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Abstract

It is shown that delta hedging provides the optimal trading strategy in terms of minimal re-
quired initial capital to replicate a given terminal payoffin a continuous-time Markovian con-
text. This holds true in market models where no equivalent local martingale measure exists but
only a square-integrable market price of risk. A new probability measure is constructed, which
takes the place of an equivalent local martingale measure. In order to ensure the existence of
the delta hedge, sufficient conditions are derived for the necessary differentiability of expecta-
tions indexed over the initial market configuration. The recently often discussed phenomenon
of “bubbles” is a special case of the setting in this paper. Several examples at the end illustrate
the techniques described in this work.

1 Introduction

In a financial market an investor usually has several tradingstrategies at her disposal to obtain a
given wealth at a specified time. For example, if the investorwants to cover a short-position of
one stock tomorrow at the cheapest costs today, it is generally not optimal for her to buy the stock
today. There might be a trading strategy which requires lessinitial capital but replicates the exact
stock price tomorrow. In this paper we show that optimal trading strategies in the sense of minimal
required initial capital can be represented as delta hedges.

This paper has been motivated by the problem of finding trading strategies to exploit relative
arbitrage opportunities, which arise naturally in the framework of Stochastic Portfolio Theory
(SPT). For that, we generalize the results of Fernholz and Karatzas (2010)’s paper “On optimal
arbitrage”, where specifically the market portfolio is examined, to a wide class of terminal wealths
which can be optimally replicated by delta hedges. For an overview of SPT and a discussion of
relative arbitrage opportunities, we recommend the monograph by Fernholz (2002) and the survey
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Ioannis Karatzas and Hans Föllmer for sharing their insights and for their helpful comments on previous drafts of this
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Nguen-Tranh, Sergio Pulido, Emilio Seijo, Li Song, WinslowStrong, Johan Tysk, and Hao Xing for fruitful discus-
sions about the subject matter of this paper. This work was partially supported by the National Science Foundation
DMS Grant 09-05754 and a Faculty Fellowship of Columbia University.
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paper by Fernholz and Karatzas (2009). The problem investigated here is directly linked to the
question of computing hedges of contingent claims, which has been studied within the Benchmark
Approach (BA) developed by Eckhard Platen and co-authors. Indeed, our results generalize some
results in the BA and provide tools to compute the so-called “real-world prices” of contingent
claims under that approach. The monograph by Platen and Heath (2006) provides an excellent
overview of the BA.

We shall not restrict ourselves to markets which satisfy the“No free lunch with vanishing
risk” (NFLVR) condition or, more precisely, the “No arbitrage for general admissible integrands”
(NA) condition.1 Thus, we cannot rely on the existence of an equivalent local martingale measure
(ELMM), which we would have otherwise done. However, we shall construct another proba-
bility measure which takes the place of the “risk-neutral” measure. There are several reasons
why we do not assume an ELMM a priori. First of all, there does not always exist a statisti-
cal test to check from the stock price observations whether or not an ELMM exists as shown in
Karatzas and Kardaras (2007), Example 3.7. Secondly, examining arbitrage possibilities instead
of excluding them a priori is of interest in itself. Further arguments and empirical evidence in
favor of considering models without an ELMM are discussed inKardaras (2008), Section 0.1 and
Platen and Hulley (2008), Section 1. An economic equilibrium model for such models is provided
in Loewenstein and Willard (2000a). In the spirit of these papers we shall impose some restric-
tions on the arbitrage opportunities and exclude a priori models which imply “unbounded profit
with bounded risk”, which can be recognized by a typical agent.

There have been several recent papers treating “bubbles” within models guaranteeing NFLVR;
a very incomplete list consists of the work by Loewenstein and Willard (2000b), Cox and Hobson
(2005), Heston et al. (2007), Jarrow et al. (2007, 2010), Paland Protter (2007), and Ekström and Tysk
(2009). A bubble is usually defined as the difference betweenthe market price of a tradeable asset
and its smallest hedging price. The analysis here contains the case of bubbles but is more general,
since it also allows for models without an ELMM. To wit, whilethe bubbles literature concentrates
on one stock whose price process is modelled as a strict localmartingale, we consider markets
with several assets and with the stochastic discount factoritself being represented by a (possibly
strict) local martingale. In the case of an asset with a bubble, our contribution is limited to the
explicit representation of the optimal replicating strategy as a delta hedge. We shall also discuss in
this context the reciprocal of the three-dimensional Bessel process as the standard example for a
bubble.

We set up our analysis in a continuous-time Markovian context; to wit, we focus on stock price
processes whose mean rates of return and volatility coefficients only depend on time and on the
current market configuration. Since we do not rely on a martingale representation theorem, we
are able to allow for a bigger number of driving Brownian motions than number of stocks. This
generalizes the ideas of Fernholz and Karatzas (2010) not only to a large set of payoffs but also to
a bigger number of models for the specific case of the market portfolio. We shall prove that the
cheapest hedging strategy for European contingent claims is provided by a classical delta hedge.
This is of course well-known in the case of an ELMM and is here extended to models which allow
for arbitrage and are not necessarily complete. In this context, we provide sufficient conditions

1We refer to the monograph by Delbaen and Schachermayer (2006) for a thorough introduction to NA, NFLVR
and other notions of arbitrage. Since we shall assume the existence of a square-integrable market price of risk, we
implicitly impose that NFLVR fails if and only if NA fails; compare Karatzas and Kardaras (2007), Proposition 3.2.
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to ensure the differentiability of the hedging price, generalizing results by Heath and Schweizer
(2000), Janson and Tysk (2006), and Ekström and Tysk (2009). This set of conditions might be
also of interest for models satisfying NFLVR. Since the computations for the optimal trading strat-
egy under the “real-world” measure are often too involved, and since we cannot always rely on an
ELMM, we derive a non-equivalent change of measure including a generalized Bayes’ rule.

The next section introduces the market model and trading strategies. Section 3 provides a
discussion about the market price of risk. Section 4 contains the precise representation of an
optimal strategy to hedge a non path-dependent European claim and sufficient conditions for the
differentiability of the hedging price. A modified put-callparity follows directly. We suggest
in Section 5 a change to some non-equivalent probability measure that simplifies computations.
Section 6 provides several examples and Section 7 draws someconclusions.

2 Market model and trading strategies

In this section we introduce the market model and trading strategies. We take the point of view
of a small investor who takes positions in a frictionless financial market with finite horizonT .
We shall use the notationRd

+ := {s = (s1, . . . , sd)
T ∈ Rd, si > 0, for all i = 1, . . . , d} and

assume a market where the stock price processes are modelledas positive continuous Markovian
semimartingales. That is, we consider a financial marketS(·) = (S1(·), . . . , Sd(·))T of the form

dSi(t) = Si(t)

(
µi(t, S(t))dt+

K∑

k=1

σi,k(t, S(t))dWk(t)

)
(1)

for all i = 1, . . . , d and t ∈ [0, T ] starting atS(0) ∈ Rd
+ and a money marketB(·). Hereµ :

[0, T ]×Rd
+ → Rd denotes the mean rate of return andσ : [0, T ]×Rd

+ → Rd×K the volatility. Both
functions are assumed to be measurable.

For the sake of convenience we only look at discounted (forward) prices and set the interest
rates constant to zero, that is,B(·) ≡ 1. The flow of information is modelled by a right-continuous
filtration F = {F(t)}0≤t≤T such thatW (·) = (W1(·), . . . ,WK(·))T is aK-dimensional Brownian
motion with independent components. In Section 5 we shall impose more conditions on the filtra-
tionF and the underlying probability spaceΩ. The underlying measure and its expectation will be
denoted byP andE, respectively.

We only consider mean rates of returnµ and volatilitiesσ which imply that the stock prices
S1(·), · · · , Sd(·) exist and are unique and strictly positive. More precisely,denoting bya(·, ·) =
σ(·, ·)σT(·, ·) the covariance process of the stocks, we impose the almost sure integrability condi-
tion

d∑

i=1

∫ T

0

(|µi(t, S(t))|+ ai,i(t, S(t))) dt < ∞.

Next, we introduce the notion of trading strategies and associated wealth processes to be able
to describe formally delta hedging below. We denote the number of shares held by an investor
with initial capitalv > 0 at timet by η(t) = (η1(t), . . . , ηd(t))

T and callη(·) a trading strategy
or in short, astrategy. We assume thatη(·) is progressively measurable with respect toF and
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self-financing. This yields for the corresponding wealth processV v,η(·) the dynamics

dV v,η(t) =

d∑

i=1

ηi(t)dSi(t)

for all t ∈ [0, T ] andV v,η(0) = v. To ensure thatV v,η(·) is well-defined and to exclude doubling
strategies we restrict ourselves to trading strategies which satisfyV 1,η(t) ≥ 0 for all t ∈ [0, T ] and
the almost sure integrability condition

d∑

i=1

∫ T

0

(
Si(t)|ηi(t)µi(t, S(t))|+ S2

i (t)η
2
i (t)ai,i(t, S(t))

)
dt < ∞.

3 Market price of risk and stochastic discount factor

This section discusses two important components of the market model. We assume that the market
model of (1) implies amarket price of risk (MPR), which generalizes the concept of the Sharpe
ratio to several dimensions. More precisely, an MPR is a progressively measurable processθ(·),
which maps the volatility structureσ on the mean rate of returnµ. That is,

µ(t, S(t)) = σ(t, S(t))θ(t) (2)

for all t ∈ [0, T ] holds almost surely. We furthermore assume thatθ(·) is square-integrable, to wit,

∫ T

0

‖θ(t)‖2dt < ∞ (3)

almost surely. An MPR does not have to be uniquely determined. Uniqueness is intrinsically
connected to completeness, which we need not assume. In general, infinitely many MPRs may
exist. An example for non-uniqueness is given following Proposition 1 below.

The existence of an MPR is a central assumption in both the BA (see Platen and Heath, 2006,
Chapter 10) and SPT (see Fernholz and Karatzas, 2009, Section 6). It is exactly this assumption
which enables us to discuss hedging prices, as we do below, since it excludes scalable arbitrage
opportunities by guaranteeing ‘no unbounded profit with bounded risk” (NUPBR) as discussed
in Karatzas and Kardaras (2007). In the economic literature, similar assumptions have been dis-
cussed. For example, in the terminology of Loewenstein and Willard (2000a), the existence of a
square-integrable MPR excludes “cheap thrills” but not necessarily“free snacks”. Their Theorem 2
shows that a market with a square-integrable MPR is consistent with an equilibrium where agents
prefer more to less.

Based upon the MPR, we are now ready to define thestochastic discount factor (SDF)as

Zθ(t) := exp

(
−
∫ t

0

θT(u)dW (u)− 1

2

∫ t

0

‖θ(u)‖2du
)

(4)

for all t ∈ [0, T ]. In classical no-arbitrage theory,Zθ(·) represents the Radon-Nikodym derivative
which translates the “real-world” measure into the generic“risk-neutral” measure with the money
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market as the underlying. Since in this work we do not want to exclude NFLVR a priori, but are
rather interested in situations where NFLVR does not necessarily hold, we shall not assume that
the SDFZθ(·) is a true martingale. Cases whereZθ(·) is only a strict local martingale have, for
example, been discussed in the BA starting with Platen (2002) and Heath and Platen (2002a,b) and
in SPT; see for example Fernholz et al. (2005) and especially, Fernholz and Karatzas (2010).

In this context, it is important to remind ourselves thatZθ(·) being a true martingale is equiv-
alent to the existence of an ELMMQ, under which the stock prices are local martingales. The
question whetherQ is a martingale measure or only a local martingale measure isnot connected
to the fact whetherZθ(·) is a strict local or a true martingale. Abubbleis usually defined within
a model whereZθ(·) is a true martingale. Then, a wealth process is said to have a bubble if it is a
strict local martingale under an ELMM.2 Jarrow et al. (2007, 2010) suggest replacing the NFLVR
condition by the stronger condition of “no dominance” first proposed by Merton (1973) to exclude
bubbles. Here, we take the opposite approach. Instead of imposing a new condition, the goal of
this analysis is to investigate a general class of models andstudy how much can be said in this
more general framework without having the tool of an ELMM.

To keep the Markovian structure we will also assume that there exists a square-integrable MPR,
which at timet ∈ [0, T ] depends onω ∈ Ω only through the current market configurationS(t).
We call such a MPRθ(·) Markovianand emphasize this property by writingθ(·, S(·)). Indeed,
having already a square-integrable MPRν(·), this is not a strong assumption, since we can define
θ(t, s) := E[ν(t)|S(t) = s], where we use regular conditional expectation, which always exists on
canonical spaces. We refer to Parthasarathy (1967), Chapter 5.8, for details and conditions under
which the regular conditional expectation exists. Due to the Markovian assumption onµ andσ,
and to Jensen’s inequality,θ as defined above is a square-integrable MPR. The next proposition
shows that the choice of a Markovian MPR maximizes the randomvariable which will later be a
candidate for a hedging price. We denote byFS(·) the augmented filtration generated by the stock
price process.

Proposition 1 (Role of Markovian MPR). Let M ≥ 0 be a random variable measurable with
respect toFS(T ). Letν(·) denote any MPR andθ(·, ·) a Markovian MPR. Then, with

Mν(t) := E

[
Zν(T )

Zν(t)
M

∣∣∣∣Ft

]
andMθ(t) := E

[
Zθ(T )

Zθ(t)
M

∣∣∣∣Ft

]

for t ∈ [0, T ], we haveMν(·) ≤ Mθ(·) almost surely.

Proof. The two processesZθ(·)Mθ(·) andZν(·)Mν(·) are martingales, thus have right-continuous
modifications (see Karatzas and Shreve, 1991, Theorem 1.3.13). Therefore, so doMθ(·) and
Mν(·), and it suffices to show for allt ∈ [0, T ] thatMν(t) ≤ Mθ(t) almost surely. We define
c(·) := ν(·)− θ(·, S(·)) andcn(·) := c(·)1{‖c(·)‖≤n} for all n ∈ N and observe that

Zν(T )

Zν(t)
=

Zc(T )

Zc(t)
· exp

(
−
∫ T

t

θT(u, S(u))(dW (u) + c(u)du)− 1

2

∫ T

t

‖θ(u, S(u))‖2du
)

2In the bubbles literature, there has been an alternative definition, based upon the characterization of the pricing
operator as a finitely additive measure. It can be shown that this characterization is equivalent to the one here; see
Jarrow et al. (2010), Section 8 for the proof and literature which relies on this alternative characterization.
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= lim
n→∞

Zcn(T )

Zcn(t)
· exp

(
−
∫ T

t

θT(u, S(u))(dW (u) + cn(u)du)− 1

2

∫ T

t

‖θ(u, S(u))‖2du
)

withZc(·) andZcn(·) defined as in (4). The limit is taken with respect to convergence in probability
and holds since we have for anyt ∈ [0, T ] thatP (∃u ∈ [0, T ] s.t.‖ν(u)− θ(u, S(u))‖ > n) → 0
asn → ∞. By implicitly going to a subsequence we can interpret the limit in an almost-sure sense.
Sincecn(·) is bounded,Zcn(·) is a martingale. But now, Fatou’s lemma, Girsanov’s theoremand
Bayes’ rule (see Karatzas and Shreve, 1991, Chapter 3.5) yield

Mν(t) ≤ lim inf
n→∞

EQn

[
exp

(
−
∫ T

t

θT(u, S(u))dW n(u)− 1

2

∫ T

t

‖θ(u, S(u))‖2du
)
M

∣∣∣∣Ft

]
,

(5)
wheredQn(·) := Zcn(T )dP(·) is a probability measure,EQn

its expectation operator, andW n(·) :=
W (·) +

∫ ·

0
cn(u)du aK-dimensionalQn-Brownian motion. Sinceσ(·, S(·))cn(·) ≡ 0 we can re-

placeW (·) by W n(·) in (1). This yields that the processS(·) has the same dynamics underQn

as underP. Furthermore, bothθ(·, S(·)) andM have, as functionals ofS(·), the same distribution
underQn as underP. Therefore, we can replace the expectation operatorEQn

by E in (5) and
obtain the statement.

We remark that the result and the proof of the last proposition are more general than stated.
The drift µ, volatility σ and MPRθ need not depend onω only through the current market con-
figurationS(t) at timet, but can be progressively measurable with respect toFS(·). Furthermore,
the inequalityMν(·) ≤ Mθ(·) can be strict. For an example, chooseM ≡ 1 and a market with
one stock and two Brownian motions, to wit,d = 1 andK = 2. We setµ(·, ·) ≡ 0, σ(·, ·) ≡ (1, 0)
and observe thatθ(·, S(·)) ≡ (0, 0)T is a Markovian MPR. Another MPRν(·) ≡ (ν1(·), ν2(·))T is
defined viaν1(·) ≡ 0, the stochastic differential equationdν2(t) = −ν2

2 (t)dW2(t) for all t ∈ [0, T ]
andν2(0) = 1. That is,ν2(·) is the reciprocal of a three-dimensional Bessel process starting at
one. Itô’s formula givesZν(·) ≡ ν2(·), which is a strict local martingale (see Karatzas and Shreve,
1991, Exercise 3.3.36), and thusMν(0) = E[Zν(T )] < 1 = E[Zθ(T )] = Mθ(0).

Under the assumption of the existence of an ELMM, Jacka (1992), Theorem 12, Ansel and Stricker
(1993), Theorem 3.2 or Delbaen and Schachermayer (1995c), Theorem 16 show that a contingent
claim can be hedged if and only if the supremum over all expectations of the terminal value of the
contingent claim under all ELMMs is a maximum. In our setup, we also observe that the supremum
over allM ν̃(0) in the last proposition is a maximum, attained by any Markovian MPR. Indeed, we
will prove in Theorem 1 that under weak analytic assumptionsclaims of the formM = p(S(T ))
can be hedged. The general theory lets us conjecture that allclaims measurable with respect to
FS(T ) can be hedged.

As Ioannis Karatzas points out in a personal communication (2010), Proposition 1 might be
related to the “Markovian selection results”, as in Krylov (1973) and Ethier and Kurtz (1986),
Section 4.5. There, the existence of a Markovian solution for a martingale problem is studied. It is
observed that a supremum over a set of expectations indexed by a family of distributions is attained
and the maximizing distribution is a Markovian solution of the martingale problem. This potential
connection needs to be worked out in a future research project.

From now on we will always take the MPR to be Markovian. As we will see this choice will
lead directly to the optimal trading strategy.
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4 Optimal strategies

In this section, we show that delta hedging provides the optimal trading strategy in terms of mini-
mal required initial capital to replicate a given terminal payoff. Next, we prove a modified put-call
parity. In order to ensure the existence of the delta hedge, we derive sufficient conditions for the
differentiability of expectations indexed over the initial market configuration.

We will rely on the following notation. IfY is a nonnegativeF(T )-measurable random variable
such thatE[Y |F(t)] is a function ofS(t) for all t ∈ [0, T ], we use the Markovian structure ofS(·)
to denote conditioning on the event{S(t) = s} byEt,s[Y ]. Outside of the expectation operator we
denote by(St,s(u))u∈[t,T ] a stock price process with the dynamics of (1) andS(t) = s, in particular,
S0,S(0)(·) ≡ S(·). We observe thatZθ(u)/Zθ(t) depends foru ∈ (t, T ] onF(t) only throughS(t)
and we write similarly(Z̃θ,t,s(u))u∈[t,T ] for (Zθ(u)/Zθ(t))u∈[t,T ] with Z̃θ,t,s(t) = 1 on the event
{S(t) = s}. When we want to stress the dependence of a process on the stateω ∈ Ω we will write,
for example,S(t, ω). We shall call(t, s) ∈ [0, T ] × Rd

+ a point of support forS(·) if there exists
someω ∈ Ω such thatS(t, ω) = s. We denote byDi, D2

i,j the partial derivatives with respect to
the variables.

We emphasize the standing assumptions made in Sections 2 and3, namely, that the stock price
processS(·) with dynamics specified in (1) starting inS(0) ∈ Rd

+ is Rd-valued, unique and stays
in the positive orthant. Furthermore, a square-integrableMarkovian MPR exists almost surely. By
going to an almost sure subset ofΩ these standing assumptions hold without loss of generalityfor
all ω ∈ Ω.

We define for any measurable functionp : Rd
+ → [0,∞) a candidatehp : [0, T ]×Rd

+ → [0,∞)
for the hedging price of the corresponding European option:

hp(t, s) := Et,s
[
Z̃θ(T )p(S(T ))

]
. (6)

SinceS(·) is Markovian,hp is well-defined. Proposition 1 yields thathp does not depend on the
choice of the (Markovian) MPRθ. Equation (6) has appeared as the “real-world pricing formula” in
the BA; compare Platen and Heath (2006), Equation (9.1.30).Simple examples for payoffs could
be the market portfolio (̃p(s) =

∑d
i=1 si), the money market (p0(s) = 1), a stock (p1(s) = s1), or

a call (pC(s) = (s1 − L)+ for someL ∈ R). We can now prove the first main result, which in
particular provides a mechanism for pricing and hedging contingent claims under the BA.

Theorem 1 (Markovian representation for non path-dependent European claims). Assume that we
have a contingent claim of the formp(S(T )) ≥ 0 and that the functionhp of (6) is sufficiently
differentiable or, more precisely, that for all points of support (t, s) for S(·) with t ∈ [0, T ) we
havehp ∈ C1,2(Ut,s) for some neighborhoodUt,s of (t, s). Then, with

ηpi (t, s) := Dih
p(t, s)

for all i = 1, . . . , d and(t, s) ∈ [0, T ]× Rd
+, and withvp := hp(0, S(0)), we get

V vp,ηp(t) = hp(t, S(t))

for all t ∈ [0, T ]. The strategyηp is optimal in the sense that for anỹv > 0 and for any strategy
η̃ whose associated wealth process is nonnegative and satisfiesV ṽ,η̃(T ) ≥ p(S(T )) almost surely,
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we havẽv ≥ vp. Furthermore,hp solves the PDE

∂

∂t
hp(t, s) +

1

2

d∑

i=1

d∑

j=1

sisjai,j(t, s)D
2
i,jh

p(t, s) = 0 (7)

at all points of support(t, s) for S(·) with t ∈ [0, T ).

Proof. Let us start by defining the martingaleNp(·) as

Np(t) := E[Zθ(T )p(S(T ))|F(t)] = Zθ(t)hp(t, S(t))

for all t ∈ [0, T ]. Althoughhp is not assumed to be inC1,2([0, T ) × Rd) but only to be locally
smooth, we can apply a localized version of Itô’s formula (see for example Revuz and Yor, 1999,
Section IV.3) to it. Then, the product rule of stochastic calculus can be used to obtain the dynamics
of Np(·). SinceNp(·) is a martingale, the correspondingdt term must disappear. This observation
in connection with (2) and the positivity ofZθ(·) yield PDE (7). Itô’s formula, now applied to
hp(·, S(·)), and PDE (7) imply

dhp(t, S(t)) =

d∑

i=1

Dih
p(t, S(t))dSi(t) = dV vp,ηp(t)

for all t ∈ [0, T ]. This yields directlyV vp,ηp(·) ≡ hp(·, S(·)).
Next, we prove optimality. Assume we have some initial wealth ṽ > 0 and some strategy

η̃ with nonnegative associated wealth process such thatV ṽ,η̃(T ) ≥ p(S(T )) is satisfied almost
surely. Then,Zθ(·)V ṽ,η̃(·) is bounded from below by zero, thus a supermartingale. This implies

ṽ ≥ E[Zθ(T )V ṽ,η̃(T )] ≥ E[Zθ(T )p(S(T ))] = E[Zθ(T )V vp,ηp(T )] = vp,

which concludes the proof.

The last result generalizes Platen and Hulley (2008), Proposition 3, where the same statement
has been shown for a one-dimensional, complete market with atime-transformed squared Bessel
process of dimension four modelling the stock price process. There are usually several strategies
to obtain the same payoff. For example, if the first stock has abubble, that is, ifE[S1(T )] < S1(0),
then one could either delta hedge with initial capitalE[S1(T )] as the last theorem describes, or
hold the stock with initial capitalS1(0). The last result shows that the delta hedge is optimal in
the sense of minimal required initial capital. Platen (2008) has suggested calling the fact that an
optimal strategy exists the “Law of the Minimal Price” to contrast it to the classical “Law of the
One Price”, which appears if there is an equivalent martingale measure.

We would like to emphasize that we have not shown thatηp is unique. Indeed, since we have
not excluded the case that two stock prices have identical dynamics this is not necessarily true.
The next remark discusses the fact that we have not assumed the completeness of the market.

Remark1 (Completeness of market). One remarkable observation concerning the last theorem is
that it does not require the market to be complete. In particular, at no point does it assume in-
vertibility or full rank of the volatility matrixσ(·, ·). In contrast to Fernholz and Karatzas (2010),
we do not rely on the martingale representation theorem herebut derive directly a representation
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for the conditional expectation process of the final wealthp(S(T )). The explanation for this phe-
nomenon is that all relevant sources of risk for hedging are completely captured by the tradeable
stocks. However, we remind the reader that we live here in a setting where the mean rates of return
and volatilities do not depend on an extra stochastic factor. In a “more incomplete” model, with
jumps or additional risk factors in mean rates of return or volatilities, this result can no longer be
expected to hold. Furthermore, there is no hope to be able to hedge all contingent claims of the
Brownian motionW (T ). However,W (T ) appears in the model only as a nuisance parameter and
it is of no economic interest to trade in it directly.

In the next remark we discuss PDE (7).

Remark2 (Non-uniqueness of PDE (7)). Parabolic PDEs generally do not have unique solutions.
The hedging price for the stock of Example 3 in (18) for instance is one of many solutions of
polynomial growth for the corresponding Black-Scholes type PDE with terminal conditionp(s) =
s and boundary conditionf(t) = 0. Another solution is of courseh(t, s) = s. The reason
for non-uniqueness in this case is the fact that the second-order coefficient has super-quadratic
growth so that standard theory cannot be applied; see for example Karatzas and Shreve (1991),
Section 5.7.B. However, one can show easily that, given thathp is sufficiently differentiable,hp can
be characterized as the minimal nonnegative classical solution of PDE (7) with terminal condition
hp(T, s) = p(s); compare the proof of Fernholz and Karatzas (2010), Theorem1.

Fernholz et al. (2005), Example 9.2.2 illustrates that the classical put-call parity can fail. How-
ever, a modified version holds. An equivalent version for thesituation of an ELMM with possible
bubbles has already been found in Jarrow et al. (2007), Lemma7.

Corollary 1 (Modified put-call parity). For anyL ∈ R we have the modified put-call parity for
the call- and put-options(S1(T )− L)+ and(L− S1(T ))

+, respectively, with strike priceL:

Et,s
[
Z̃θ(T )(L− S1(T ))

+
]
+ hp1(t, s) = Et,s

[
Z̃θ(T )(S1(T )− L)+

]
+ Lhp0(t, s), (8)

wherep0(·) ≡ 1 denotes the payoff of one monetary unit andp1(s) = s1 the price of the first stock
for all s ∈ Rd

+.

Proof. The statement follows from the linearity of the expectation.

Due to Theorem 1, there exist under weak differentiability assumptions optimal strategies for
the money market, the stockS1(T ), the call and the put. Thus, the left-hand side of (8) corresponds
to the hedging price of a put and the stock, and the right-handside corresponds to the hedging
price of a call andL monetary units. The difference from the classical put-callparity is that the
current stock price and the strikeL are replaced by their hedging prices. Bayraktar et al. (2009),
Section 2.2 have recently observed an alternative version.Instead of replacing the current stock
price by its hedging price, they replace the European call price by the American call price and
restore put-call parity this way.

Next, we will provide sufficient conditions under which the functionhp is sufficiently smooth.
We shall call a functionf : [0, T ]×Rd

+ → R locally Lipschitz and boundedonRd
+ if for all s ∈ Rd

+

the functiont → f(t, s) is right-continuous with left limits and for allM > 0 there exists some
C(M) < ∞ such that

sup
1

M
≤‖y‖,‖z‖≤M

y 6=z

|f(t, y)− f(t, z)|
‖y − z‖ + sup

1

M
≤‖y‖≤M

|f(t, y)| ≤ C(M)

9



for all t ∈ [0, T ]. In particular, iff has continuous partial derivatives, it is locally Lipschitz and
bounded. We need several assumptions in order to show the differentiability ofhp in Theorem 2
below.

(A1) The functionsθk andσi,k are for alli = 1, . . . , d andk = 1, . . . , K locally Lipschitz and
bounded.

(A2) For all points of support(t, s) for S(·) with t ∈ [0, T ) there exist someC > 0 and some
neighborhoodU of (t, s) such that

d∑

i=1

d∑

j=1

ai,j(u, y)ξiξj ≥ C‖ξ‖2 (9)

for all ξ ∈ Rd and(u, y) ∈ U .
(A3) The payoff functionp is chosen so that for all points of support(t, s) for S(·) there exist

someC > 0 and some neighborhoodU of (t, s) such thathp(u, y) ≤ C for all (u, y) ∈ U .

If hp is constant ford̃ ≤ d coordinates, say the last ones, Assumption (A2) can be weakened to
requesting the uniform ellipticity only in the remainingd− d̃−1 coordinates, that is, the sum in (9)
goes only tod− d̃−1 andξ ∈ Rd−d̃−1. Assumption (A3) holds in particular ifp is of linear growth,
that is, ifp(s) ≤ C

∑d
i=1 si for someC > 0 and alls ∈ Rd

+, sinceZ̃θ,t,s(·)St,s
i (·) is a nonnegative

supermartingale for alli = 1, . . . , d. We emphasize that the conditions here are weaker than the
ones by Fernholz and Karatzas (2010), Section 9 for the case of the market portfolio which can be
represented asp(s) =

∑d
i=1 si. In particular, the stochastic integral component inZθ(·) does not

present any technical difficulty in our approach.
We proceed in two steps. In the first step we use the theory of stochastic flows to derive con-

tinuity of St,s(T ) and Z̃φ,t,s(T ) in t ands. This theory relies on Kolmogorov’s lemma, see for
example Protter (2003), Theorem IV.73, and studies continuity of stochastic processes as func-
tions of their initial conditions. We refer to Protter (2003), Chapter V for an introduction to and
further references for stochastic flows. We will prove continuity ofSt,s(·) andZ̃φ,t,s(·) at once and
introduce for that thed+ 1-dimensional processX t,s,z(·) := (St,sT(·), zZ̃φ,t,s(·))T.

Lemma 1 (Stochastic flow). We fix a point(t, s) ∈ [0, T ]× Rd
+ so thatX t,s,1(·) is strictly positive

and anRd+1
+ -valued process. Then under Assumption (A1) we have for all sequences(tk, sk)k∈N ⊂

[0, T ]× Rd
+ with limk→∞(tk, sk) = (t, s) that

lim
k→∞

sup
u∈[t,T ]

‖X tk,sk,1(u)−X t,s,1(u)‖ = 0

almost surely, where we setX tk,sk,1(u) := (sTk , 1)
T for u ≤ tk. In particular, forK(ω) sufficiently

large we have thatX tk,sk,1(u, ω) is strictly positive andRd+1
+ -valued for allk > K(ω) andu ∈

[t, T ].

Proof. Since the class of locally Lipschitz and bounded functions is closed under summation and
multiplication, Assumption (A1) yields that the drift and diffusion coefficients ofXu,y,z(·) are
locally Lipschitz for all(u, y, z) ∈ [0, T ]× Rd

+ × R+. We start by assumingtk ≥ t for all k ∈ N

and obtain

sup
u∈[t,T ]

‖X tk,sk,1(u)−X t,s,1(u)‖ ≤ sup
u∈[t,tk ]

‖(sTk , 1)T −X t,s,1(u)‖+ sup
u∈[tk,T ]

‖X tk,sk,1(u)−X tk,s,1(u)‖

10



+ sup
u∈[tk,T ]

‖X tk,s,1(u)−X tk ,S
t,s(tk),Z̃

φ,t,s(tk)(u)‖ (10)

for all k ∈ N. The first term on the right-hand side of the last inequality goes to zero ask increases
by the continuity of the sample paths ofX t,s,1(·). The arguments in the proof of Protter (2003),
Theorem V.38 yield that

lim
k→∞

sup
u∈[t̃,T ]

‖X t̃,yk,zk(u)−X t̃,s,1(u)‖ = 0

for all t̃ ∈ {t, t1, t2, . . .} and any sequence((yTk , zk)
T)k∈N ⊂ Rd+1

+ with (yTk , zk)
T → (sT, 1)T

ask → ∞ almost surely. An analysis of Protter (2003), Theorems V.37and IV.73 yields that
the convergence is uniformly iñt ∈ {t, t1, t2, . . .}. We choose now for(yTk , zk)

T the sequences
(sTk , 1)

T and(St,sT(tk, ω), Z̃
φ,t,s(tk, ω))

T for all ω ∈ Ω. This proves the statement iftk ≥ t for all
k ∈ N. In the case of the reversed inequalitytk ≤ t, a small modification of the inequality in (10)
yields the lemma.

In the second step, we use techniques from the theory of PDEs to conclude the necessary
smoothness ofhp. The following result has been used by Ekström, Janson and Tysk. We present it
here on its own to emphasize the analytic part of our argument.

Lemma 2 (Schauder estimates and smoothness). Fix a point (t, s) ∈ [0, T ) × Rd
+ and a neigh-

borhoodU of (t, s). Suppose Assumption (A1) holds together with Inequality(9) for all ξ ∈ Rd

and (u, y) ∈ U and someC > 0. Let (fk)k∈N denote a sequence of solutions of PDE(7) on U ,
uniformly bounded under the supremum norm onU . If limk→∞ fk(t, s) = f(t, s) onU for some
functionf : U → R, thenf solves PDE(7) on some neighborhood̃U of (t, s). In particular,
f ∈ C1,2(Ũ).
Proof. We refer to the arguments and references provided in Janson and Tysk (2006), Section 2 and
Ekström and Tysk (2009), Theorem 3.2. The central idea is touse the interior Schauder estimates
by Knerr (1980) together with Arzelà-Ascoli type of arguments to prove the existence of first- and
second-order derivatives off .

Now we are ready to prove smoothness of the hedging pricehp.

Theorem 2. Under Assumptions (A1)-(A3) there exists for all points of support(t, s) for S(·) with
t ∈ [0, T ) some neighborhoodU of (t, s) such that the functionhp defined in(6) is inC1,2(U).
Proof. We definep̃ : Rd+1

+ → R+ by p̃(s1, . . . , sd, z) := zp(s1, . . . , sd) and p̃M : Rd+1
+ → R+

by p̃M(·) := p̃(·)1{p̃(·)≤M} for someM > 0 and approximatẽpM by a sequence of continuous
functionsp̃M,m (compare for example Evans, 1998, Appendix C.4) such thatlimm→∞ p̃M,m = p̃M

pointwise and̃pM,m ≤ 2M for all m ∈ N. The corresponding expectations are defined as

h̃p,M(u, y) := Eu,y[p̃M (S1(T ), . . . , Sd(T ), Z̃
θ(T ))]

for all (u, y) ∈ Ũ for some neighborhood̃U of (t, s) and equivalentlỹhp,M,m.
We start by proving continuity of̃hp,M,m for largem. For any sequence(tk, sk)k∈N ⊂ [0, T ]×

Rd
+ with limk→∞(tk, sk) = (t, s), Lemma 1 in connection with Assumption (A1) yields

lim
k→∞

p̃M,m(Stk ,sk(T ), Z̃θ,tk,sk(T )) = p̃M,m(St,s(T ), Z̃θ,t,s(T )).
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The continuity of̃hp,M,m follows now from the bounded convergence theorem.
But now, Janson and Tysk (2006), Lemma 2.6 in connection withAssumption (A2) guarantees

that h̃p,M,m is a solution of PDE (7). Lemma 2 then yields that firstly,h̃p,M and secondly, in
connection with Assumption (A3),hp also solve PDE (7) on some neighborhoodU of (t, s). In
particular,hp is in C1,2(U).

The last theorem is a generalization of the results in Ekstr¨om and Tysk (2009) to several di-
mensions and to non-continuous payoff functionsp. Friedman (1976), Chapters 6 and 15 and
Janson and Tysk (2006) have related results, but they imposelinear growth conditions ona so that
PDE (7) has a unique solution of polynomial growth. We are interested in the situation where
multiple solutions may exist. Heath and Schweizer (2000) have results in the case that the process
corresponding to PDE (7) does not leave the positive orthant. As Fernholz and Karatzas (2010)
observe, this condition does not necessarily hold if there is no ELMM. In the case ofZθ(·) being
a martingale our assumptions are only weakly more general than theirs by not requiringa to be
continuous in the time dimension. However, in all these research articles the authors have shown
that the functionhp indeed solves PDE (7) not only locally but globally and satisfies the corre-
sponding boundary conditions. We have here abstained from imposing the stronger assumptions
these papers are relying on and concentrate on the local properties ofhp. For our application it is
sufficient to observe thathp(t, S(t)) converges top(S(T )) ast goes toT ; compare the proof of
Theorem 1.

The next section provides an interpretation of our approachto prove the differentiability of
hp; all problems on the spatial boundary, arising for example from a discontinuity ofa on the
boundary of the positive orthant, have been “conditioned away”, so thatS(·) can get close to but
never actually attains the boundary.

5 Change of measure

In order to compute optimal strategies we need to compute the“deltas” of expectations. To simplify
the computations we suggest in this section a change of measure under which the dynamics of the
stock price process simplify.

Delbaen and Schachermayer (1995b), Theorem 1.4 have shown that NA implies the existence
of a local martingale measure absolutely continuous with respect toP. On the contrary, a conse-
quence of this section is the existence of a local martingalemeasure under NUPBR, such thatP is
absolutely continuous with respect to it. Indeed, NA and NUPBR together yield NFLVR (compare
Delbaen and Schachermayer, 1994; Karatzas and Kardaras, 2007, Proposition 3.2), which again
yields an ELMM corresponding exactly to the one discussed inthis section. Another point of
view, which we do not take here, is the recent insight by Kardaras (2009) on the equivalence of
NUPBR and the existence of a finitely additive probability measure which is in some sense weakly
equivalent toP and under whichS(·) has some notion of weak local martingale property.

Our approach via a “generalized change of measure” is in the spirit of the work by Föllmer
(1972), Meyer (1972), Delbaen and Schachermayer (1995a), Section 2, and Fernholz and Karatzas
(2010), Section 7. They have shown that for the strictly positiveP-local martingaleZθ(·) there ex-
ists a probability measureQ such thatP is absolutely continuous with respect toQ anddP/dQ =
1/Zθ(T ∧ τ θ), whereτ θ is the first hitting time of zero by the process1/Zθ(·). Their analysis has
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been taken on by several authors, for example by Pal and Protter (2007), Section 2. We comple-
ment this research direction by determining the dynamics oftheP-Brownian motionW (·) under
the new measureQ. The dynamics do not follow directly from an application of aGirsanov-
type argument sinceQ need not be absolutely continuous with respect toP. Similar results for
the dynamics have been obtained in Sin (1998), Lemma 4.2 and Delbaen and Shirakawa (2002),
Section 2. However, they rely on additional assumptions of the existence of solutions for some
stochastic differential equations. Wong and Heyde (2004) prove the existence of a measureQ̃ sat-
isfyingEP[Zθ(T )] = Q̃(τ θ > T ), whereW (·) has the samẽQ-dynamics as we derive, butP is not
necessarily absolutely continuous with respect toQ̃.

For the results in this section we make the technical assumption that the probability spaceΩ
is the space of right-continuous pathsω : [0, T ] → Rm ∪ {∆} for somem ∈ N with left limits
at t ∈ [0, T ] if ω(t) 6= ∆ and with an absorbing “cemetery” point∆. By that we mean that
ω(t) = ∆ for somet ∈ [0, T ] impliesω(u) = ∆ for all u ∈ [t, T ] and for allω ∈ Ω. This
point ∆ will represent explosions ofZθ(·), which do not occur underP but may occur under a
new probability measureQ constructed below. We furthermore assume that the filtration F is
the right-continuous modification of the filtration generated by the pathsω or, more precisely,
by the projectionsξt(ω) := ω(t). Concerning the original probability measure we assume that
P(ω : ω(T ) = ∆) = 0 and that for allt ∈ [0, T ], ∞ is an absorbing state forZθ(·); that is,
Zθ(t) = ∞ impliesZθ(u) = ∞ for all u ∈ [t, T ]. This assumption specifiesZθ(·) only on a set of
measure zero and is made for notational convenience.

We emphasize that we have not assumed completeness of the filtrationF. Indeed, we shall
construct a new probability measureQ which is not necessarily equivalent to the original measure
P and can assign positive probability to nullsets ofP. If we had completedFwe could not guarantee
thatQ can be consistently defined on all subsets of these nullsets,which had been included inF
during the completion process. The fact that we need the cemetery point∆ and cannot restrict
ourselves to the original canonical space is also not surprising. The point∆ represents events
which have underP probability zero, but underQ have positive probability.

All these assumptions are needed to prove the existence of a measureQ with dP/dQ =
1/Zθ(T ∧ τ θ). After having ensured its existence, one then can take the route suggested by
Delbaen and Schachermayer (1995a), Theorem 5 and start fromany probability space satisfying
the usual conditions, construct a canonical probability space satisfying the technical assumptions
mentioned above, doing all necessary computations on this space, and then going back to the
original space.

For now, the goal is to construct a measureQ under which the computation ofhp simplifies.
For that, we define the sequence of stopping times

τ θi := inf{t ∈ [0, T ] : Zθ(t) ≥ i}

with inf ∅ := ∞ and the sequence ofσ-algebrasF i := F(τ θi ∧ T ) for all i ∈ N. We observe
that the definition ofF i is independent of the probability measure and define the stopping time
τ θ := limi→∞ τ θi with correspondingσ-algebraF∞,θ := F(τ θ ∧ T ) generated by∪∞

i=1F i,θ.
Within this framework, Meyer (1972) and Föllmer (1972), Example 6.2.2 rely on an exten-

sion theorem (compare Parthasarathy, 1967, Chapter 5) to show the existence of a measureQ on
(Ω,F(T )) satisfying

Q(A) = EP
[
Zθ(τ θi ∧ T )1A

]
(11)
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for all A ∈ F i,θ, where we now writeEP for the expectation under the original measure. We
summarize these insights in the following theorem, which also generalizes the well-known Bayes’
rule for classical changes of measures (compare Karatzas and Shreve, 1991, Lemma 3.5.3).

Theorem 3 (Generalized change of measure, Bayes’ rule). There exists a measureQ such thatP is
absolutely continuous with respect toQ and such that for allF (T )-measurable random variables
Y ≥ 0 we have

EQ
[
Y 1{1/Zθ(T )>0}

∣∣∣F(t)
]
= EP

[
Zθ (T )Y |F(t)

] 1

Zθ (t)
1{1/Zθ(t)>0} (12)

Q-almost surely (and thus,P-almost surely) for allt ∈ [0, T ], whereEQ denotes the expectation

with respect to the new measureQ. Under this measureQ, the process̃W (·) =
(
W̃1(·), . . . W̃K(·)

)
T

with

W̃k(t ∧ τ θ) := Wk(t ∧ τ θ) +

∫ t∧τθ

0

θk(u, S(u))du (13)

for all k = 1, . . . , K andt ∈ [0, T ] is aK-dimensional Brownian motion stopped at timeτ θ.

Proof. The existence of a measureQ satisfying (11) follows as in the discussion above. We fix an
arbitrary setB ∈ F(t). It is sufficient to show the statement forY = 1A whereA ∈ F (T ). We
have

A =
(
A ∩

{
τ θ ≤ T

})
∪

∞⋃

i=1

(
A ∩

{
τ θi−1 < T ≤ τ θi

})
.

From the fact thatτ θ ≤ T holds if and only if1/Zθ(T ) = 0 holds, from the identity in (11),
and from the observation thatP

(
τ θ ≤ T

)
= 0, we obtain

Q

(
A ∩

{
1

Zθ (T )
> 0

}
∩B

)
=

∞∑

i=1

Q
(
A ∩

{
τ θi−1 < T ≤ τ θi

}
∩B

)

=

∞∑

i=1

EP
[
Zθ(τ θi ∧ T )1A∩{τθi−1

<T≤τθi }∩B
]

=EP
[
Zθ (T ) 1A∩B

]

=EP

[
Zθ (t)EP

[
Zθ (T )1A

∣∣F(t)
] 1

Zθ (t)
1B

]

=EQ

[
EP
[
Zθ (T )1A

∣∣F(t)
] 1

Zθ (t)
1{1/Zθ(t)>0}1B

]
.

Here, the last equality follows as the first ones with1A replaced by the random variable inside
the last expression andT replaced byt. This yields (12). The fact thatP is absolutely contin-
uous with respect toQ follows from settingt = 0 in (12). From Girsanov’s theorem (compare
Revuz and Yor, 1999, Theorem 8.1.4) we obtain that onF i,θ the process̃W (·) is underQ a K-
dimensional Brownian motion stopped atτ θi ∧ T . Since∪∞

i=1F i,θ generatesF∞,θ and forms a
π-system, we get the dynamics of (13).
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Thus, an ELMM exists if and only ifQ(1/Zθ(T ) > 0) = 1. A further consequence of Theo-
rem 3 is the fact that the dynamics of the stock price process and reciprocal of the SDF simplify
underQ as the next corollary shows.

Corollary 2 (Evolution of important processes underQ). The stock price processS(·) and the
reciprocal1/Zθ(·) of the SDF evolve until the stopping timeτ θ underQ according to

dSi(t) = Si(t)

K∑

k=1

σi,k(t, S(t))dW̃k(t),

d

(
1

Zθ(t)

)
=

1

Zθ(t)

d∑

k=1

θk(t, S(t))dW̃k(t)

for all i = 1, . . . , d and t ∈ [0, T ]. Furthermore, for any processN(·), N(·)1{1/Zθ(·)>0} is a
Q-martingale if and only ifN(·)Zθ(·) is a P-martingale. In particular, the process1/Zθ(·) is a
Q-martingale.

Proof. The dynamics are a direct consequence of the representationof W̃ (·) in (13) and the defi-
nition of the MPR. The other statements follow from choosingY = N(T ) andY = 1/Zθ(T ) in
(12).

The results of the last corollary play an essential role whenwe do computations, since the
first hitting time of the reciprocal of the SDF can in most cases be easily represented as a first
hitting time of the stock price. This now usually follows some more tractable dynamics, as we
shall see in Section 6. For the case of strict local martingales the equivalence of the last corollary
is generally not true. Take as exampleN(·) ≡ 1 andZθ(·) a strict local martingale underP. Then,
Zθ(·)N(·) ≡ Zθ(·) is a localP-martingale butN(·)1{1/Zθ(·)>0} ≡ 1{1/Zθ(·)>0} is clearly not a local
Q-martingale. The reason for this lack of symmetry is that a sequence of stopping times which
convergesP-almost surely toT need not necessarily convergeQ-almost surely toT .

6 Examples

In this section we discuss several examples for markets which imply arbitrage opportunities. Ex-
amples 1 and 2 treat the case of a three-dimensional Bessel process with drift for various payoffs.
Example 3 concentrates on the reciprocal of the three-dimensional Bessel, a standard example in
the bubbles literature.

Example1 (Three-dimensional Bessel process with drift - money market). One of the best known
examples for markets without an ELMM is the three-dimensional Bessel process, as discussed
in Karatzas and Shreve (1991), Section 3.3.C. We study here aclass of models which contain
the Bessel process as special case and generalize the example for arbitrage of A.V. Skorohod in
Karatzas and Shreve (1998), Section 1.4. For that, we begin with defining an auxiliary stochastic
processX(·) as Bessel process with drift−c, that is,

dX(t) =

(
1

X(t)
− c

)
dt+ dW (t) (14)
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for all t ∈ [0, T ] with W (·) denoting a Brownian motion on its natural filtrationF = FW and
c ∈ [0,∞) a constant. The processX(·) is strictly positive, since it is a Bessel process, thus
strictly positive under the equivalent measure where{W (t)− ct}0≤t≤T is a Brownian motion. The
stock price process is now defined via the stochastic differential equation

dS(t) =
1

X(t)
dt+ dW (t) (15)

for all t ∈ [0, T ]. Both processesX(·) andS(·) are assumed to start at the same pointS(0) > 0.
From (14) and (15) we obtain directlyS(t) = X(t)+ ct > 0 for all t ∈ [0, T ]. If c = 0 thenS(·) ≡
X(·) and the stock price is a Bessel process. Of course, the MPR is exactlyθ(t, s) = 1/(s− ct) for
all (t, s) ∈ [0, T ]×R+ with s > ct. Thus, the reciprocal1/Zθ(·) of the SDF becomes zero exactly
whenS(t) hits ct. This follows directly from theQ-dynamics of1/Zθ(·) derived in Corollary 2
and a strong law of large numbers as in Kardaras (2008), LemmaA.2.

Let us start by looking at a general, for the moment not specified payoff functionp. For all
(t, s) ∈ [0, T ] × R+ with s > ct we obtain by relying on Theorem 3, using the density of a
Brownian motion absorbed at zero (compare Karatzas and Shreve, 1991, Problem 2.8.6) and some
simple computations

hp(t, s) =Et,s
[
Z̃θ(T )p(S(T ))

]

= EQ
[
p(S(T ))1{mint≤u≤T {S(u)−cu}>0}

∣∣F(t)
]∣∣

S(t)=s

=

∫ ∞

cT−s√
T−t

1√
2π

exp

(
−z2

2

)
p(z

√
T − t+ s)dz

− exp(2cs− 2c2t)

∫ ∞

cT−2ct+s√
T−t

1√
2π

exp

(
−z2

2

)
p(z

√
T − t− s+ 2ct)dz. (16)

Let us consider the investment in the money market only, to wit, p(s) ≡ p0(s) ≡ 1 for all
s > 0. The expression in (16) yields the hedging price of one monetary unit

hp0(t, s) = Φ

(
s− cT√
T − t

)
− exp(2cs− 2c2t)Φ

(−s− cT + 2ct√
T − t

)
, (17)

whereΦ denotes the cumulative standard normal distribution function. It can be easily checked
thathp0 solves PDE (7) for all(t, s) ∈ [0, T ] × R+ with s > ct. Thus, by Theorem 1 the optimal
hedging strategyη0 of one monetary unit is

η0(t, s) =
2√
T − t

φ

(
s− cT√
T − t

)
− 2c exp(2cs− 2c2t)Φ

(−s− cT + 2ct√
T − t

)
,

whereφ denotes the standard normal density.
It has been well-known that a Bessel process allows for arbitrage. Compare for example

Karatzas and Kardaras (2007), Example 3.6 for an ad-hoc strategy which corresponds to a hedg-
ing price ofΦ(1) for a monetary unit ifc = 0 andS(0) = T = 1. We have improved here the
existing strategies and found the optimal one, which corresponds in this setup to a hedging price
of hp0(0, 1) = 2Φ(1)− 1 < Φ(1).
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Remark3 (Multiple solutions for PDE (7)). We observe that the hedging pricehp0 in (17) depends
on the driftc. Also, hp0 is sufficiently differentiable, thus by Remark 2 uniquely characterized as
the minimal nonnegative solution of PDE (7), which does not depend on the driftc. The unique-
ness ofhp0 by Remark 2 and the dependence ofhp0 on c do not contradict each other, since the
nonnegativity ofhp0 has only to hold at the points of support forS(·). For a given timet ∈ [0, T ]
these are only the pointss > ct. Thus, asc increases the nonnegativity condition weakens since it
has to hold for fewer points, and thushp can become smaller and smaller. Indeed, plugging in (17)
the points = ct yieldshp0(t, ct) = 0. In summary, while the PDE itself does only depend on the
(more easily observable) volatility structure of the stockprice dynamics, the mean rate of return
determines where the PDE has to hold.

In the next example we price and hedge a European call within the same class of models as in
the last example.

Example2 (Three-dimensional Bessel process with drift - stock and European call). Plugging in
(16) the payoffp(s) = pC(s) = (y−L)+ for someL ≥ 0 and writingL̃ := max{cT, L}, a simple
computation yields

hpC(t, s) =

√
T − t

2π
exp

(
−(s− L̃)2

2(T − t)

)
+ (s− L)Φ

(
s− L̃√
T − t

)
− exp(2cs− 2c2t)

·
(√

T − t

2π
exp

(
−(L̃− 2ct+ s)2

2(T − t)

)
+ (2ct− s− L)Φ

(
−L̃+ 2ct− s√

T − t

))
.

If L ≤ cT , in particular ifL = 0, the last expression simplifies to

hpC(t, s) = sΦ

(
s− cT√
T − t

)
+ exp(2cs− 2c2t)Φ

(
2ct− s− cT√

T − t

)
(s− 2ct)− Lhp0(t, s),

wherehp0 denotes the hedging price of one monetary unit given in (17).It is just the difference
between the hedging price of the stock andL monetary units since ifL ≤ cT , the call is always
exercised. UsingL = 0 we get the value of the stock. We could now proceed by computing the
derivative ofhpC in s to get the hedge. Furthermore, the modified put-call parity of Corollary 1
provides us directly with the hedging price for a put.

If L = c = 0, we write p1 ≡ pL and the last equality yieldshp1(t, s) = s for all (t, s) ∈
[0, T ] × R+ and holding the stock is optimal. There are two other ways to see this result right
away. Simple computations show directly thatZ̃θ,t,s(T ) = s/S(T ) if c = 0, thushp1(t, s) = s
for all (t, s) ∈ [0, T ]× R+. Alternatively, using the representation ofhp1(t, s) implied by (12) we
see that the hedging price is just the expectation of a Brownian motion stopped at zero, thus the
expectation of a martingale started ats.

Two notable observations can be made. First, in this model both the money market and the
stock have simultaneously a hedging price cheaper than their current price, as long asc > 0.
Second, in contrast to classical theory, the mean rate of return under the “real-world” measure
does matter in determining the hedging price of calls (or other derivatives).

Pal and Protter (2007) compute call prices for the reciprocal Bessel process model. We discuss
next how the results of the last examples relate to this model.
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Example3 (Reciprocal of the three-dimensional Bessel process). Let the stock pricẽS(·) have the
dynamics

dS̃(t) = −S̃2(t)dW (t)

for all t ∈ [0, T ] with W (·) denoting a Brownian motion on its natural filtrationF = FW . The
processS̃(·) is exactly the reciprocal of the processS(·) of Examples 1 and 2 withc = 0, thus
strictly positive. We observe thatP is already a martingale measure. However, if one wants to hold
the stock at timeT one should not buy the stock at time zero but use the strategyη1 below for a
smaller hedging price thañS(0) along with the suboptimal strategyη(·, ·) ≡ 1. That is, the stock
has a bubble.

We have already observed thatS̃(T ) = 1/S(T ), which is exactly the SDF in Example 1 for
c = 0 multiplied byS̃(t). Thus, as in (17) witchc = 0, the hedging price for the stock is

hp1(t, s) = 2sΦ

(
1

s
√
T − t

)
− s < s (18)

along with the optimal strategy

η1(t, s) = 2Φ

(
1

s
√
T − t

)
− 1− 2

s
√
T − t

φ

(
1

s
√
T − t

)

for all (t, s) ∈ [0, T )× R+. For pricing calls, we observe

(
S̃(T )− L

)+
= LS̃(T )

(
1

L
− 1

S̃(T )

)+

=
L

S(t)
· S(t)

S(T )

(
1

L
− S(T )

)+

for L > 0. Thus, the price at timet of a call with strikeL in the reciprocal Bessel model is the
price ofLS̃(t) puts with strike1/L in the Bessel model and can be computed from Example 2 and
Corollary 1. Simple computations will lead forS(0) = 1 directly to Equation (6) of Pal and Protter
(2007). The optimal strategy could now be derived with Theorem 1.

7 Conclusion

It has been proven that under weak technical assumptions there is no equivalent local martingale
measure needed to find an optimal hedging strategy based uponthe familiar delta hedge. To ensure
its existence, weak sufficient conditions have been introduced which guarantee the differentiability
of an expectation parameterized over time and original market configuration. The dynamics of
stochastic processes simplify after a non-equivalent change of measure and a generalized Bayes’
rule has been derived. With this newly developed machinery,some optimal trading strategies have
been computed addressing standard examples for which so faronly ad-hoc and not necessarily
optimal strategies have been known.
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