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Abstract

We scale and analyze the empirical data of return from New York and Vilnius stock
exchanges matching it to the same nonlinear double stochastic model of return in financial
market.

1 Introduction

Volatility clustering, evaluated through slowly decaying auto-correlations, Hurst effect or 1/fβ

noise for absolute returns, is a characteristic property of most financial assets return time series
[1]. Statistical analysis alone is not able to provide a definite answer for the presence or absence of
long range dependence phenomenon in stock returns or volatility, unless economic mechanisms are
proposed to understand the origin of such phenomena [1, 2]. Whether results of statistical analysis
correspond to long range dependence is a difficult question subject to an ongoing statistical debate
[2, 3]. The agent based economic models [4, 5] as well as stochastic models [6, 7, 8, 9] exhibiting
long range dependence phenomenon in volatility or trading volume are of grate interest and remain
an active topic of research.

The properties of stochastic multiplicative point processes have been investigated analytically and
numerically and the formula for the power spectrum has been derived [10], later the model has
been related with the general form of the multiplicative stochastic differential equation [11, 12].
The extensive empirical analysis of the financial market data, supporting the idea that the long-
range volatility correlations arise from trading activity, provides valuable background for further
development of the long-ranged memory stochastic models [13, 14]. The power law behaviour of
the auto-regressive conditional duration process [15] based on the random multiplicative process
and its special case the self-modulation process [16], exhibiting 1/f fluctuations, supported the
idea of stochastic modelling with a power law probability density function (PDF) and long memory.
A stochastic model of trading activity based on an stochastic differential equation (SDE) driven
Poisson-like process has been already presented in [8]. In the paper [9] we proposed a double
stochastic model, which generates time series of the return with two power law statistics, i.e., the
PDF and the power spectral density of absolute return, reproducing the empirical data for the
one-minute trading return in the NYSE.
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In this contribution we analyze empirical data from Vilnius Stock Exchange (VSE)1 in comparison
with NYSE and stochastic model proposed in [9]. At the same time we demonstrate the scaling
of statistical properties with longer time window of return.

2 The double stochastic model of return in financial mar-

ket

Recently we proposed the double stochastic model of return in financial market [9] based on the
nonlinear SDE. The main advantage of proposed model is its ability to reproduce power spectral
density of absolute return as well as long term PDF of return. In the model proposed we assume
that the empirical return rt can be written as instantaneous q-Gaussian fluctuations ξ with a slowly
diffusing parameter r0 and constant λ = 5

rt = ξ{r0, λ}. (1)

q-Gaussian distribution of can be written as follows:

Pr0,λ(r) =
Γ(λ

2
)

r0
√
πΓ(λ

2
− 1

2
)

(

r20
r20 + r2

)λ/2

, (2)

The parameter r0 serves as a measure of instantaneous volatility of return fluctuations. See [9],
for the empirical evidence of this assumption. Here r is defined in the selected time interval τ as
a difference of logarithms of asset prices p:

r(t, τ) = |ln[p(t+ τ)]− ln[p(t)]| . (3)

In this paper we consider dimensionless returns normalized by its dispersion calculated in the
whole length of realization. It is worth to notice that r(τ) is an additive variable, i.e., if τ =

∑

i
τi,

then r(τ) =
∑

i
r(τi), or in the continuous limit the sum may be replaced by integration. We do

propose to model the measure of volatility r0 by the scaled continuous stochastic variable x, having
a meaning of average return per unit time interval. By the empirical analyses of high frequency
trading data on NYSE [9] we introduced relation:

r0(t, τ) = 1 +
r̄0
τs
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, (4)

where r̄0 is an empirical parameter and the average return per unit time interval x(ts) can be
modeled by the nonlinear SDE, written in a scaled dimensionless time ts = σ2

t t:

dx =

[

η − λ0

2
−
(

x

xmax

)2
]

(1 + x2)
η−1

(ǫ
√
1 + x2 + 1)2

xdts +
(1 + x2)

η

2

ǫ
√
1 + x2 + 1

dWs. (5)

1Here we abbreviate the official name NASDAQ OMX Vilnius Stock Exchange for the convenience
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Here are five more empirically defined parameters: η - exponent of multiplicativity, λ0 - power
law exponent of x long range PDF, ǫ - parameter dividing diffusion into two areas: stationary and
excited one, σ2

t - time scale adjustment parameter and xmax - the upper limit of diffusion. The

term
(

x
xmax

)2

excludes divergence of x to the infinity. Seeking to discover the universal nature
of financial markets we consider that all these parameters are universal for all stocks traded on
various exchanges. In this paper we analyze empirical data from very different exchanges New
York, one of the most developed with highly liquid stocks, and Vilnius, emerging one with stocks
traded rarely.

We solve Eq. (5) numerically introducing variable steps of dimensionless time ts,k+1 = ts,k + hk:

hk = κ2

(

ǫ
√

1 + x2
k + 1

)2

(1 + x2
k)

η−1
, (6)

where κ is precision parameter of numerical calculations, which should be less than 1. Then SDE,
Eq. (5), can be replaced by iterative equation:

xk+1 = κ2

[

η − λ0

2
−
(

x

xmax

)2
]

xk + κ
√

1 + x2
kζk, (7)

where ζk is a normally distributed random variable with zero mean and unit variance.

3 Stochastic model versus empirical data

In paper [9] we analyzed the tick by tick trades of 24 stocks, ABT, ADM, BMY, C, CVX, DOW,
FNM, GE, GM, HD, IBM, JNJ, JPM, KO, LLY, MMM, MO, MOT, MRK, SLE, PFE, T, WMT,
XOM, traded on the NYSE for 27 months from January, 2005, recorded in the Trades and Quotes
database. The parameters of stochastic model presented in Section 2 were adjusted to the empirical
tick by tick one minute returns. An excellent agreement between empirical and model PDF and
power spectrum was achieved, see Fig. 3 in [9]. The same empirical data and model results
with slightly changed values of parameters are given in Figure 1 (a,b). Noticeable difference in
theoretical and empirical PDFs for small values of return r are related with the prevailing prices
of trades expressed in integer values of cents. We do not account for this discreteness in our
continuous description. In the empirical power spectrum one-day resonance - the largest spike
with higher harmonics - is present. This seasonality - an intraday activity pattern of the signal -
is not included in the model either and this leads to the explicable difference from observed power
spectrum.

Provided that we use scaled dimensionless equations derived while making very general assump-
tions, we expect that proposed model should work for various assets traded on different exchanges
as well as for various time scales τ . We analyze tick by tick trades of 4 stocks, APG1L, PTR1L,
SRS1L, UKB1L, traded on VSE for 50 months since May, 2005, trading data was collected and
provided for us by VSE. Stocks traded on VSE in comparison with NYSE are less liquid – mean
inter-trade time for analyzed stocks traded on VSE is 362 s, while for stocks traded on NYSE mean
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inter-trade time equals 3.02 s. The difference in trading activity exceeds 100 times. This great dif-
ference is related with comparatively small number of traders and comparatively small companies
participating in the emerging VSE market. Do these different markets have any statistical affinity
is an essential question from the theoretical point of market modeling.

First of all we start with returns for very small time scales τ = 60s. For the VSE up to 95%
of one minute trading time intervals elapse without any trade or price change. One can exclude
these time intervals from the sequence calculating PDF of return. With such simple procedure
calculated PDF of VSE empirical return overlaps with PDF of NYSE empirical return (see Figure
1 (a)).
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Figure 1: Comparison of empirical statistics of absolute returns traded on the NYSE (black thin
lines) and VSE (light gray lines) with model statistics, Eqs. (1)-(7), (gray lines). Model parameters
are as follows: λ = 5; σ2

t = 1/3 · 10−6s−1; λ0 = 3.6; ǫ = 0.017; η = 2.5; r̄0 = 0.4; xmax = 1000. PDF
of normalized absolute returns is given on (a),(c),(e) and PSD on (b),(d),(f). (a) and (b) represents
results with τ = 60s; (c) and (d) τ = 600s; (e) and (f) τ = 1800s. Empirical data from NYSE is
averaged over 24 stocks and empirical data from VSE is averaged over 4 stocks.
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One should use full time sequence of returns calculating the power spectrum. Nevertheless, despite
low VSE liquidity, PSD of VSE and NYSE absolute returns almost overlap. Difference is clearly
seen only for higher frequencies, when τ = 60s, and is related with low VSE market liquidity
contributing to the white noise appearance. The different length of trading sessions in financial
markets causes different positions of resonant spikes. One can conclude that even so marginal
market as VSE retains essential statistical features as developed market on NYSE. At the first
glance the statistical similarity should be even better for the higher values of return time scale τ .

Further we investigate the behavior of returns on NYSE and VSE for increased values of τ = 600s
and τ = 1800s with the specific interest to check whether proposed stochastic model scales in
the same way as empirical data. Apparently, as we can see in Figure 1 (d) and (f) PSDs of
absolute returns on VSE and on NYSE overlap even better at larger time scale (600 seconds and
1800 seconds). This serves as an additional argument for the very general origin of long range
memory properties observed in very different, liquidity-wise, markets. The nonlinear SDE is an
applicable model to cache up observed empirical properties. PDFs of absolute return observed in
both markets (see Figure 1 (c) and (e)) are practically identical, though we still have to ignore
zero returns of VSE to arrive to the same normalization of PDF.

4 Conclusions

We proposed a double stochastic process driven by the nonlinear scaled SDE Eq. (5) reproducing
the main statistical properties of the absolute return, observed in the financial markets. Seven
parameters of the model enable us to adjust it to the sophisticated power law statistics of various
stocks including long range behaviour. The scaled no dimensional form of equations gives an
opportunity to deal with averaged statistics of various stocks and compare behaviour of different
markets. All parameters introduced are recoverable from the empirical data and are responsible
for the specific statistical features of real markets. Seeking to discover the universal nature of
return statistics we analyse and compare extremely different markets in New York and Vilnius and
adjust the model parameters to match statistics of both markets. The most promising result of this
research is discovered increasing coincidence of the model with empirical data from the New York
and Vilnius markets and between markets, when the time scale of return τ is growing. Observable
specific features of different markets could be a subject of another research based on the proposed
model. For example, it is clear that parameter xmax should be relevant to the maximum number
of active traders in the market and consequently should be specific for the every market. Further
analyses of empirical data and proposed model reasoning by agent behavior is ongoing.
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