitrage
opportunities by guaranteeing ‘no unbounded profit withrmad risk” (NUPBR) as discussed
in Karatzas and Kardaras (2007). In the economic literaimilar assumptions have been dis-
cussed. For example, in the terminology of Loewenstein aildi (2000a), the existence of a
square-integrable MPR excludes “cheap thrills” but noessarily“free snacks”. Their Theorem 2
shows that a market with a square-integrable MPR is comsigtiéh an equilibrium where agents
prefer more to less.

Based upon the MPR, we are now ready to definestbehastic discount factor (SDEp

2(0) =0 (- | - [ o)1 7a @

forall t € [0, T]. In classical no-arbitrage theor?(-) represents the Radon-Nikodym derivative
which translates the “real-world” measure into the gen&isk-neutral” measure with the money
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market as the underlying. Since in this work we do not wanixtdugle NFLVR a priori, but are
rather interested in situations where NFLVR does not nec#g$old, we shall not assume that
the SDFZY(.) is a true martingale. Cases whefé(-) is only a strict local martingale have, for
example, been discussed in the BA starting with Platen (@0& Heath and Platen (2002a,b) and
in SPT; see for example Fernholz et al. (2005) and espediainholz and Karatzas (2010).

In this context, it is important to remind ourselves ti4f-) being a true martingale is equiv-
alent to the existence of an ELMIQ), under which the stock prices are local martingales. The
question whethe is a martingale measure or only a local martingale measuretisonnected
to the fact whethe#?(-) is a strict local or a true martingale. Bubbleis usually defined within
a model whereZ?(-) is a true martingale. Then, a wealth process is said to haubhléif it is a
strict local martingale under an ELMRJarrow et al. (2007, 2010) suggest replacing the NFLVR
condition by the stronger condition of “no dominance” firsbposed by Merton (1973) to exclude
bubbles. Here, we take the opposite approach. Instead afsimgp a new condition, the goal of
this analysis is to investigate a general class of modelssauly how much can be said in this
more general framework without having the tool of an ELMM.

To keep the Markovian structure we will also assume thattbrists a square-integrable MPR,
which at timet € [0,7] depends o € 2 only through the current market configuratiSi).

We call such a MPR)(-) Markovianand emphasize this property by writidg-, S(-)). Indeed,
having already a square-integrable MPR), this is not a strong assumption, since we can define
0(t,s) :=E[v(t)|S(t) = s|, where we use regular conditional expectation, which asnexjists on
canonical spaces. We referito Parthasarathy (1967), Giagtefor details and conditions under
which the regular conditional expectation exists. Due ® Markovian assumption om ando,

and to Jensen’s inequality,as defined above is a square-integrable MPR. The next ptaposi
shows that the choice of a Markovian MPR maximizes the randamable which will later be a
candidate for a hedging price. We denoteY(-) the augmented filtration generated by the stock
price process.

Proposition 1 (Role of Markovian MPR) Let M > 0 be a random variable measurable with
respect taF(7T). Letv(-) denote any MPR and-, -) a Markovian MPR. Then, with

Z/(T)
Z0(0)

MY(t) = E {ZV(T>M‘ ]—"t} and M?(t) == E {

20 M' d ]

fort € [0, 7], we haveM”(-) < M(-) almost surely.

Proof. The two processes’(-)MY(-) andZ¥(-)M"(-) are martingales, thus have right-continuous
modifications (see Karatzas and Shreve, 1991, Theorem3)..3Therefore, so da/?(-) and
Mv(-), and it suffices to show for all € [0, 7] that M”(t) < M?(t) almost surely. We define
c(-) ==v(-) = 0(-,S(-)) andc”(-) := c(-)Lqje)|<n} for all n € N and observe that

20 20 oy (~ [0St ) + et ~ 1 [ ot s i)

2In the bubbles literature, there has been an alternativaitiefi, based upon the characterization of the pricing
operator as a finitely additive measure. It can be shown Hisitcharacterization is equivalent to the one here; see
Jarrow et al.[(2010), Section 8 for the proof and literatuhéciv relies on this alternative characterization.
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with Z¢(-) andZ<" (-) defined as i (4). The limit is taken with respect to convecgsn probability
and holds since we have for ahy [0, 7] thatP (Ju € [0, 7] s.t. ||[v(u) — 8(u, S(u))|| > n) — 0
asn — oo. By implicitly going to a subsequence we can interpret tivetlin an almost-sure sense.
Sincec”(-) is boundedZ¢"(-) is a martingale. But now, Fatou’s lemma, Girsanov’s theoasith
Bayes’ rule (see Karatzas and Shreve, 1991, Chapter 318) yie

M (t) < hgg}ﬂ@@” [exp (— /tT 07 (u, S(u))dW™(u) — %/tT 10(u, S(u))u2du) M‘ ]—"t} ,
(5)

wheredQ"(-) := Z<"(T)dP(-) is a probability measur&?" its expectation operator, afd™(-) :=
W)+ [, *(u)du a K-dimensionalQ"-Brownian motion. Since (-, S(-))c"(-) = 0 we can re-
placeW (-) by W (-) in (). This yields that the proces¥-) has the same dynamics undgt
as undeit?. Furthermore, botH(-, S(-)) and M have, as functionals df(-), the same distribution
underQ as undeiP. Therefore, we can replace the expectation opef&torby E in (8) and
obtain the statement. O

We remark that the result and the proof of the last propasiti®@ more general than stated.
The drift 11, volatility ¢ and MPR# need not depend an only through the current market con-
figurationS(t) at timet, but can be progressively measurable with respe@tp). Furthermore,
the inequalityM”(-) < M?Y(-) can be strict. For an example, chodge= 1 and a market with
one stock and two Brownian motions, to wit—= 1 and K’ = 2. We setu(-,-) =0, o(-,) = (1,0)
and observe that(-, S(-)) = (0,0)7 is a Markovian MPR. Another MPR(-) = (11 (-),2(+))T is
defined viav, () = 0, the stochastic differential equatidm, (1) = —v2(t)dWy(t) for all t € [0, T
andw,(0) = 1. That is,»(-) is the reciprocal of a three-dimensional Bessel procestrsjaat
one. Itd’s formula givex”(-) = 1»(-), which is a strict local martingale (see Karatzas and Shreve
1991, Exercise 3.3.36), and thls’ (0) = E[Z¥(T)] < 1 = E[Z°(T)] = M?(0).

Under the assumption of the existence of an ELMM, Jacka (1. 9%#2orem 12, Ansel and Stricker
(1993), Theorem 3.2 or Delbaen and Schachermayer (199bepr&ém 16 show that a contingent
claim can be hedged if and only if the supremum over all exgigxts of the terminal value of the
contingent claim under all ELMMs is a maximum. In our setup,also observe that the supremum
over all M7 (0) in the last proposition is a maximum, attained by any Mar&owWIPR. Indeed, we
will prove in Theoreni L that under weak analytic assumptidasns of the form\M = p(S(7"))
can be hedged. The general theory lets us conjecture thelbaiis measurable with respect to
F5(T) can be hedged.

As loannis Karatzas points out in a personal communica20i@), Propositionl1 might be
related to the “Markovian selection results”, as in Kryl&8¥3) and_Ethier and Kurtz (1986),
Section 4.5. There, the existence of a Markovian solutiomfimartingale problem is studied. It is
observed that a supremum over a set of expectations indgxaetamily of distributions is attained
and the maximizing distribution is a Markovian solution leétmartingale problem. This potential
connection needs to be worked out in a future research projec

From now on we will always take the MPR to be Markovian. As w# gee this choice will
lead directly to the optimal trading strategy.



4 Optimal strategies

In this section, we show that delta hedging provides thewgdttrading strategy in terms of mini-
mal required initial capital to replicate a given terminaypff. Next, we prove a modified put-call
parity. In order to ensure the existence of the delta hedgeajevive sufficient conditions for the
differentiability of expectations indexed over the initiaarket configuration.

We will rely on the following notation. 1" is a nonnegativé (7")-measurable random variable
such thate[Y'|F(t)] is a function ofS(¢) for all t € [0, T'|, we use the Markovian structure 8f-)
to denote conditioning on the evefii(¢) = s} by E“*[Y]. Outside of the expectation operator we
denote by(S"*(u)).ep, 1 @ Stock price process with the dynamicsof (1) &fft) = s, in particular,
S0-50)(.) = S(-). We observe that?(u)/Z°(t) depends for € (¢, T] on F(t) only throughS(t)
and we write similarly( Z%"* (u))uee 1y for (Z2°(u)/Z°(t))uep.ry With Z%45(t) = 1 on the event
{S(t) = s}. When we want to stress the dependence of a process on the stdt we will write,
for example,S(¢,w). We shall call(t, s) € [0,T7] x R% apoint of support forS(-) if there exists
somew € €2 such thatS(t,w) = s. We denote byD;, D7 ; the partial derivatives with respect to
the variables.

We emphasize the standing assumptions made in SeCtions®, aacthely, that the stock price
processS(-) with dynamics specified il 1) starting 8(0) € R? is R¢-valued, unique and stays
in the positive orthant. Furthermore, a square-integrigtalekovian MPR exists almost surely. By
going to an almost sure subset(dthese standing assumptions hold without loss of genefality
allw € Q.

We define for any measurable functipn R¢ — [0, o) a candidaté? : [0, 7] x RY — [0, o0)
for the hedging price of the corresponding European option:

hP(t, 5) = Eb° [ZG(T)p(S(T))] . (6)

SinceS(-) is Markovian,h? is well-defined. Proposition 1 yields that does not depend on the
choice of the (Markovian) MPR. Equation|[(6) has appeared as the “real-world pricing fdain
the BA; compare Platen and Heath (2006), Equation (9.1 Si@)ple examples for payoffs could
be the market portfoliof(s) = 3¢, s;), the money market{(s) = 1), a stock §'(s) = s,), or
acall p¢(s) = (s; — L)* for someL € R). We can now prove the first main result, which in
particular provides a mechanism for pricing and hedgindingent claims under the BA.

Theorem 1 (Markovian representation for non path-dependent Europkams) Assume that we
have a contingent claim of the forpdS(7")) > 0 and that the functiork? of (€) is sufficiently
differentiable or, more precisely, that for all points ofpgort (¢, s) for S(-) with¢ € [0,T) we
haven? € C'%(U, ;) for some neighborhoad, , of (¢, s). Then, with

nt(t,s) .= D;hP(t,s)
foralli=1,...,dand(t,s) € [0,7] x R%, and witho? := h?(0, S(0)), we get
V() = BP(t, S(1))

for all ¢t € [0, T]. The strategy)” is optimal in the sense that for any> 0 and for any strategy
1 whose associated wealth process is nonnegative and saiiSfiéT") > p(S(T')) almost surely,
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we haver > v?. Furthermorei? solves the PDE

d d
0 1 5
—h” t,s)+ 3 E E si8ja;j(t, 8)D; ;hP(t,s) = 0 (7)

i=1 j=1
at all points of supportt, s) for S(-) with¢ € [0, 7).
Proof. Let us start by defining the martingal(-) as
NP(t) = E[Z°(T)p(S(T))|F(t)] = Z°(t)h"(t. S(¢))

for all t € [0,7]. Althoughh? is not assumed to be i6*2([0,7) x R) but only to be locally
smooth, we can apply a localized version of 1td’s formulkee($or example Revuz and Yor, 1999,
Section IV.3) to it. Then, the product rule of stochasticobls can be used to obtain the dynamics
of N?(-). SinceN?(-) is a martingale, the correspondidgterm must disappear. This observation
in connection with[(2) and the positivity df’(-) yield PDE 7). Itd’s formula, now applied to
h?(-,S(-)), and PDE[(7) imply

d
dhP(t,S(t) = > DihP(t, S(t))dSi(t) = dV*"" ()

forallt € [0, 7). This yields directlyt’*" 7" (-) = h?(-, S(-)).

Next, we prove optimality. Assume we have some initial wealt> 0 and some strategy
7 with nonnegative associated wealth process suchtRd{7) > p(S(7T)) is satisfied almost
surely. ThenZ?(-)V?%7(.) is bounded from below by zero, thus a supermartingale. Timies

0 > E[Z°(T)V*(T)] > E[Z°(T)p(S(T))] = E[Z°(T)V*""(T)] = o”,
which concludes the proof. O

The last result generalizes Platen and Hulley (2008), Ritipa 3, where the same statement
has been shown for a one-dimensional, complete market witheatransformed squared Bessel
process of dimension four modelling the stock price proc&bsere are usually several strategies
to obtain the same payoff. For example, if the first stock Hadle, that is, if£[S,(7")] < 51(0),
then one could either delta hedge with initial capifab,(7")] as the last theorem describes, or
hold the stock with initial capitab; (0). The last result shows that the delta hedge is optimal in
the sense of minimal required initial capital. Platen (2008s suggested calling the fact that an
optimal strategy exists the “Law of the Minimal Price” to ¢@st it to the classical “Law of the
One Price”, which appears if there is an equivalent martengeeasure.

We would like to emphasize that we have not shown tfias unique. Indeed, since we have
not excluded the case that two stock prices have identigamycs this is not necessarily true.
The next remark discusses the fact that we have not assumedrtipleteness of the market.

Remarkl (Completeness of marketpne remarkable observation concerning the last theorem is
that it does not require the market to be complete. In pdaicat no point does it assume in-
vertibility or full rank of the volatility matrixo (-, -). In contrast to Fernholz and Karatzas (2010),
we do not rely on the martingale representation theorem Ihérderive directly a representation
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for the conditional expectation process of the final weglthi(7")). The explanation for this phe-
nomenon is that all relevant sources of risk for hedging arepletely captured by the tradeable
stocks. However, we remind the reader that we live here ittengevhere the mean rates of return
and volatilities do not depend on an extra stochastic fadtoa “more incomplete” model, with
jumps or additional risk factors in mean rates of return datiities, this result can no longer be
expected to hold. Furthermore, there is no hope to be abledgehall contingent claims of the
Brownian motioniV/(T"). However,W (T') appears in the model only as a nuisance parameter and
it is of no economic interest to trade in it directly.

In the next remark we discuss POE (7).

Remark2 (Non-uniqueness of PDEI(7)Parabolic PDEs generally do not have unique solutions.
The hedging price for the stock of Example 3 [in](18) for instais one of many solutions of
polynomial growth for the corresponding Black-ScholestADE with terminal conditiop(s) =

s and boundary conditiorf(t) = 0. Another solution is of coursé(t,s) = s. The reason
for non-uniqueness in this case is the fact that the secoel-@oefficient has super-quadratic
growth so that standard theory cannot be applied; see fongbeaKaratzas and Shreve (1991),
Section 5.7.B. However, one can show easily that, giverithatsufficiently differentiablek” can

be characterized as the minimal nonnegative classicaifigolaf PDE [7) with terminal condition
hP(T, s) = p(s); compare the proof of Fernholz and Karatzas (2010), Thedrem

Fernholz et al. (2005), Example 9.2.2 illustrates that thesical put-call parity can fail. How-
ever, a modified version holds. An equivalent version forditeation of an ELMM with possible
bubbles has already been found in Jarrow et al. (2007), Lefhma

Corollary 1 (Modified put-call parity) For any . € R we have the modified put-call parity for
the call- and put-optionsS, (7)) — L)* and (L — S, (7T"))*, respectively, with strike pricé:

EY* | Z°(T)(L — Sl(T))+] + R (t,s) = B | Z9(T)(S4(T) — L)+] + L (t,s),  (8)

wherep’(-) = 1 denotes the payoff of one monetary unit ahgs) = s, the price of the first stock
forall s € R?.

Proof. The statement follows from the linearity of the expectation 0J

Due to Theorenll, there exist under weak differentiabilgtguanptions optimal strategies for
the money market, the stoék(7'), the call and the put. Thus, the left-hand sid€ of (8) comasp
to the hedging price of a put and the stock, and the right-Isiael corresponds to the hedging
price of a call and. monetary units. The difference from the classical put-patity is that the
current stock price and the strideare replaced by their hedging prices. Bayraktar et al. (009
Section 2.2 have recently observed an alternative versistead of replacing the current stock
price by its hedging price, they replace the European cakfdry the American call price and
restore put-call parity this way.

Next, we will provide sufficient conditions under which thanttionh? is sufficiently smooth.
We shall call a functiory : [0, 7] xR% — R locally Lipschitz and boundesh R if for all s € R
the functiont — f(t, s) is right-continuous with left limits and for all/ > 0 there exists some
C(M) < oo such that

sup |f(ty) — [t 2)] + osup  |f(ty)| < C(M)

Ll e<n 1y = 2] L<lyl<m
y#2




for all t € [0,77]. In particular, if f has continuous partial derivatives, it is locally Lipsetatnd
bounded. We need several assumptions in order to show fieeedifiability of 4* in Theoreni2
below.

(A1) The functionsd, ando,; are foralli = 1,...,dandk = 1,..., K locally Lipschitz and
bounded.

(A2) For all points of supportt, s) for S(-) with ¢ € [0,T) there exist som& > 0 and some
neighborhood/ of (¢, s) such that

d d
S awy)g = Clgl? )

i=1 j=1

forall ¢ € RY and(u,y) € U.

(A3) The payoff functionp is chosen so that for all points of suppétts) for S(-) there exist
someC > 0 and some neighborhoad of (¢, s) such that:”(u,y) < C for all (u,y) € U.

If h? is constant forl < d coordinates, say the last ones, Assumption (A2) can be wedki®
requesting the uniform ellipticity only in the remainifg- d — 1 coordinates, that is, the sum [ (9)
goes only tal—d —1 and¢ € R*4-1, Assumption (A3) holds in particular jfis of linear growth,
thatis, ifp(s) < C'S2%, s; for someC > 0 and alls € R%, sinceZ%"*(-)S"*(-) is a nonnegative
supermartingale for all = 1,....d. We emphasize that the conditions here are weaker than the
ones by Fernholz and Karatzas (2010), Section 9 for the dake market portfolio which can be
represented gs(s) = Y., s;. In particular, the stochastic integral componen#it(-) does not
present any technical difficulty in our approach.

We proceed in two steps. In the first step we use the theoryohastic flows to derive con-
tinuity of S“5(T") and Z%%*(T) in t ands. This theory relies on Kolmogorov's lemma, see for
example_Protter (2003), Theorem 1V.73, and studies coityiraf stochastic processes as func-
tions of their initial conditions. We refer to Protter (200&hapter V for an introduction to and
further references for stochastic flows. We will prove conitiy of S**(-) andZ#**(-) at once and

introduce for that thel + 1-dimensional proces& == (-) := (S (+), 2Z945())T,

Lemma 1 (Stochastic flow) We fix a poin{t, s) € [0, 7] x R% so thatX**!(-) is strictly positive
and anR%*'-valued process. Then under Assumption (A1) we have foeqliencest;, s;.)ren C
[0, T] X Rf’l_ with limk_m,(tk, Sk) = (t S) that

lim sup || X% skl( )—Xt’s’l(u)H =0

k=00 u€lt,T]

almost surely, where we s&t'*s+1(vy) := (s}, 1)T for u < . In particular, for K (w) sufficiently
large we have thaf{*=*x! (v, w) is strictly positive andR.d“-vaIued forallk > K(w)andu €
[t, T7.

Proof. Since the class of locally Lipschitz and bounded functiend@sed under summation and
multiplication, Assumption (A1) yields that the drift andffdsion coefficients ofX"“¥*(.) are
locally Lipschitz for all(u, y, z) € [0,7] x R% x R,. We start by assuming > ¢ for all k € N
and obtain

sup || X" (w) — XU (w)l| < sup [|(sg, 1)T = X5 )]+ sup [|XT0 () — X (u)]|

u€el(t,T] u€lt,ty] u€(ty, T
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osup | X1 () — XSO0 ) | (10)
u€[ty,T]
for all £ € N. The first term on the right-hand side of the last inequaldggto zero ak increases

by the continuity of the sample paths &f*1(.). The arguments in the proof of Protter (2003),
Theorem V.38 yield that

lim sup || X5 (u) — X5 ()] = 0

k—yoo u€lt,T]

forall ¢ € {t,t;,t,...} and any sequenc@y,, ;) ren C R with (y], )T — (s7,1)7
ask — oo almost surely. An analysis of Protter (2003), Theorems \ABd 1V.73 yields that
the convergence is uniformly in€ {t,t,,t,,...}. We choose now fofy;, z;)T the sequences
(sT,1)T and (S5 (t, w), Z%55(t,w))T for all w € Q. This proves the statementtjf > ¢ for all

k € N. In the case of the reversed inequality< ¢, a small modification of the inequality i _({L0)
yields the lemma. O

In the second step, we use techniques from the theory of P®Esriclude the necessary
smoothness ai”. The following result has been used by Ekstrom, Janson gskl TVe present it
here on its own to emphasize the analytic part of our argument

Lemma 2 (Schauder estimates and smoothneB#) a point (¢, s) € [0,7) x R% and a neigh-
borhoodi/ of (¢,s). Suppose Assumption (A1) holds together with Inequ@xyor all ¢ € R?
and(u,y) € U and som&” > 0. Let(f;)ren denote a sequence of solutions of Pt on U,
uniformly bounded under the supremum nornanif limy_, ., fx(¢,s) = f(t,s) onU for some

functionf : U4 — R, then f solves PDE(7) on some neighborhoadd of (¢, s). In particular,

fech .

Proof. We refer to the arguments and references provided in Jamgbhak (2006), Section 2 and
Ekstrom and Tysk (2009), Theorem 3.2. The central idea isséothe interior Schauder estimates
by Knerr (1980) together with Arzela-Ascoli type of argumeeto prove the existence of first- and
second-order derivatives ¢f O

Now we are ready to prove smoothness of the hedging pfice

Theorem 2. Under Assumptions (A1)-(A3) there exists for all pointsupfrt (¢, s) for S(-) with
t € [0,T) some neighborhoad of (¢, s) such that the functioh? defined in() is in C*(if).

Proof. We definep : RT™ — Ry by j(si,...,54,2) := 2p(s1,...,5q4) andpM : RE — R,
by p*(-) = p(-)15)<ary for someM > 0 and approximatg by a sequence of continuous
functionsp™-™ (compare for example Evans, 1998, Appendix C.4) suchlihgt ., p*'™ = pM
pointwise angy™™ < 2M for all m € N. The corresponding expectations are defined as

RPM (u,y) o= EY[M (S (T), . .., S«(T), Z°(T))]

for all (u,y) € U for some neighborpocﬁi of (t, s) and equivalently,» ™.,
We start by proving continuity o> for largem. For any sequenc@y, si)ren C [0, 7] X
R? with limy, o (¢4, sx) = (¢, s), Lemmal in connection with Assumption (A1) yields

lim ﬁM’m(Stk’Sk (T), ZG,tk,sk (T)) _ ﬁM’m(St’S(T), ZG,t,s(T)).

k—o00
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The continuity ofh”»*™ follows now from the bounded convergence theorem.

But now, Janson and Tysk (2006), Lemma 2.6 in connection Asdumption (A2) guarantees
that h»M™ is a solution of PDE[{7). Lemma 2 then vyields that firsfly;* and secondly, in
connection with Assumption (A3);* also solve PDE[{7) on some neighborha@daf (¢, s). In
particular,h? is in C12(U). O

The last theorem is a generalization of the results in Bks@ind Tysk|(2009) to several di-
mensions and to non-continuous payoff functipnsFriedman ((1976), Chapters 6 and 15 and
Janson and Tysk (2006) have related results, but they impese growth conditions on so that
PDE (7) has a unique solution of polynomial growth. We areriesgted in the situation where
multiple solutions may exist. Heath and Schweizer (2000ghasults in the case that the process
corresponding to PDE|7) does not leave the positive orthAstFernholz and Karatzas (2010)
observe, this condition does not necessarily hold if thereoi ELMM. In the case of?(-) being
a martingale our assumptions are only weakly more geneaal tieirs by not requiring to be
continuous in the time dimension. However, in all theseaadearticles the authors have shown
that the functiom” indeed solves PDE{7) not only locally but globally and datssthe corre-
sponding boundary conditions. We have here abstained firgmosing the stronger assumptions
these papers are relying on and concentrate on the locadpiegpofi?. For our application it is
sufficient to observe that?(t, S(¢)) converges te(S(7")) ast goes tol; compare the proof of
Theoren1L.

The next section provides an interpretation of our apprdagbrove the differentiability of
h?; all problems on the spatial boundary, arising for exampbenfa discontinuity ofz on the
boundary of the positive orthant, have been “conditionedyéiyso thatS(-) can get close to but
never actually attains the boundary.

5 Change of measure

In order to compute optimal strategies we need to computeltims” of expectations. To simplify
the computations we suggest in this section a change of meeasder which the dynamics of the
stock price process simplify.

Delbaen and Schachermayer (1995b), Theorem 1.4 have shatvNA implies the existence
of a local martingale measure absolutely continuous wispeet toP. On the contrary, a conse-
guence of this section is the existence of a local martingedasure under NUPBR, such tlfats
absolutely continuous with respect to it. Indeed, NA and BBRogether yield NFLVR (compare
Delbaen and Schachermayer, 1994; Karatzas and Kardam@s, P€position 3.2), which again
yields an ELMM corresponding exactly to the one discussethis section. Another point of
view, which we do not take here, is the recent insight by Keasl§2009) on the equivalence of
NUPBR and the existence of a finitely additive probabilityasgre which is in some sense weakly
equivalent td? and under whictH(-) has some notion of weak local martingale property.

Our approach via a “generalized change of measure” is inghé ef the work by Follmer
(1972), Meyer|(1972), Delbaen and Schachermayer (1998a)ioB 2, and Fernholz and Karatzas
(2010), Section 7. They have shown that for the strictly fpesP-local martingaleZ?(-) there ex-
ists a probability measur@ such that? is absolutely continuous with respect@anddP/dQ =
1/2%(T A %), wherer? is the first hitting time of zero by the procesgZ?(-). Their analysis has

12



been taken on by several authors, for example by Pal andeP(@0207), Section 2. We comple-
ment this research direction by determining the dynamids®P-Brownian motioni¥/(-) under
the new measur®. The dynamics do not follow directly from an application ofrsanov-
type argument sinc® need not be absolutely continuous with respedP.tcSimilar results for
the dynamics have been obtained in $in (1998), Lemma 4.2 attthBn and Shirakawa (2002),
Section 2. However, they rely on additional assumptionshefdxistence of solutions for some
stochastic differential equations. Wong and Heyde (208#)ethe existence of a measipesat-
isfying EF[Z°(T)] = Q(r? > T), wherelV (-) has the sam@-dynamics as we derive, bitis not
necessarily absolutely continuous with respedto

For the results in this section we make the technical assampitat the probability space
is the space of right-continuous paths [0,7] — R™ U {A} for somem € N with left limits
att € [0,7] if w(t) # A and with an absorbing “cemetery” poidt. By that we mean that
w(t) = A for somet € [0, 7] impliesw(u) = A for all w € [¢t,7] and for allw € Q. This
point A will represent explosions af?(-), which do not occur undeéP but may occur under a
new probability measur& constructed below. We furthermore assume that the filinafios
the right-continuous modification of the filtration genetby the paths or, more precisely,
by the projectiong;(w) := w(t). Concerning the original probability measure we assume tha
P(w : w(T) = A) = 0 and that for allt € [0,T], o is an absorbing state fof’(-); that is,
Z9(t) = oo implies Z%(u) = oo for all u € [t, T]. This assumption specifig€(-) only on a set of
measure zero and is made for notational convenience.

We emphasize that we have not assumed completeness of thgofif*. Indeed, we shall
construct a new probability measugewhich is not necessarily equivalent to the original measure
[P and can assign positive probability to nullset®off we had completed we could not guarantee
thatQ can be consistently defined on all subsets of these nullsbish had been included if
during the completion process. The fact that we need the tegynpoint A and cannot restrict
ourselves to the original canonical space is also not singri The pointA represents events
which have undeP probability zero, but unde® have positive probability.

All these assumptions are needed to prove the existence adasureQQ with dP/dQ =
1/Z°(T A 79). After having ensured its existence, one then can take the reuggested by
Delbaen and Schachermayer (1995a), Theorem 5 and stariaimgrprobability space satisfying
the usual conditions, construct a canonical probabiligcgpsatisfying the technical assumptions
mentioned above, doing all necessary computations on flaises and then going back to the
original space.

For now, the goal is to construct a meas@ender which the computation @f simplifies.
For that, we define the sequence of stopping times

f=inf{t € [0,T]: Z°(t) > i}

with inf ) := oo and the sequence efalgebrasF' := F(rf A T) for all i € N. We observe
that the definition ofF* is independent of the probability measure and define thegstggime
7% :=lim,;_, ., 77 with correspondingr-algebraz>? := F(r? A T') generated by, F*9.

Within this framework, Mever (1972) and Follmer (1972),dfxple 6.2.2 rely on an exten-
sion theorem (compare Parthasarathy, 1967, Chapter 5pto thte existence of a measugeon
(Q, F(T)) satisfying

Q(A) = EF [Z°(r] A T)14] (11)
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for all A ¢ F*? where we now writéf” for the expectation under the original measure. We
summarize these insights in the following theorem, whiclo @leneralizes the well-known Bayes’
rule for classical changes of measures (compare KaratzbStaeve, 1991, Lemma 3.5.3).

Theorem 3 (Generalized change of measure, Bayes'’ tuldlere exists a measu@such thatP is
absolutely continuous with respect@and such that for allF (7')-measurable random variables
Y > 0 we have

1

EQ [Yl{l/Ze(T)>0}‘ ]:(t)} =E" [ZG (T)Y|~7:(t)] Zg—wl{l/ze(t)>0} (12)

Q-almost surely (and thu$-almost surely) for alk € [0, T], whereE? denotes the expectation
—~ —~ —~ T
with respect to the new meas e Under this measur®, the proces$V (-) = (W1(~), . WK(-)>
with
_ tAT?
Wit A7) = Wit AT0) + / O (u, S(u))du (13)
0

forall k =1,..., K andt € [0, T] is a K-dimensional Brownian motion stopped at tinfe

Proof. The existence of a measugesatisfying [(11) follows as in the discussion above. We fix an
arbitrary setB € F(t). Itis sufficient to show the statement for= 1, whereA € F (T'). We
have

A=(An {79 <T}) UU (AN {Tf_l <T§Tf}).
=1
From the fact that’ < T holds if and only if1/Z%(T) = 0 holds, from the identity in([(11),
and from the observation th&t(r? < T") = 0, we obtain

@(Am{z%mm}mf;) :g(@("m{”@—l <T<)nB)

- Z EF [Ze(ff A T)lAm{rffl<T§Ti9}mB}
1=1
=E" [Z°(T) 1ans]

—EF [29 () E" [Z°(T) 14| F(t)] %@13]

1
—EC {EP [Z°(T) 14| F(1)] ZG—(t)1{1/ZQ(t)>O}1B} :
Here, the last equality follows as the first ones with replaced by the random variable inside
the last expression arifl replaced byt. This yields [[1R). The fact thak is absolutely contin-
uous with respect t@) follows from settingt = 0 in (12). From Girsanov’s theorem (compare
Revuz and Yor, 1999, Theorem 8.1.4) we obtain that7éfl the proces@(-) is underQ a K-
dimensional Brownian motion stopped &t A 7. Sinceu®, F*¢ generatesF> and forms a
w-system, we get the dynamics bf[13). O
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Thus, an ELMM exists if and only if)(1/2°(T) > 0) = 1. A further consequence of Theo-
rem[3 is the fact that the dynamics of the stock price procedgeciprocal of the SDF simplify
underQ as the next corollary shows.

Corollary 2 (Evolution of important processes und@j. The stock price process(-) and the
reciprocal1/Z%(-) of the SDF evolve until the stopping tim&underQ according to

dS;(t) = Si(t) Z oix(t, S(t))dwk’(t)v
k=1

1 R .
d ( 7 (t)) 0 O, (t, S(£))dWi(t)

k=1

foralli = 1,...,dandt € [0,T]. Furthermore, for any procesd(-), N(-)1{,z0¢.)>0} iS @
Q-martingale if and only ifN(-)Z%(-) is aP-martingale. In particular, the process/Z?(-) is a
Q-martingale.

Proof. The dynamics are a direct consequence of the represenuitf&rﬁ-) in (13) and the defi-
nition of the MPR. The other statements follow from choosifg= N(7") andY = 1/Z°T) in

(12). ]

The results of the last corollary play an essential role wivendo computations, since the
first hitting time of the reciprocal of the SDF can in most cabe easily represented as a first
hitting time of the stock price. This now usually follows semimore tractable dynamics, as we
shall see in Sectidn 6. For the case of strict local martegyttie equivalence of the last corollary
is generally not true. Take as exampVé-) = 1 andZ?(-) a strict local martingale undét. Then,
Z°(-)N(-) = Z%(-) is a localP-martingale butV (-)1;,76(ys0y = 1{1/20(.)=0; iS Clearly not a local
Q-martingale. The reason for this lack of symmetry is that@usece of stopping times which
converge®-almost surely td" need not necessarily conver@ealmost surely td".

6 Examples

In this section we discuss several examples for marketshwhiply arbitrage opportunities. Ex-
amples 1L and]2 treat the case of a three-dimensional Bessmigsrwith drift for various payoffs.
Example_B concentrates on the reciprocal of the three-diinral Bessel, a standard example in
the bubbles literature.

Examplel (Three-dimensional Bessel process with drift - money m@rlOne of the best known
examples for markets without an ELMM is the three-dimenaiddessel process, as discussed
in [Karatzas and Shreve (1991), Section 3.3.C. We study hetasa of models which contain
the Bessel process as special case and generalize the examatbitrage of A.V. Skorohod in
Karatzas and Shreve (1998), Section 1.4. For that, we begiindefining an auxiliary stochastic
processX (-) as Bessel process with driftc, that is,

X () = (ﬁ - c) dt + dW (1) (14)
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for all ¢ € [0, 7] with W(-) denoting a Brownian motion on its natural filtratifh= F" and

¢ € [0,00) a constant. The process(-) is strictly positive, since it is a Bessel process, thus
strictly positive under the equivalent measure whgié(t) — ct }o<:<r is a Brownian motion. The
stock price process is now defined via the stochastic diftexkequation

1

a0 =

dt + dW (t) (15)
for all ¢t € [0,7]. Both processeX (-) andS(-) are assumed to start at the same p@iftt) > 0.
From (14) and[(T5) we obtain directB(t) = X (¢)+ct > 0forall t € [0,T7]. If c = 0thenS(-) =
X () and the stock price is a Bessel process. Of course, the MBRatd (¢, s) = 1/(s — ct) for
all (t,s) € [0,T] x Ry with s > ct. Thus, the reciprocal/Z°(-) of the SDF becomes zero exactly
whenS(t) hits ct. This follows directly from theQ-dynamics ofl/Z%(-) derived in Corollary 2
and a strong law of large numbers as in Kardaras (2008), LeAha

Let us start by looking at a general, for the moment not sgtipiayoff functionp. For all
(t,s) € [0,T] x Ry with s > ¢t we obtain by relying on Theorefd 3, using the density of a
Brownian motion absorbed at zero (compare Karatzas andé&f891, Problem 2.8.6) and some
simple computations

Wt 5) =B [ 2°(T)p(S(T))]
=E? [p(S(T)) 1 frminycocr (S —cu}>0y | F(t)] }S(t):s

& 1 22
= ——exp | —— VT —t+ s)dz
. Vi p( 2)p(v )

S

00 1 2
— exp(2cs — 2¢%t) / —— exp <—Z—) p(zvVT —t — s+ 2ct)dz. (16)
chrlgifjs A/ 27‘(‘ 2

Let us consider the investment in the money market only, toatk) = p°(s) = 1 for all
s > 0. The expression in(16) yields the hedging price of one nagatnit

—cT —s—cI'+ 2ct
hpot,s :<I><S ¢ )—ex 203—20215(1)( ), 17
(1) =@ (S5 ) — el ) o (17)

where® denotes the cumulative standard normal distribution fonctit can be easily checked
thath?’ solves PDE(7) for allt, s) € [0, 7] x R, with s > ¢t. Thus, by Theorerl 1 the optimal
hedging strategy” of one monetary unit is

2

0 B s —cT
n(tﬁ__VT—t¢(¢T—t

where¢ denotes the standard normal density.

It has been well-known that a Bessel process allows forradet Compare for example
Karatzas and Kardaras (2007), Example 3.6 for an ad-hotegiravhich corresponds to a hedg-
ing price of®(1) for a monetary unit it = 0 andS(0) = 7' = 1. We have improved here the
existing strategies and found the optimal one, which cpords in this setup to a hedging price
of h*"(0,1) = 2&(1) — 1 < ®(1).

—s— '+ 2ct
)—2cexp(2cs—202t)<1>< Tt C),

T—1
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Remark3 (Multiple solutions for PDEL{7))We observe that the hedging prit€ in (I7) depends

on the driftc. Also, ?” is sufficiently differentiable, thus by Remdrk 2 uniquelyacicterized as
the minimal nonnegative solution of PDE (7), which does reggehd on the drift. The unique-
ness ofh?" by Remark®2 and the dependencehét on ¢ do not contradict each other, since the
nonnegativity of:?" has only to hold at the points of support f8(-). For a given time < [0, 7]
these are only the points> ct. Thus, as: increases the nonnegativity condition weakens since it
has to hold for fewer points, and thig can become smaller and smaller. Indeed, pluggingih (17)
the points = ¢t yields h*’ (t,ct) = 0. In summary, while the PDE itself does only depend on the
(more easily observable) volatility structure of the stpcice dynamics, the mean rate of return
determines where the PDE has to hold.

In the next example we price and hedge a European call wiieiisame class of models as in
the last example.

Example2 (Three-dimensional Bessel process with drift - stock antbfean call) Plugging in
(18) the payoffy(s) = p©(s) = (y — L)* for someL > 0 and writingL := max{cT, L}, a simple
computation yields

W (t,s) = TQ; ! exp (—;;f;) +(s—L)® (;T_——Lt> — exp(2cs — 2c%t)

. ( % exp (——<L ;(;cij;s) ) + (2ct —s—L)® (—_L +T2itt_ 8)) :

If L < T, inparticular if L = 0, the last expression simplifies to

s—cT 2ct — s — T

vI—1 vI—1

whereh?’ denotes the hedging price of one monetary unit givefiih (k75 just the difference
between the hedging price of the stock andhonetary units since if. < ¢T, the call is always
exercised. Usind. = 0 we get the value of the stock. We could now proceed by comgtitia

derivative ofh*” in s to get the hedge. Furthermore, the modified put-call pafit€arollary[1

provides us directly with the hedging price for a put.

If L = ¢ =0, we writep! = p* and the last equality yields”' (t,s) = s for all (¢,s) €
[0,7] x Ry and holding the stock is optimal. There are two other ways®this result right
away. Simple computations show directly thgh!s(T) = s/S(T) if ¢ = 0, thush?' (t,s) = s
forall (¢,s) € [0,7] x R,. Alternatively, using the representation/éf (¢, s) implied by [12) we
see that the hedging price is just the expectation of a Bramvmotion stopped at zero, thus the
expectation of a martingale startedsat

Two notable observations can be made. First, in this modil thee money market and the
stock have simultaneously a hedging price cheaper than ¢heient price, as long as > 0.
Second, in contrast to classical theory, the mean rate ofrretnder the “real-world” measure
does matter in determining the hedging price of calls (oeptterivatives).

R (L, s) = s® < ) + exp(2cs — 26%)® ( ) (s — 2ct) — LEP(t, s),

Pal and Protter (2007) compute call prices for the recigieasel process model. We discuss
next how the results of the last examples relate to this model
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Example3 (Reciprocal of the three-dimensional Bessel procdsst)the stock prices(-) have the
dynamics . .
dS(t) = —S*(t)dW (t)

for all t € [0, 7] with W (-) denoting a Brownian motion on its natural filtratibh= F". The
processS(-) is exactly the reciprocal of the proceS$) of Examples1l anfl2 with = 0, thus
strictly positive. We observe th&tis already a martingale measure. However, if one wants @ hol
the stock at tim&” one should not buy the stock at time zero but use the strategglow for a
smaller hedging price thaﬁi(o) along with the suboptimal strategy-, -) = 1. That is, the stock
has a bubble.

We have already observed th&tT) = 1/S(T), which is exactly the SDF in Examplé 1 for
¢ = 0 multiplied by S(t). Thus, as in[(1I7) witclk = 0, the hedging price for the stock is

R (t, s) = 2sP ( ) —s<s (18)

1
svV1 —t

along with the optimal strategy

n'(t,s) =20 (S\/%) —1- 3\/7% = (sﬂl” — t)

forall (¢,s) € [0,T) x R,. For pricing calls, we observe

- + - 1 1 \" L St [1 *
TY—L) =LS(T)|(=-—) =— . =L (=—-5(T
(S( ) ) S(T) (L S(T)) S(t) S(T) (L S ))
for L > 0. Thus, the price at time of a call with strikeL in the reciprocal Bessel model is the
price of LS(t) puts with strikel /L in the Bessel model and can be computed from Exafiple 2 and

Corollary[1. Simple computations will lead f610) = 1 directly to Equation (6) of Pal and Protter
(2007). The optimal strategy could now be derived with Teedd.

7 Conclusion

It has been proven that under weak technical assumptions ii@o equivalent local martingale

measure needed to find an optimal hedging strategy basedhgtamiliar delta hedge. To ensure
its existence, weak sufficient conditions have been intedwhich guarantee the differentiability

of an expectation parameterized over time and original etacknfiguration. The dynamics of

stochastic processes simplify after a non-equivalentgbari measure and a generalized Bayes
rule has been derived. With this newly developed machirsemye optimal trading strategies have
been computed addressing standard examples for which smfiaad-hoc and not necessarily
optimal strategies have been known.
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