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Abstract

We introduce the concept of “negative bubbles” as the mirror image of standard financial bubbles,

in which positive feedback mechanisms may lead to transient accelerating price falls. To model

these negative bubbles, we adapt the Johansen-Ledoit-Sornette (JLS) model of rational expectation

bubbles with a hazard rate describing the collective buying pressure of noise traders. The price

fall occurring during a transient negative bubble can be interpreted as an effective random down-

payment that rational agents accept to pay in the hope of profiting from the expected occurrence

of a possible rally. We validate the model by showing that it has significant predictive power in

identifying the times of major market rebounds. This result is obtained by using a general pattern

recognition method which combines the information obtained at multiple times from a dynamical

calibration of the JLS model. Error diagrams, Bayesian inference and trading strategies suggest

that one can extract genuine information and obtain real skill from the calibration of negative bub-

bles with the JLS model. We conclude that negative bubbles are in general predictably associated

with large rebounds or rallies, which are the mirror images of the crashes terminating standard

bubbles.
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1. Introduction

Financial bubbles are generally defined as transient upward acceleration of prices above fun-

damental value (Galbraith, 1997; Kindleberger, 2000; Sornette, 2003). However, identifying un-

ambiguously the presence of a bubble remains an unsolved problem in standard econometric and

financial economic approaches (Gurkaynak, 2008; Lux & Sornette, 2002), due to the fact that the

fundamental value is in general poorly constrained and it is not possible to distinguish between

exponentially growing fundamental price and exponentially growing bubble price.

To break this stalemate, Sornette and co-workers have proposed that bubbles are actually not

characterized by exponential “explosive” prices but rather by faster-than-exponential growth of

price (see (Sornette, 2003) and references therein). The reason for such faster-than-exponential

regimes is that imitation and herding behavior of noise traders and of boundedly rational agents

create positive feedback in the valuation of assets, resulting in price processes that exhibit a finite-

time singularity at some future time tc. This critical time tc is interpreted as the end of the bubble,

which is often but not necessarily the time when a crash occurs (Johansen & Sornette, 2006). Thus,

the main difference with standard bubble models is that the underlying price process is considered

to be intrinsically transient due to positive feedback mechanisms that create an unsustainable

regime. Furthermore, the tension and competition between the value investors and the noise

traders may create deviations around the finite-time singular growth in the form of oscillations

that are periodic in the logarithm of the time to tc. Log-periodic oscillations appear to our clocks

as peaks and valleys with progressively greater frequencies that eventually reach a point of no

return, where the unsustainable growth has the highest probability of ending in a violent crash or

gentle deflation of the bubble.

Here, we explore the hypothesis that financial bubbles have mirror images in the form of

“negative bubbles” in which positive feedback mechanisms may lead to transient accelerating

price falls. We adapt the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles

(Johansen & Sornette, 1999; Johansen, Sornette, & Ledoit, 1999; Johansen, Ledoit, & Sornette, 2000)

to negative bubbles. The crash hazard rate becomes the rally hazard rate, which quantifies the

probability per unit time that the market rebounds in a strong rally. The upward accelerating

bullish price characterizing a bubble, which was the return that rational investors require as a

remuneration for being exposed to crash risk, becomes a downward accelerating bearish price of
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the negative bubble, which can be interpreted as the cost that rational agents accept to pay to

profit from a possible future rally.

This paper contributes to the literature by augmenting the evidence for transient pockets of

predictability that are characterized by faster-than-exponential growth or decay. This is done by

adding the phenomenology and modeling of “negative bubbles” to the evidence for characteristic

signatures of (positive) bubbles. Both positive and negative bubbles are suggested to result from

the same fundamental mechanisms, involving imitation and herding behavior which create positive

feedbacks. By such a generalization within the same theoretical framework, we hope to contribute

to the development of a genuine science of bubbles.

The rest of the paper is organized as follows. Section 2.1 summarizes the main definitions

and properties of the Johansen-Ledoit-Sornette (JLS) for (positive) bubbles and their associated

crashes. Section 2.2 presents the modified JLS model for negative bubbles and their associated

rebounds (or rallies). The subsequent sections test the JLS model for negative bubbles by providing

different validation steps, in terms of prediction skills of actual rebounds and of abnormal returns

of trading strategies derived from the model. Section 3 describes the method we have developed

to test whether the adapted JLS model for negative bubbles has indeed skills in forecasting large

rebounds. This method uses a robust pattern recognition framework build on the information

obtained from the calibration of the adapted JLS model to the financial prices. Section 4 presents

the results of the tests concerning the performance of the method of section 3 with respect to the

advanced diagnostic of large rebounds. Section 5 develops simple trading strategies based on the

method of section 3, which are shown to exhibit statistically significant returns, when compared

with random strategies without skills with otherwise comparable attributes. Section 6 concludes.

2. Theoretical model for detecting rebounds

2.1. Introduction to the JLS model and bubble conditions

Johansen & Sornette (1999), Johansen et al. (1999), Johansen et al. (2000) developed a model

(referred to below as the JLS model) of financial bubbles and crashes, which is an extension of the

rational expectation bubble model of Blanchard & Watson (1982). In this model, a crash is seen as

an event potentially terminating the run-up of a bubble. A financial bubble is modeled as a regime

of accelerating (super-exponential power law) growth punctuated by short-lived corrections orga-

nized according the symmetry of discrete scale invariance (Sornette, 1998). The super-exponential
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power law is argued to result from positive feedback resulting from noise trader decisions that tend

to enhance deviations from fundamental valuation in an accelerating spiral.

In the JLS model, the dynamics of stock markets is described as

dp

p
= µ(t)dt+ σ(t)dW − κdj, (1)

where p is the stock market price, µ is the drift (or trend) and dW is the increment of a Wiener

process (with zero mean and unit variance). The term dj represents a discontinuous jump such

that j = 0 before the crash and j = 1 after the crash occurs. The loss amplitude associated with

the occurrence of a crash is determined by the parameter κ. Each successive crash corresponds to

a jump of j by one unit. The dynamics of the jumps is governed by a crash hazard rate h(t). Since

h(t)dt is the probability that the crash occurs between t and t+ dt conditional on the fact that it

has not yet happened, we have Et[dj] = 1× h(t)dt+ 0× (1− h(t)dt) and therefore

Et[dj] = h(t)dt. (2)

Under the assumption of the JLS model, noise traders exhibit collective herding behaviors that

may destabilize the market. The JLS model assumes that the aggregate effect of noise traders can

be accounted for by the following dynamics of the crash hazard rate

h(t) = B′(tc − t)m−1 + C ′(tc − t)m−1 cos(ω ln(tc − t)− φ′) . (3)

If the exponent m < 1, the crash hazard may diverge as t approaches a critical time tc, corre-

sponding to the end of the bubble. The cosine term in the r.h.s. of (3) takes into account the

existence of a possible hierarchical cascade of panic acceleration punctuating the course of the

bubble, resulting either from a preexisting hierarchy in noise trader sizes (Sornette & Johansen,

1997) and/or from the interplay between market price impact inertia and nonlinear fundamental

value investing (Ide & Sornette, 2002).

The no-arbitrage condition reads Et[dp] = 0, which leads to µ(t) = κh(t). Taking the expec-

tation of (1) with the condition that no crash has yet occurred gives dp/p = µ(t)dt = κh(t)dt.

Substituting (3) and integrating yields the so-called log-periodic power law (LPPL) equation:

ln E[p(t)] = A+B(tc − t)m + C(tc − t)m cos(ω ln(tc − t)− φ) (4)

where B = −κB′/m and C = −κC ′/
√
m2 + ω2. Note that this expression (4) describes the average

price dynamics only up to the end of the bubble. The JLS model does not specify what happens
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beyond tc. This critical tc is the termination of the bubble regime and the transition time to

another regime. For m < 1, the crash hazard rate accelerates up to tc but its integral up to t

which controls the total probability for a crash to occur up to t remains finite and less than 1 for

all times t ≤ tc. It is this property that makes it rational for investors to remain invested knowing

that a bubble is developing and that a crash is looming. Indeed, there is still a finite probability

that no crash will occur during the lifetime of the bubble. The excess return µ(t) = κh(t) is the

remuneration that investors require to remain invested in the bubbly asset, which is exposed to

a crash risk. The condition that the price remains finite at all time, including tc, imposes that

m ≥ 0.

Within the JLS framework, a bubble is qualified when the crash hazard rate accelerates. Ac-

cording to (3), this imposes m < 1 and B′ > 0, hence B < 0 since m ≥ 0 by the condition that the

price remains finite. We thus have a first condition for a bubble to occur

0 < m < 1 . (5)

By definition, the crash rate should be non-negative. This imposes (v. Bothmer & Meister, 2003)

b ≡ −Bm− |C|
√

m2 + ω2 ≥ 0 . (6)

2.2. Modified JLS model for “negative bubbles” and rebounds

As recalled above, in the JLS framework, financial bubbles are defined as transient regimes of

faster-than-exponential price growth resulting from positive feedbacks. We refer to these regimes

as “positive bubbles.” We propose that positive feedbacks leading to increasing amplitude of the

price momentum can also occur in a downward price regime and that transient regimes of faster-

than-exponential downward acceleration can exist. We refer to these regimes as “negative bubbles.”

In a “positive” bubble regime, the larger the price is, the larger the increase of future price. In

a “negative bubble” regime, the smaller the price, the larger is the decrease of future price. In a

positive bubble, the positive feedback results from over-optimistic expectations of future returns

leading to self-fulfilling but transient unsustainable price appreciations. In a negative bubble, the

positive feedbacks reflect the rampant pessimism fueled by short positions leading investors to run

away from the market which spirals downwards also in a self-fulfilling process.

The symmetry between positive and negative bubbles is obvious for currencies. If a currency A

appreciates abnormally against another currency B following a faster-than-exponential trajectory,
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the value of currency B expressed in currency A will correspondingly fall faster-than-exponentially

in a downward spiral. In this example, the negative bubble is simply obtained by taking the inverse

of the price, since the value of currency A in units of B is the inverse of the value of currency B

in units of A. Using logarithm of prices, this corresponds to a change of sign, hence the “mirror”

effect mentioned above.

The JLS model provides a suitable framework to describe negative bubbles, with the only

modifications that both the expected excess return µ(t) and the crash amplitude κ become negative

(hence the term “negative” bubble). Thus, µ becomes the expected (negative) return (i.e., loss)

that investors accept to bear, given that they anticipate a potential rebound or rally of amplitude

|κ|. Symmetrically to the case of positive bubbles, the price loss before the potential rebound plays

the role of a random payment that the investors honor in order to remain invested and profit from

the possible rally. The hazard rate h(t) now describes the probability per unit time for the rebound

to occur. The fundamental equations (3) and (4) then hold mutatis mutandis with the inequalities

B > 0 , b < 0 (7)

being the opposite to those corresponding to a positive bubble as described in the preceding

subsection.

An example of the calibration of a negative bubble with the JLS model (4) to the S&P 500

index from 1974-02-28 to 1974-09-10 is shown in Fig. 1. During this period, the S&P 500 index

decreased at an accelerating pace characterized by the exponent m = 0.001 and B = 163. This

price fall was accompanied by oscillations that are log-periodic in time, as described by the cosine

term in formula (4). Notice that the end of the decreasing market is followed by a dramatic

rebound in index price. We hypothesize that, similar to a crash following an unsustainable super-

exponential price appreciation (a positive bubble), an accelerating downward price trajectory (a

negative bubble) is in general followed by a strong rebound. One of the goals of this paper is to

identify such regions of negative bubbles in financial time series and then use a pattern recognition

method to distinguish ones that were (in a backtesting framework) followed by significant price

rises.
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3. Rebound prediction method

We adapt the pattern recognition method of (Gelfand, Guberman, Keilis-Borok, Knopoff, Press, E.Ya.Ranzman,

1976) to generate predictions of rebound times in financial markets on the basis of the detection

and calibration of negative bubbles, defined in the previous section. We analyze the S&P 500 index

prices, obtained from Yahoo! finance for ticker ‘ˆGSPC’ (adjusted close price)1. The start time of

our time series is 1950-01-05, which is very close to the first day when the S&P 500 index became

available (1950-01-03). The last day of our tested time series is 2009-06-03.

3.1. Fitting methods

We first divide our S&P 500 index time series into different sub-windows (t1, t2) of length

dt ≡ t2 − t1 according to the following rules:

1. The earliest start time of the windows is t10 = 1950-01-03. Other start times t1 are calculated

using a step size of dt1 = 50 calendar days.

2. The latest end time of the windows is t20 = 2009-06-03. Other end times t2 are calculated

with a negative step size dt2 = −50 calendar days.

3. The minimum window size dtmin = 110 calendar days.

4. The maximum window size dtmax = 1500 calendar days.

These rules lead to 11,662 windows in the S&P 500 time series.

For each window, the log of the S&P 500 index is fit with the JLS equation (4). The fit

is performed in two steps. First, the linear parameters A,B and C are slaved to the non-linear

parameters by solving them analytically as a function of the nonlinear parameters. Then, the search

space is obtained as a 4 dimensional parameter space representing m,ω, φ, tc. A heuristic search

implementing the Tabu algorithm (Cvijovic & Klinowski, 1995) is used to find initial estimates

of the parameters which are then passed to a Levenberg-Marquardt algorithm (Levenberg, 1944;

Marquardt, 1963) to minimize the residuals (the sum of the squares of the differences) between the

model and the data. The bounds of the search space are:

m ∈ [0.001, 0.999] (8)

ω ∈ [0.01, 40] (9)

1http://finance.yahoo.com/q/hp?s=ˆGSPC
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φ ∈ [0.001, 2π] (10)

tc ∈ [t2, t2 + 0.375(t2 − t1)] (11)

The combination of the heuristic and optimization results in a set of parameters A,B,C,m,ω, φ

and tc for each of the 11,662 windows. Of these parameter sets, 2,568 satisfy the negative bub-

ble condition (7). In Fig. 2, we plot the histogram of critical time tc for these negative bub-

ble fits and the negative logarithm of the S&P 500 time series. Peaks in this time series, then,

indicate minima of the prices, many of these peaks being preceded by a fast acceleration with

upward curvature indicating visually a faster-than-exponential growth of −p(t). This translates

into accelerating downward prices. Notice that many of these peaks of − ln p(t) are followed by

sharp drops, that is, fast rebounds in the regular + ln p(t). We see that peaks in − ln p(t) cor-

respond to peaks in the negative bubble tc histogram, implying that the negative bubbles quali-

fied by the JLS model are often followed by rebounds. This suggests the possibility to diagnose

negative bubbles and their demise in the form of a rebound or rally. If correct, this hypothe-

sis would extend the proposition (Jiang, Zhou, Sornette, Woodard, Bastiaensen, & Cauwels, 2010;

Sornette, Woodard, Fedorovsky, Riemann, Woodard, & Zhou, 2010), that financial bubbles can be

diagnosed before their end and their termination time can be determined with an accuracy better

than chance, to negative bubble regimes associated with downward price regimes. We quantify

this observation below.

3.2. Definition of rebound

The aim is first to recognize different patterns in the S&P 500 index from the 11,662 fits and

then use the subset of 2,568 negative bubble fits to identify specific negative bubble characteristics.

These characteristics will then be used to ‘predict’ (in a backtesting sense) negative bubbles and

rebounds in the future.

We first define a rebound, note as Rbd. A day d is a rebound Rbd if the price on that day is

the minimum price in a window of 200 days before and 200 days after it. That is,

Rbd = {d | Pd = min{Px},∀x ∈ [d− 200, d + 200]} (12)

where Pd is the adjusted closing price on day d. We find 19 rebounds of the ±200-days type2 in

2ten rebounds in the back tests before 1975.1.1: 1953-09-14; 1957-10-22; 1960-10-25; 1962-06-26; 1965-06-28;
1966-10-07; 1968-03-05; 1970-05-26; 1971-11-23; 1974-10-03 and nine rebounds after 1975.1.1 in the prediction range:
1978-03-06; 1980-03-27; 1982-08-12; 1984-07-24; 1987-12-04; 1990-10-11; 1994-04-04; 2002-10-09; 2009-03-09.
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the 59 year S&P 500 index history. Our task is to diagnose such rebounds in advance.

3.3. Definitions and concepts needed to set up the pattern recognition method

In what follows we describe a hierarchy of descriptive and quantitative terms as follows.

• learning set. A subset of the whole set which only contains the fits with critical times in the

past. We learn the properties of historical rebounds from this set and develop the predictions

based on these properties.

• classes. Two classes of fits are defined according to whether the critical time of a given fit

is near some rebound or not, where ‘near’ will be defined below.

• groups. A given group contains all fits of a given window size.

• informative parameters. Informative parameters are the distinguishing parameters of fits

in the same group but different classes.

• questionnaires. Based on the value of an informative parameter, one can ask if a certain

trading day is a start of rebound or not. The answer series generated by all the informative

parameters is called questionnaire.

• traits. Traits are extracted from questionnaire. They are short and contain crucial informa-

tion and properties of a questionnaire.

• features. Traits showing the specific property of a single class are selected to be the feature

of that class.

• rebound alarm index. An index developed from features to show the probability that a

certain day is a rebound.

In this paper, we will show how all the above objects are constructed. Our final goal is to

make predictions for the rebound time. The development of the rebound alarm index will enable

us to achieve our goal. Several methodologies are presented to quantify the performance of the

predictions.
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3.4. Classes

In the pattern recognition method of (Gelfand et al., 1976), one should define the learning set

to find characteristics that will then be used to make predictions. We designate all fits before Jan.

1, 1975 as the learning set Σ1:

Σ1 = {f | tc,f , t2,f < Jan.1, 1975} (13)

There are 4,591 fits in this set.

We then distinguish two different classes from Σ1 based on the critical time tc of the fits. For a

single fit f with critical time tc,f , if this critical time is within D days of a rebound, then we assign

fit f to Class I, represented by the symbol CI . Otherwise, f is assigned to Class II, represented

by the symbol CII . For this study, we choose D = 10 days so that Class I fits are those with tc

within 10 days of one of the 19 rebounds. We formalize this rule as:

CI = {f | f ∈ Σ1,∃d ∈ Rbd, s.t.|tc,f − d| ≤ D}, (14)

CII = {f | f ∈ Σ1, |tc,f − d| > 10,∀d ∈ Rbd}, (15)

D = 10 days. (16)

To be clear, Class I is formed by all the fits in learning set Σ1 which have a critical time tc within

10 days of one of the rebounds. All of the fits in the learning set which are not in Class I are in

Class II.

3.5. Groups

We also categorize all fits into separate groups (in addition to the two classes defined above)

based on the length of the fit interval, Lf = dt = t2 − t1. We generate 14 groups, where a given

group Gi is defined by:

Gi = {f | Lf ∈ [100i, 100i + 100], i = 1, 2, ..., 14, f ∈ Σ1} (17)

All 4,591 fits in the learning set are placed into one of these 14 groups.

3.6. Informative Parameters

For each fit in the learning set, we take 6 parameters to construct a flag that determines the

characteristics of classes. These 6 parameters are m,ω, φ and B from Eq. 4, b (the negative bubble

condition) from Eq. 6 and q as the residual of the fit.
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We categorize these sets of 6 parameters for fits which are in the same group and same class.

Then for each class-group combination, we calculate the probability density function (pdf) of each

parameter using the adaptive kernel method (Worton, 1989), generating 168 pdfs (6 parameters ×
2 classes × 14 groups).

We compare the similarity (defined below) of the pdfs of each of the six parameters that are

in the same group (window length) but different classes (proximity of tc to a rebound date). If

these two pdfs are similar, then we ignore this parameter in this group. If the pdfs are different,

we record this parameter of this group as an informative parameter. The maximum number of

possible informative parameters is 84 (6 parameters × 14 groups).

We use the Kolmogorov-Smirnov method (Chakravarti, Roy, & Laha, 1967) to detect the dif-

ference between pdfs. If the maximum difference of the cumulative distribution functions (integral

of pdf) between two classes exceeds 5%, then this is an informative parameter. We want to assign

a uniquely determined integer IPl to each informative parameter. We can do so by using three

indexes, i, j and l. The index i indicates which group, with i ∈ [1, 14]. The index j indicates

the parameter, where j = 1, 2, 3, 4, 5, 6 refer to m,ω, φ,B, b, q, respectively. Finally, l represents

the actual informative parameter. Assuming that there are L informative parameters in total and

using the indexes, IPl is then calculated via

IPl = 6i+ j (18)

for l ∈ [1, L].

Given the L informative parameters IPl, we consider the pdfs for the two different classes

of a single informative parameter. The set of abscissa values within the allowed range given by

equations (8 - 11), for which the pdf of Class I is larger than the pdf of Class II, defines the domain

RgI,l (‘good region’) of this informative parameter which is associated with Class I. The other

values of the informative parameters for which the pdf of Class I is smaller than the pdf of Class

II define the domain RgII,l which is associated with Class II. These regions play a crucial role in

the generation of questionnaires in the next section.

3.7. Intermediate summary

We realize that many new terms are being introduced, so in an attempt to be absolutely clear,

we briefly summarize the method to this point. We sub-divide a time series into many windows
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(t1, t2) of length Lf = t2 − t1. For each window, we obtain a set of parameters that best fit the

model (4). Each of these windows will be assigned one of two classes and one of 14 groups. Classes

indicate how close the modeled critical time tc is to a historical rebound, where Class I indicates

‘close’ and Class II indicates ‘not close’. Groups indicate the length of the window. For each fit, we

create a set of six parameters: m,ω, φ and B from Eq. (4), b (the negative bubble condition) from

Eq. (6) and q as the residual of the fit. We create the pdfs of each of these parameters for each

fit and define informative parameters as those parameters for which the pdfs differ significantly

according to a Kolmogorov-Smirnov test. For each informative parameter, we find the regions of

the abscissa of the pdf for which the Class I pdf (fits with tc close to a rebound) is greater than the

Class II pdf. For informative parameter l (defined in (18)), this region is designated as RgI,l. In

the next section, we will use these regions to create questionnaires that will be used to predictively

identify negative bubbles that will be followed by rebounds.

Another important distinction to remember at this point is that the above method has been

used to find informative parameters that will be used below. Informative parameters are associated

with a class and a group.

3.8. Questionnaires

Using the informative parameters and their pdfs described above, we can generate question-

naires for each day of the learning or testing set. Questionnaires will be used to identify negative

bubbles that will be followed by rebounds. The algorithm for generating questionnaires is the

following:

1. Obtain the maximum (tcmax) and minimum (tcmin) values of tc from some subset Σsub, either

the ‘learning’ set or the ‘predicting (testing)’ set of all 11,662 fits.

2. Scan each day tscan from tcmin to tcmax. There will be N = tcmax − tcmin + 1 days to scan.

For each scan day, create a new set Stscan consisting of all fits in subset Σsub that have a tc

near the scan day tscan, where ‘near’ is defined using the same criterion used for defining the

two classes, namely D = 10 days:

Stscan = {f | |tc,f − tscan| ≤ D, f ∈ Σsub} (19)

The number #Stscan of fits in each set can be 0 or greater. The sum of the number of fits

found in all of the sets
∑tcmax

tscan=tcmin
#Stscan can actually be greater than the total number of
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fits in Σsub since some fits can be in multiple sets. Notice that the fits in each set Stscan can

(and do) have varying window lengths. At this point, only the proximity to a scan day is

used to determine inclusion in a scan set.

3. Assign a group to each of the fits in Stscan. Recall that groups are defined in Eq. (17) and

are based on the window length Lf = dt = t2 − t1.

4. Using all sets Stscan, for each informative parameter IPl found in Sec. 3.6, determine if it

belongs to Class I (close to a rebound) or Class II (not close to a rebound). There are 3

possible answers: 1 = ‘belongs to Class I’, -1 = ‘belongs to Class II’ or 0 = ‘undetermined’.

The status of ‘belonging to Class I’ or not is determined as follows. First, find all values of

the informative parameter IPl in a particular scan set Stscan . For instance, if for a particular scan

day tscan, there are n fits in the subset Σsub that have tc ‘near’ tscan, then the set Stscan contains

those n fits. These n fits include windows of varying lengths so that the windows themselves

are likely associated with different groups. Now consider a given informative parameter IPl and

its underlying parameter j (described in Sec. 3.6) that has an associated ‘good region’, RgI,l.

Remember that this informative parameter IPl has an associated group. Count the number p

of the n fits whose lengths belong to the associated group of IPl. If more of the values of the

underlying parameter of p lie within RgI,l than outside of it, then IPl belongs to Class I and, thus,

the ‘answer’ to the question of ‘belonging to Class I’ is a = 1. If, on the other hand, more values

lie outside the ‘good region’ RgI,l than in it, the answer is a = −1. If the same number of values

are inside and outside of RgI,l then a = 0. Also, if no members of Stscan belong to the associated

group of IPl then a = 0.

This is, admittedly, confusing and takes a re-reading of the above description to fully under-

stand. To assist more in that understanding, let us have a look at an example. Assume that the

informative parameter information tells us parameter m in Group 3 is the informative parameter

IP19 and m ∈ [A,B] is the ‘good region’ RgI,l of Class I. We consider a single tscan and find that

there are two fits in Stscan in this group with parameter m values of m1 and m2. We determine

the ‘answer’ a = aIP19
as follows:

• If m1,m2 ∈ [A,B], we say that based on IP19 (Group 3, parameter m) that fits near tscan

belong to Class I. Mark this answer as aIP19
= 1.
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• If m1 ∈ [A,B] and m2 /∈ [A,B], we say that fits near tscan cannot be identified and so

aIP19
= 0.

• If m1,m2 /∈ [A,B], fits near tscan belong to Class II and aIP19
= −1.

More succinctly,

aIP19
=























1 if m1,m2 ∈ [A,B]

0 if mi ∈ [A,B],mj /∈ [A,B], i 6= j, i, j ∈ {1, 2}
−1 if m1,m2 /∈ [A,B]

(20)

For each of the informative parameters, we get an answer a that says that fits near tscan belong

to Class I or II (or cannot be determined). For a total of L informative parameters, we get a

questionnaire A of length L:

Atscan = a1a2a3...aL, ai ∈ {−1, 0, 1} (21)

Qualitatively, these questionnaires describe our judgement to whether tscan is a rebound or not.

This judgement depends on the observations of informative parameters.

3.9. Traits

The concept of a trait is developed to describe the property of the questionnaire for each tscan.

Each questionnaire can be decomposed into a fixed number of traits if the length of questionnaire

is fixed.

From any questionnaire with length L, we generate a series of traits by the following method.

Every trait is a series of 4 to 6 integers, τ = p, q, r, (P,Q,R). The first three terms p, q and r are

simply integers. The term (P,Q,R) represents a string of 1 to 3 integers. We first describe p, q

and r and then the (P,Q,R) term.

The integers p, q and r have limits: p ∈ 1, 2, . . . , L, q ∈ p, p+ 1, . . . , L, r ∈ q, q + 1, . . . , L. We

select all the possible combinations of bits from the questionnaire Atscan with the condition that

each time the number of selected questions is at most 3. We record the numbers of the selected

positions and sort them. The terms p, q and r are selected position numbers and defined as follows:

• If only one position i1 is selected: r = q = p = i1

• If two i1, i2 are selected: p = i1, r = q = i2(i1 < i2)

14



• If three i1, i2, i3 are selected: p = i1, q = i2, r = i3(i1 < i2 < i3)

The term (P,Q,R) is defined as follows:

r = q = p, (P,Q,R) = ap (22)

r = q, q 6= p, (P,Q,R) = ap, aq (23)

r 6= q, q 6= p, (P,Q,R) = ap, aq, ar (24)

As an example, A = (0,1,-1,-1) has traits in Table. 1.

For a questionnaire with length L, there are 3L + 32
(L
2

)

+ 33
(L
3

)

possible traits. However, a

single questionnaire has only L+
(L
2

)

+
(L
3

)

traits, because (P,Q,R) is defined by p,q and r. In this

example, there are 14 traits for questionnaire (0,1,-1,-1) and 174 total traits for all possible L = 4

questionnaires.

3.10. Features

At the risk of being redundant, it is worth briefly summarizing again. Until now we have:

L informative parameters IP1, IP2, . . . , IPL from 84 different parameters (84 = 6 parameters ×
14 Groups) and a series of questionnaires Atscan for each tscan from tcmin to tcmax using set Stscan .

These questionnaires depend upon which subset Σsub of fits is chosen. Each questionnaire has a

sequence of traits that describe the property of this questionnaire in a short and clear way. Now

we generate features for both classes.

Recall that the subset of fits Σfeature that we use here is that which contains all fits which have

a critical time tc earlier than tp = 1975-01-01, Σfeature = {f | tc,f < tp}. By imposing that t2 and

tc,f are both smaller than tp, we do not use any future information. Considering the boundary

condition of critical times in Eq. (11), the end time of a certain fit t2 is less than or equal to tc.

Additionally, we select only those critical times such that tc,f < tp,∀f ∈ Σfeature.

Assume that there are two sets of traits TI and TII corresponding to Class I and Class II,

respectively. Scan day by day the date t from the smallest tc in Σfeature until tp. If t is near a

rebound (using the same D = 10 day criterion as before), then all traits generated by questionnaire

At belong to TI . Otherwise, all traits generated by At belong to TII .

Count the frequencies of a single trait τ in TI and TII . If τ is in TI for more than α times and

in TII for less than β times, then we call this trait τ a feature FI of Class I. Similarly, if τ is in TI

for less than α times and in TII for more than β times, then we call τ a feature FII of Class II.
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The pair (α, β) is defined as a feature qualification. We will vary this qualification to optimize the

back tests and predictions.

3.11. Rebound alarm index

The final piece in our methodology is to define a rebound alarm index that will be used in the

forward testing to ‘predict’ rebounds. Two types of rebound alarm index are developed. One is

for the back tests before 1975-01-01, as we have already used the information before this time to

generate informative parameters and features. The other alarm index is for the prediction tests.

We generate this prediction rebound alarm index using only the information before a certain time

and then try to predict rebounds in the ‘future’ beyond that time.

4. Back testing

4.1. Features of learning set

Recall that a feature is a trait which frequently appears in one class but seldomly in the other

class. Features are associated with feature qualification pairs (α, β). Using all the fits from subset

Σfeature found in Sec. 3.10, we generate the questionnaires for each day in the learning set, i.e.,

the fits with tc before 1975-01-01. Take all traits from the questionnaire At for a particular day t

and compare them with features FI and FII . The number of traits in FI and FII are called νt,I

and νt,II . Then we define:

RIt =











νt,I
νt,I+νt,II

if νt,I + νt,II ≥ 0

0 if νt,I + νt,II = 0
(25)

From the definition, we can see that RIt ∈ [0, 1]. If RIt is high, then we expect that this day has

a high probability that the rebound will start.

We choose feature qualification pair (10, 200) here, meaning that a certain trait must appear

in trait Class I at least 11 times and must appear in trait Class II less than 200 times. If so, then

we say that this trait is a feature of Class I. If, on the other hand, the trait appears 10 times or

less in Class I or appears 200 times or more in Class II, then this trait is a feature of Class II. The

result of this feature qualification is shown in Fig. 3.

With this feature qualification, the rebound alarm index can distinguish rebounds with high

significance. If the first number α is too big and the second number β is too small, then the total

numer of Class I features will be very small and the number of features in Class II will be large.
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This makes the rebound alarm index always close to 0. In contrast, if α is too small and β is too

large, the rebound alarm index will often be close to 1. Neither of these cases, then, is qualified to

be a good rebound alarm index to indicate the start of the next rebound.

4.2. Predictions

Once we generate the Class I and II features of the learning set for values of tc before tp (Jan.

1, 1975), we then use these features to generate the predictions on the data after tp. Recall that

the windows that we fit are defined such that the end time t2 increases 50 days from one window

to the next. Also note that all predictions made on days between these 50 days will be the same

because there is no new fit information between, say, tn2 and tn−1
2 .

Assume that we make a prediction at time t:

t ∈ (t2, t2 + 50], t > tp (26)

Then the fits set Σt2 = {f | t2,f ≤ t2} is made using the past information before prediction day t.

We use Σt2 as the subset Σsub mentioned in Sec. 3.8 to generate the questionnaire on day t and the

traits for this questionnaire. Comparing these traits with features FI and FII allows us to generate

a rebound alarm index RIt using the same method as described in Sec. 4.1.

With this technique in mind, we move the prediction day t2 from 1975-01-01 until 2009-06-03,

increasing t2 for the next prediction subset by 50 days, creating the rebound alarm index from 1975-

01-01 until 2009-07-22 (50 days beyond the last t2). We create a single time series—the rebound

alarm index—by combining all of these predictions. By comparing this rebound alarm index with

the historical data (Fig. 4), we see that alarms in the index correlate well with historical rebounds,

with some false positive alarms as well as some false negative missed rebounds. We quantify these

false signals in the next section.

4.3. Error Diagram

We have qualitatively seen that the feature qualifications method using back testing and for-

ward prediction can generate a rebound alarm index that seems to detect and predict well observed

rebounds in the S&P 500 index. We now quantify the quality of these predictions with the use of er-

ror diagrams (Mochan, 1997; Mochan & Kagan, 1992). We create an error diagram for predictions

after 1975-01-01 with a certain feature qualification in the following way:
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1. Count the number of rebounds after 1975-01-01 as defined in section 3.2 and expression (12).

There are 9 rebounds.

2. Take the rebound alarm index time series (after 1975-01-01) and sort the set of all alarm index

values in decreasing order. There are 12,600 points in this series and the sorting operation

delivers a list of 12,600 index values, from the largest to the smallest one.

3. The largest value of this sorted series defines the first threshold.

4. Using this threshold, we declare that an alarm starts on the first day that the unsorted

rebound alarm index time series exceeds this threshold. The duration of this alarm Da is

set to 41 days, since the longest distance between a rebound and the day with index greater

than the threshold is 20 days. Then, a prediction is deemed successful when a rebound falls

inside that window of 41 days.

5. If there are no successful predictions at this threshold, move the threshold down to the next

value in the sorted series of alarm index.

6. Once a rebound is predicted with a new value of the threshold, count the ratio of unpre-

dicted rebounds (unpredicted rebounds / total rebounds in set) and the ratio of alarms used

(duration of alarm period / 12,600 prediction days). Mark this as a single point in the error

diagram.

In this way, we will mark 9 points in the error diagram for the 9 rebounds.

The aim of using such an error diagram in general is to show that a given prediction scheme

performs better than random. A random prediction follows the line y = 1−x in the error diagram.

A set of points below this line indicates that the prediction is better than randomly choosing

alarms. The prediction is seen to improve as more error diagram points are found near the origin

(0, 0). The advantage of error diagrams is to avoid discussing how different observers would rate

the quality of predictions in terms of the relative importance of avoiding the occurrence of false

positive alarms and of false negative missed rebounds. By presenting the full error diagram, we

thus sample all possible preferences and the unique criterion is that the error diagram curve be

shown to be statistically significantly below the anti-diagonal y = 1− x.

In Fig. 5, we show error diagrams for different feature qualification pairs (α, β). Note the 9

points representing the 9 rebounds in the prediction set. We also plot the 11 points of the error

diagrams for the learning set in Fig. 6.
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As a different test of the quality of this pattern recognition procedure, we repeated the entire

process but with a rebound now defined as the minimum price within a window of 2 × 365 days3

instead of 2× 200 days, as before. These results are shown in Figs. 7-8.

4.4. Bayesian inference

Given a value of the predictive rebound alarm index, we can also use the historical rebound

alarm index combined with Bayesian inference to calculate the probability that this value of the

rebound alarm index will actually be followed by a rebound. We use predictions near the end of

November, 2008 as an example. From Fig. 4, we can see there is a strong rebound signal in that

period. We determine if this is a true rebound signal by the following method:

1. Find the highest rebound alarm index Lv around the end of November 2008.

2. Calculate Dtotal, the number of days in the interval from 1975-01-01 until the end of the

prediction set, 2009-07-22.

3. Calculate DLv, the number of days which have a rebound alarm index greater than or equal

to Lv.

4. The probability that the rebound alarm index is higher than Lv is estimated by

P (RI ≥ Lv) =
DLv

Dtotal

(27)

5. The probability of a day being near the bottom of a rebound is estimated as the number of

days near real rebounds over the total number of days in the predicting set:

P (rebound) =
DrwNrebound

Dtotal

, (28)

where Nrebound is the number of rebounds we can detect after 1975-01-01 and Drw is the

rebound width, i.e. the number of days near the real rebound in which we can say that

this is a successful prediction. For example, if we say that the prediction is good when the

predicted rebound time and real rebound time are within 10 days of each other, then the

rebound width Drw = 10× 2 + 1 = 21.

3seven rebounds in the back tests before 1975.1.1: 1953-09-14; 1957-10-22; 1960-10-25; 1962-06-26; 1966-10-07;
1970-05-26; 1974-10-03, and six rebounds after 1975.1.1 in the prediction range: 1978-03-06; 1982-08-12; 1987-12-04;
1990-10-11; 2002-10-09; 2009-03-09.
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6. The probability that the neighbor of a rebound has a rebound alarm index larger than Lv is

estimated as

P (RI ≥ Lv|rebound) = N0

Nrebound

(29)

where N0 is the number of rebounds in which

sup
|d−rebound|≤20

RId ≥ Lv. (30)

7. Given that the rebound alarm index is higher than Lv, the probability that the rebound will

happen in this period is given by Bayesian inference:

P (rebound|RI ≥ Lv) =
P (rebound)× P (RI ≥ Lv|rebound)

P (RI ≥ Lv)
(31)

Averaging P (rebound|RI ≥ Lv) for all the different feature qualifications gives the probability

that the end of November 2008 is a rebound as 0.044. By comparing with observations, we see that

this period is not a rebound. We obtain a similar result by increasing the definition of rebound

from 200 days before and after a local minimum to 365 days, yielding a probability of 0.060.

When we decrease the definition to 100 days, the probability that this period is a rebound jumps

to 0.597. The reason for this sudden jump is shown in Fig. 9 where we see the index around this

period and the S&P 500 index value. From the figure, we find that this period is a local minimum

within 100 days, not more. This is consistent with what Bayesian inference tells us. However, we

have to address that the more obvious rebound in March 2009 is missing in our rebound alarm

index. Technically, one can easily find that this is because the end of crash is not consistent with

the beginning of rebound in this special period.

In this case, we then test all the days after 1985-01-01 systematically by Bayesian inference

using only prediction data (rebound alarm index) after 1975-01-01. To show that the probability

that RI ≥ Lv is stable, we cannot start Bayesian inference too close to the initial predictions so

we choose 1985-01-01 as the beginning time. We have 5 ‘bottoms’ (troughs) after this date, using

the definition of a minimum within ±200 days.

For a given day d after 1985-01-01, we know all values of the rebound alarm index from 1975-

01-01 to that day. Then we use this index and historical data of the asset price time series in this

time range to calculate the probability that d is the bottom of the trough given that the rebound

alarm index is more than Lv:

Lv = sup
d−t<50

RIt (32)
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To simplify the test, we only consider the case of feature qualification pair (10, 200), meaning

that the trait is a feature of Class I only if it shows in Class I more than 10 times and in Class II less

than 200 times. Fig. 10 shows that the actual rebounds occur near the local highest probability of

rebound calculated by Bayesian inference. This figure also illustrates the existence of false positive

alarms, i.e., large peaks of the probability not associated with rebounds that we have characterized

unambiguously at the time scale of ±200 days.

5. Trading strategy

In order to determine if the predictive power of our method provides a genuine and useful

information gain, it is necessary to estimate the excess return it could generate. The excess return

is the real return minus the risk free rate transformed from annualized to the duration of this period.

The annualized 3-month US treasury bill rate is used as the risk free rate in this paper. We thus

develop a trading strategy based on the rebound alarm index as follows. When the rebound alarm

index rises higher than a threshold value Th, then with a lag of Os days, we buy the asset. This

entry strategy is complemented by the following exit strategy. When the rebound alarm index goes

below Th, we still hold the stock for another Hp days, with one exception. Consider the case that

the rebound alarm index goes below Th at time t1 and then rises above Th again at time t2. If

t2 − t1 is smaller than the holding period Hp, then we continue to hold the stock until the next

time when the rebound alarm index remains below Th for Hp days.

The performance of this strategy for some fixed values of the parameters is compared with

random strategies, which share all the properties except for the timing of entries and exits deter-

mined by the rebound alarm index and the above rules. The random strategies consist in buying

and selling at random times, with the constraint that the total holding period is the same as in

the realized strategy that we test. Implementing 1000 times these constrained random strategies

with different random number realizations provide the confidence intervals to assess whether the

performance of our strategy can be attributed to real skill or just to luck.

Results of this comparison are shown in Table. 2 for two sets of parameter values. The p-value

is a measure of the strategies’ performance, calculated as the fraction of corresponding random

strategies that are better than or equal to our strategies. The lower the p-value is, the better the

strategy is compared to the random portfolios. We see that all of our strategies’ cumulative excess

returns are among the top 5-6% out of 1000 corresponding random strategies’ cumulative excess
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returns. Box plots for each of the strategies are also presented in Figs. 11-12.

The cumulative returns as well as the cumulative excess returns obtained with the two strategies

as a function of time are shown in Figs. 13-14. These results suggest that these two strategies would

provide significant positive excess return.

We also provide the Sharpe ratio as a measure of the excess return (or risk premium) per unit

of risk. We define it per trade as follows

S =
E[R −Rf ]

σ
(33)

where R is the return of a trade, Rf is the risk free rate (we use the 3-month US treasury bill rate)

transformed from annualized to the duration of this trade given in Table. 2 and σ is the standard

deviation of the returns per trade. The higher the Sharpe ratio is, the higher the excess return

under the same risk.

The bias ratio is defined as the number of trades with a positive return within one standard

deviation divided by one plus the number of trades which have a negative return within one

standard deviation:

BR =
#{r|r ∈ [0, σ]}

1 + #{r|r ∈ [−σ, 0)} (34)

In Eq. 34, r is the excess return of a trade and σ is the standard deviation of the excess returns.

This ratio detects valuation bias.

To see the performance of our strategies, we also check all the possible random trades with a

holding period equals to the average duration of our strategies, namely 25 days and 17 days for

strategy I and II respectively. The average Sharpe and bias ratios of these random trades are shown

in Table. 2. Both Sharpe and bias ratios of our strategies are greater than those of the random

trades, confirming that our strategies deliver a larger excess return with a stronger asymmetry

towards positive versus negative returns.

As another test, we select randomly the same number of random trades as in our strategies,

making sure that there is no overlap between the selected trades. We calculate the Sharpe and bias

ratios for these random trades. Repeating this random comparative selection 1000 times provides

us with p-values for the Sharpe ratio and for bias ratio of our strategies. The results are presented

in Table. 2. All the p-values are found quite small, confirming that our strategies perform well.
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6. Conclusion

We have developed a systematic method to detect rebounds in financial markets using “negative

bubbles,” defined as the symmetric of bubbles with respect to a horizontal line, i.e., downward

accelerated price drops. The aggregation of thousands of calibrations in running windows of the

negative bubble model on financial data has been performed using a general pattern recognition

method, leading to the calculation of a rebound alarm index. Performance metrics have been

presented in the form of error diagrams, of Bayesian inference to determine the probability of

rebounds and of trading strategies derived from the rebound alarm index dynamics. These different

measures suggest that the rebound alarm index provides genuine information and suggest predictive

ability. The implemented trading strategies outperform randomly chosen portfolios constructed

with the same statistical characteristics. This suggests that financial markets may be characterized

by transient positive feedbacks leading to accelerated drawdowns, which develop similarly to but

as mirror images of upward accelerating bubbles. Our key result is that these negative bubbles

have been shown to be predictably associated with large rebounds or rallies.

In summary, we have expanded the evidence for the possibility to diagnose bubbles before

they terminate (Sornette et al., 2010), by adding the phenomenology and modeling of “negative

bubbles” and their anticipatory relationship with rebounds. The present paper contributes to

improving our understanding of the most dramatic anomalies exhibited by financial markets in the

form of extraordinary deviations from fundamental prices (both upward and downward) and of

extreme crashes and rallies. Our results suggest a common underlying origin to both positive and

negative bubbles in the form of transient positive feedbacks leading to identifiable and reproducible

faster-than-exponential price signatures.

23



7. Bibliography

Blanchard, O. & Watson, M. (1982). Bubbles, rational expectations and speculative markets. in: Wachtel, P. ,eds.,
Crisis in Economic and Financial Structure: Bubbles, Bursts, and Shocks. Lexington Books: Lexington.

Chakravarti, I., Roy, J., & Laha, R. (1967). Handbook of methods of applied statistics. John Wiley and Sons, 1,
392–394.

Cvijovic, D. & Klinowski, J. (1995). Taboo search: an approach to the multiple minima problem. Science, 267 (5188),
664–666.

Galbraith, J. (1997). The great crash, 1929. Boston : Houghton Mifflin Co.
Gelfand, I., Guberman, S., Keilis-Borok, V., Knopoff, L., Press, F., E.Ya.Ranzman, Rotwain, I., & Sadovsky, A.

(1976). Pattern recognition applied to earthquake epicenters in california. Physics of The Earth and Planetary
Interiors, 11 (3), 227–283.

Gurkaynak, R. (2008). Econometric tests of asset price bubbles: Taking stock. Journal of Economic Surveys, 22 (1),
166–186.

Ide, K. & Sornette, D. (2002). Oscillatory finite-time singularities in finance, population and rupture. Physica A,
307, 63–106.

Jiang, Z.-Q., Zhou, W.-X., Sornette, D., Woodard, R., Bastiaensen, K., & Cauwels, P. (2010). Bubble diagnosis
and prediction of the 2005-2007 and 2008-2009 chinese stock market bubbles. Journal of Economic Behavior and
Organization, in press. URL http://arxiv.org/abs/0909.1007.

Johansen, A., Ledoit, O., & Sornette, D. (2000). Crashes as critical points. International Journal of Theoretical and
Applied Finance, 3 (2), 219–255.

Johansen, A. & Sornette, D. (1999). Critical crashes. Risk, 12 (1), 91–94. URL
http://xxx.lanl.gov/abs/cond-mat/9901035.

Johansen, A. & Sornette, D. (2006). Shocks, crashes and bubbles in financial markets. Brussels Eco-
nomic Review (Cahiers economiques de Bruxelles), 49 Special Issue on Nonlinear Analysis(3/4). URL
http://papers.ssrn.com/paper.taf?abstract_id=344980.

Johansen, A., Sornette, D., & Ledoit, O. (1999). Predicting financial crashes using discrete scale invariance. Journal
of Risk, 1 (4), 5–32. URL http://xxx.lanl.gov/abs/cond-mat/9903321 .

Kindleberger, C. (2000). Manias, panics, and crashes: a history of financial crises. 4th ed. New York: Wiley.
Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied

Mathematics II, 2, 164–168.
Lux, T. & Sornette, D. (2002). On rational bubbles and fat tails. Journal of Money, Credit and Banking, 34 (3),

589–610.
Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society

for Industrial and Applied Mathematics, 11 (2), 431–441.
Mochan, G. M. (1997). Earthquake prediction as a decision making problem. Pure and Applied Geophysics, 149,

233–247.
Mochan, G. M. & Kagan, Y. Y. (1992). Earthquake prediction and its optimization. Journal of Geophysical Research,

97, 4823–4838.
Sornette, D. (1998). Discrete scale invariance and complex dimensions. Physics Reports, 297 (5), 239–270. URL

http://xxx.lanl.gov/abs/cond-mat/9707012.
Sornette, D. (2003). Why stock markets crash (critical events in complex financial systems). Princeton University

Press.
Sornette, D. & Johansen, A. (1997). Large financial crashes. Physica A, 245 N3-4, 411–422.
Sornette, D., Woodard, R., Fedorovsky, M., Riemann, S., Woodard, H., & Zhou, W.-X. (2010). The financial bubble

experiment: advanced diagnostics and forecasts of bubble terminations (the financial crisis observatory). URL
http://arxiv.org/abs/0911.0454.

v. Bothmer, H.-C. G. & Meister, C. (2003). Predicting critical crashes? a new restriction for the free variables.
Physica A, 320C, 539–547. URL www.iag.uni-hannover.de/~bothmer/hazard-png.pdf.

Worton, B. (1989). Kernel methods for estimating the utilization distribution in home-range studies. Ecology, 70 (1),
164–168.

24

http://arxiv.org/abs/0909.1007
http://xxx.lanl.gov/abs/cond-mat/9901035
http://papers.ssrn.com/paper.taf?abstract_id=344980
http://xxx.lanl.gov/abs/cond-mat/9903321
http://xxx.lanl.gov/abs/cond-mat/9707012
http://arxiv.org/abs/0911.0454
www.iag.uni-hannover.de/~bothmer/hazard-png.pdf


8. List of Symbols

h(t) hazard rate
p(t) stock price

A,B,C linear parameters of the JLS model
tc critical time in the JLS model at which the bubble ends
m exponent parameter in the JLS model
ω frequency parameter in the JLS model
φ phase parameter in the JLS model
b parameter controlling the positivity of the hazard rate in the JLS model

Rbd rebound time
CI set of Class I fits
CII set of Class II fits
Gi set of Group i fits
IP informative parameter
A questionnaire
τ trait

(α, β) feature qualification pair
RI rebound alarm index
Lv highest rebound alarm index around a certain time
Th threshold value for the trading strategy
Os offset for the trading strategy
Hp holding period for the trading strategy
S Sharpe ratio
Rf risk free rate

r,R −Rf excess return of a trade
BR bias ratio
# number of a set
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p q r (P,Q,R)

1 1 1 0

1 2 2 0,1

1 2 3 0,1,-1

1 2 4 0,1,-1

1 3 3 0,-1

1 3 4 0,-1,-1

1 4 4 0,-1

2 2 2 1

2 3 3 1,-1

2 3 4 1,-1,-1

2 4 4 1,-1

3 3 3 -1

3 4 4 -1,-1

4 4 4 -1

Table 1: Traits for series A = (0,1,-1,-1)

Strategy I Strategy II

Threshold Th 0.2 0.7

Offset Os 10 30

Holding period Hp 10 10

Number of trades 77 38

Success rate (fraction of tradings with positive return) 66.2% 65.8%

Total holding days 1894 days 656 days

Fraction of time when invested 15.0% 5.2%

Cumulated log-return 95% 45%

cumulated excess log-return 67% 35%

Average return per trade 1.23% 1.19%

Average trade duration 24.60 days 17.26 days

p-value of cumulative excess return 0.055 0.058

Sharpe ratio per trade 0.247 0.359

Sharpe ratio of random trades (holding period equals average trade duration) 0.025 0.021

p-value of Sharpe ratio 0.043 0.036

Bias ratio 1.70 1.36

Bias ratio of random trades (holding period equals average trade duration) 1.27 1.25

p-value of bias ratio 0.105 0.309

Table 2: Performances of two strategies: Strategy I (Th = 0.2, Os = 10, Hp = 10) and Strategy II (Th = 0.7, Os =
30, Hp = 10).
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Figure 1: Significant drawdown of about 37.5% from 1974-02-28 to 1974-10-03 (time window delineated by the two
black dashed vertical lines), followed by a strong positive rebound. The price from 1974-02-28 to 1974-09-10 is fitted
by the JLS model with B > 0 and b < 0. We selected the best 50 fits and then removed those for which the
exponent m was on the lower search boundary (m = 0.001), leaving 26 acceptable fits. We used these 26 fits to form
a confidence interval for the critical time tc shown by the light shadow area. The dark shadow area corresponds to
the 20-80 quantiles region of the predicted rebounds of those 26 fits. The red vertical line represents the real rebound
time, which is is well within the 20-80 quantiles region.
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Histogram for rebound time tc  of S&P 500. tc �[t2 ,t2 +0.375(t2�t1 )].
 Window size max: 1500, min: 110. Bins: 1500. b<0,B>0, 2568 fits
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Figure 2: (upper) Histogram of the critical times tc over the set of 2,568 time intervals for which negative bubbles
are detected by the condition that the fits of ln p(t) by expression (4) satisfy condition (7). (lower) Plot of − ln p(t)
versus time for the S&P 500 index. Note that peaks in this figure correspond to valleys in actual price.
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Historical S&P 500 index. 
 Rebounds in range of [-200, 200] days are shown by red vertical lines.

Figure 3: Rebound alarm index and log-price of the S&P 500 Index for the learning set, where t2 and tc are both
before Jan. 1, 1975. (upper) Rebound alarm index for the learning set using feature qualification pair (10, 200). The
rebound alarm index is in the range [0, 1]. The higher the rebound alarm index, the more likely is the occurrence of
a rebound. (lower) Plot of ln p(t) versus time of S&P Index. Red vertical lines indicate rebounds defined by local
minima within plus and minus 200 days around them. They are located near clusters of high values of the rebound
alarm index of the upper figure.
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S&P 500 rebound alarm index. 
 Use information before Jan.1, 1975, predict rebounds until Jun. 3, 2009
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Historical S&P 500 index. 
 Rebounds in range of [-200, 200] days are shown by red vertical lines.

Figure 4: Rebound alarm index and log-price of S&P 500 Index for the predicting set after Jan. 1, 1975. (upper)
Rebound alarm index for predicting set using feature qualification pair (10, 200). The rebound alarm index is in the
range [0,1]. The higher the rebound alarm index, the more likely is the occurrence of a rebound. (lower) Plot of
ln p(t) versus time of the S&P Index. Red vertical lines indicate rebounds defined by local minima within in plus
and minus 200 days. They are located near clusters of high values of the rebound alarm index of the upper figure.
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Error Diagram for S&P 500 predictions.
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Figure 5: Error diagram for predictions after Jan. 1, 1975 with different types of feature qualifications. Feature
qualification α, β means that, if the occurrence of a certain trait in Class I is larger than α and less than β, then we
call this trait a feature of Class I and vice versa. See text for more information.
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Error Diagram for S&P 500 back tests.
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Figure 6: Same as Figure 5 but for the learning set before Jan. 1, 1975.
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Error Diagram for S&P 500 predictions.
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Figure 7: Same as Figure 5 but with the different definition of a rebound determined as the day with the smallest
price within the 365 days before it and the 365 days after it.
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Figure 8: Same as Figure 7 for the learning set before Jan. 1, 1975.
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S&P 500 rebound alarm index near November 2008. 
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Figure 9: Rebound alarm index and market price near and after November 2008.
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Probability of rebound obtained using Bayesian inference. 
 Rebound is bottom of [-200, 200] days. Red dashed lines represent real rebounds.

Figure 10: Probability of rebound as a function of time t, given the value of the rebound alarm index at t, derived
by Bayesian inference applied to bottoms at the time scale of ±200 days. The feature qualification is (10, 200). Lv

is the largest rebound index in the past 50 days. The vertical red lines show the locations of the realized rebounds
in the history of the S&P500 index.
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1000 times repeats. Red circle is the performance of our strategy.�1.0
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Box plot for strategy with holding period 10 days, threshold 0.2 and offset 10

Figure 11: Box plot for Strategy I (Th = 0.2, Os = 10, Hp = 10). Lower and upper horizontal edges (blue lines) of
box represent the first and third quartiles. The red line in the middle is the median. The lower and upper black lines
are the 1.5 interquartile range away from quartiles. Points between quartiles and black lines are outliers and points
out of black lines are extreme outliers. Our strategy return is marked by the red circle. This shows our strategy is
an outlier among the set of random strategies. The log-return ranked 55 out of 1000 random strategies.
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Box plot for strategy with holding period 10 days, threshold 0.7 and offset 30

Figure 12: Same as figure 11 for Strategy II (Th = 0.7, Os = 30, Hp = 10). The log-return ranked 58 out of 1000
random strategies.
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Wealth trajectory for strategy: threshold: 0.2, offset: 10 days, holding period: 10 days.

 Cumulated log-return (excess log-return): 94.84% (66.99%), 77 trades in total.
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Figure 13: Wealth trajectory for Strategy I (Th = 0.2, Os = 10, Hp = 10). Major performance parameters of this
strategy are: 77 trading times; 66.2% tradings have positive return; 1894 total holding days, which is 15.0% of total
time. Accumulated log-return is 95% and average return per trade is 1.23%. Average trade length is 24.60 days.
P-value of this strategy is 0.055
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Wealth trajectory for strategy: threshold: 0.7, offset: 30 days, holding period: 10 days.
 Cumulated log-return (excess log-return): 45.03% (34.97%), 38 trades in total.

return path
excess return path

Figure 14: Wealth trajectory for Strategy II (Th = 0.7, Os = 30, Hp = 10). Major performance parameters of this
strategy are: 38 trading times; 65.8% tradings have positive return; 656 total holding days, which is 5.2% of total
time. Accumulated log-return is 45% and average return per trade is 1.19%. Average trade length is 17.26 days.
P-value of this strategy is 0.058
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