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Local unitary invariants of multipartite states fall into families related by the tracing-out of
subsystems. In the case of pure qubit systems, there is a family that accounts for about half the
total number of invariants and is closely connected to multipartite separability. One way to define
this family is to give pure states the structure of an algebra, and define a log function in this algebra.
The coefficients of the Taylor expansion of this log function, which are polynomials in the coefficients
of the states, are cumulants. When twirled by local unitaries, these yield invariants. The traditional
cumulant, which is a function of random variables, vanishes if its arguments belong to two or more
independent sets. The equivalent of this in our context is that certain cumulant-invariants vanish
when a state is separable.

I. INTRODUCTION

Given a multipartite quantum state, the action of local unitaries maps out an orbit of locally equivalent states.
We can think of such orbits as forming an entanglement space, £. The orbits can in principle be characterised by a
complete set of invariants of this group action, and the problem of finding complete, algebraically independent sets of
invariants has been much studied B, , 24, ] The picture that emerges is not altogether encouraging because
the number of invariants grows exponentially with the number of systems. However, there is a redeeming feature: an
invariant in n systems gives rise to a set of invariants in n + 1 systems via a tracing-out operation. This means that
any invariant generates a family that grows exponentially with the number of systems, and one can therefore hope to
grasp the structure of the space through these families.

I illustrate this by defining a family of invariants for pure qubit states that grows exponentially with n and asymp-
totically accounts for half the total number of invariants. The key to the construction of this family is the set of joint
cumulants ﬂa, B, , , , ] Cumulants are most commonly encountered as statistical tools, or as ingredients
in cluster expansions. For our purposes, they are simply polynomials in the coefficients of states that have certain
desirable properties; for instance, they are closely related to the separability of multiparty states. Cumulants can be
introduced in an attractive if unorthodox way by giving the space of vectors in (C%)®" the structure of an algebra in
which a Taylor series and hence analystic functions can be defined. In particular, one can define a log function with
the property that

log(|v) ®[¢)) = log(|4)) + log(|#)),

for all [¢)) and |@); see (@) and (I0) for a more precise statement. The coefficients in the log-expansion are cumulants,
which is how the connection between cumulants and separability comes about.

This algebra is a rather unnatural construction, since it depends on a particular choice of basis. However, twirling
with respect to local unitaries allows one to remove this artificiality and to generate a set of invariants. It turns out
that these cumulant-based invariants are already known in the literature, though their relationship to cumulants is
apparently not recognised. They account for five of the six independent 3-qubit invariants and eleven of the nineteen
4-qubit invariants given in [17]. Asymptotically, there are O(2") of them whereas the total number of invariants in an
n-party states is O(2"*1). There are also other families of invariants, including a family of 4th degree polynomials that
accounts for about a quarter of all invariants. Breaking down the invariants into (overlapping) hierarchical families
gives a perspective on their structure and, potentially, on the entanglement of states.

There is alternative way of deriving invariants from cumulants (see Section [VIITAl), due to Zhou et al [27]. Despite
certain formal similarities, these seem not to have a simple functional relationship to our invariants. The entanglement
space £ can be explored in other ways. Kraus ﬂﬂ, @] showed how to reduce multipartite qubit states to a standard
form that is invariant under local unitaries. An alternative, geometric procedure that applies to local spaces of
arbitrary dimension (not just qubits) has also been proposed [22]. These methods enable one to determine if two
states belong to the same orbit; invariants give a parametrisation of orbits and can be regarded as entanglement
measures. All these methods give complementary insights into the structure of £.
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II. THE ALGEBRA OF MULTI-PARTITE STATES

Let Aﬁld) be the the commutative algebra over C with generators e;, i = 1,...,n satisfying e = 0. An element )
of Asld) has the form

P = E @iy, i, e .eny

where 0 < i, < d—1 and the a’s are complex coefficients. Then ¢ = a + r, where a = aq. o, and r consists of at most

d™ — 1 terms and satisfies 4=+ = 0. Any analytic function f : A%d) — Asld) can be expanded in a Taylor series
inr:

f@) = fa)+ f'(a)r + f"(a)r?/2! + ... (1)
This series is finite, because of the nilpotency of r, and is thus well defined. For instance, in Aﬁf) any 1 can be written
¥ = ago + aro€1 + ao1€2 + aieiez (2)
and if agg # 0
log ¢ = log(ago + 1) = log ago + log(1 + 7/age) = log agy + r/agy — r/(2a3,),
= log ago + (a10/aoo)e1 + (ao1/aco)ez + (a11/ago — atoao1/agy)e1es. (3)

Similarly, there is a finite polynomial for the algebra inverse; e.g.
U™t = agy — (a10/agg)er — (ao1/ago)es — (a11/agy — 2a10a01/agy)eres; (4)

and for other functions, such as exp. These functions have all the expected properties, e.g.

Pyt =1,
log(y¢) = log(v) + log(¢),
exp(y + ¢) = exp(¢) exp(¢),
exp(log)(v) = 9.

Now identify elf ...ein with the n-qudit basis element |i; ...4,). This sets up an isomorphism between elements 1)

of Aﬁf’) and unnormalised n-qudit states [1). For instance, ¥ = agp + a1pe1 + ap1e2 + ai1eiez in Ag) can be identified
with the two qubit state [1)) = agp|00) + a10]10) + ao1|01) + a11|11). One can then carry across the structure of the
algebra. For instance, if [¢) = bgp|00) + b10|10) + bp1]|01) + b11|11) we have the product

[¥)|@) = ao0boo|00) + (agobio + a10bo0)|10) + (@oobor + @o1b0o)|01)
+ (@oob11 + a10bo1 + ao1bio + a11boo)|11).

The identity element in AS{”, is |0...0), and the inverse, log and exponential are carried over in the obvious way

n
from the corresponding functions in A&d).
Suppose the n subsystems are divided into two sets S and 7. We write

) = l¥)s @ [¥)r, 9)

to indicate that |¢) is separable with respect to these subsets, the order in which S and T appear in the tensor product
not being necessarily related to the order of their indices (e.g. we might write |1)) = [¢))13 ® |¢))2). Then |¢)) can also
be written in terms of the algebra product as [1)) = [¢)g|1)r, where |¢))g is identified with an element of the algebra
that only uses those e; with i € S, and [¢))r using only those e; with ¢ € T. From (@) we have

log |¢) = log|¢)s + log[¢)r. (10)

thus linearising the tensor product when the log is defined, i.e. when the constant coefficients in the algebra do not
vanish.



The coefficients c;, i, of log|¢) = > ¢i, i, [i1...i,) are called cumulants. The cumulant corresponding to ¢;, ., is
defined for classical random variables X; as the coefficient of AT' . Ain in log(eX: X %3 [21]]. This follows by identifying
(X3'... Xtn) with a;,. 4, and taking ag. o = 1. For instance, the equivalent of

n
c11 = (a11a00 — a10a01)/a(2)0, )

which is the coefficient of ejes in ([B)), is the classical second degree cumulant (X3 Xo) — (X1)(X5). The algebra AR

can also be identified with the “moment algebra” in @] by associating to the term ce;, ...e;, in ASIQ) the map that
assigns to the integers {i1,...i,} the value c.

IIT. MULTIPARTITE SEPARABILITY

Write the state space for an n-party state as (C%); ® ... ® (C%),,. If 7 = {my,mo,..., 7} is a partition of n, we say
|¢) is m-separable if we can write
k
1) = @16} (12)
i=1
where each [¢)r, is a state in the subspace @, (C%);. As we have seen, we can also write this using the algebra
product as
19) = |@)my -+ D) (13)
From (@) we get
log|¢) = log[@)x, + ... +10g[P)x, . (14)

This immediately gives a characterisation of multipartite separability. Let us say that a set of indices 7 .. .17, splits
the partition 7 if there are non-zero indices 7; in more than one subset of .

Theorem IIL.1. An n-party state |¢) with ag. o # 0 is w-separable if and only if ¢;,..;, = 0 whenever iy ...14, splits
.

Proof. Necessity follows from the fact that the cumulants with indices splitting 7 are absent from the expansion (I4))
of log |¢). Sufficiency follows by noting that, if these cumulants are zero, we can write log|®) in the form

log [¢) = Z Z Civig.. iy |1102 - in)
k {ij=1 = jem}
and exponentiating this shows |¢) to be m-separable. O

The condition ag.. g # 0 reflects the special role played by |0...0) as the identity in the algebra. We shall shortly
give a version of this theorem ([V.2)) which does not have this unpleasant restriction.

It should be emphasised that one can easily write down algebraic conditions for a pure state to be m-separable.
However, the characterisation of Theorem [[ILI] will turn out to provide a useful starting point for making qubit
invariants. It is also economical, in the sense that the vanishing of the ¢’s gives the right number of equations to
define the subspace of w-separable normalised states. Indeed, the (real parameter) dimension of this subspace is

A=Y (2d|’”| - 2) ,

the expression in brackets counting the real and imaginary parts of each coefficient of |1),,, with 2 subtracted for
normalisation and phase invariance. On the other hand, the number N, of index sets that split 7 is

N, = (d”—1)—z(d"”| —1),

this being the total number of non-empty subsets of {1,...,n} minus those that do not split 7, i.e. those where the
1-indices lie wholly within some 7;. But the total dimension of normalised states is 2d™ — 2 and, as each equation
¢iy..i, = 0 contributes two constraints from the vanishing of its real and imaginary parts, we require

dr = (2d" — 2) — 2N,

which is readily seen to hold.



IV. INVARIANTS FOR N-QUBIT STATES

From now on we restrict attention to qubit states. We are interested in polynomial invariants of the action of local
unitaries, which we take to be the group SU(2)" x U(1). Thus, given a state |¢) = > ; ; ai, ., |i1...in), we seek
real-valued polynomials I(|¢))) in the coefficients a;, . ;, and their complex conjugates a;,

N coiip

1(gl¥)) = I(|)), (15)

for any g € SU(2)" x U(1). Equivalently, we can express the group action on the ith copy of SU(2) by

satisfying

Pi(9)ajs. jijn = Zghk Ay kigins (16)

and extend this to any monomial m = H];:l Wjorodon DY pi(g)m =TI (pi(9)aj, ,..j,..)- We then require the poly-
nomial I to be invariant under p;(g) for all i and g € SU(2) as well as invariant under phase changes introduced by
U(1).

The cumulant ¢;, . ;, can be made into a polynomial d;, ;, by putting

diy i, =AY 0Ciy i (17)

where 60 is the the number of 1’s in the set 41 ...4,. This is a homogeneous polynomial of degree # in the a’s. For
instance, from (1) we have di; = a%ocll = aj1ap0 — a10ap1- In general, we have the following formula for d;, ;. Let
S = {kliy = 1}, so |S| = 0 is the degree of d;, _;,. If A C S let as denote a;,. ;, where jy =1if k€ Aand jp, =0
otherwise. Then

||

Z DI (J| — 1)lafy ‘“'Ham, (18)

where the sum is over all partitions 7 = {71,..., 7} of S, |7| being the number of subsets in the partition.
The action of local unitaries on dy; is given by

pi(g)dir = Adyy, (19)

for i = 1,2, where A = detg. To remove the dependence on the phase A, i.e. to get invariance under the action of
U(1), we take

Iy = |di |- (20)

This gives us a local unitary invariant, and there is just one such invariant for normalised 2-qubit states. The
transformation of cumulants for three or more qubits is more complicated (Theorem [V.6)). However, we can always
get an invariant by integrating the squared modulus of d;, . ;, over the group SU(2)", and this prompts the following:

Definition IV.1.

L. ., = vn,e/ 1p1(91) - - - pn(gn)diy i, |*dgi - . . dgn. (21)
sU(@2)m

Here the integral is over the Haar measure, and the constant factor v, = (0 + 1)"~%(0 — 1)? is introduced for later
convenience.

We now explore the properties of these invariants. First, we note that we can give a more satisfying, basis inde-
pendent, version of Theorem [TL.T}

Theorem IV.2 (Separability criterion). An n-qubit state 1) is w-separable if and only if I;, . ;, = 0 whenever iy ...i,
splits .

Proof. Suppose |1)) is m-separable, so |¢) = @ [¢))x,. If ap..o # 0, Theorem [Tl says that ¢;,.;, = 0 and hence
diy i, = 0. If ag. o = 0, define |¢), = Q(U)r; +2]0...0)x,). If & £ 0, ag..0 # 0, so d;,..;, = 0 for this state.
By continuity, d;,. ;. = 0 for & = 0, i.e. for the original |¢)). Thus I;, ; = 0. Conversely, if I;,. ;. = 0, then
di,. i, (g)) = 0 for all g, and for some g we must have ag._g # 0, so Theorem [[TL1] can be applied. O



Next we define the action of elements g € SU(2) on our cumulant polynomials. We will need some notation.
Definition IV.3. Define S; by

Siay, 05,0, = Q11150 (22)
Siar, .. 1,..0, = 0. (23)

Now, given a monomial m = szl @iy ,..in., Of degree 8, define R; . to be the coefficient of z* in [[(2+42Si)ai, ,..q, -
Extend this definition by linearity to any homogeneous polynomial of degree 6.

For instance, for # = 3 we have
'Rmm = (Sl]lﬂ + 1181-11 + ﬂ]lSl) m.

Note that, by virtue of the symmetry, this definition does not depend on the order of the a’s in m. We can think of
Ri.r as being like a raising operator (hence the ‘R’). For example

R3,0d110 = 1102000 — 1000010, (24)
R3,1d110 = @1110000 T ¢110G001 — ¢1014010 — G1000011, (25)
R3,2d110 = @111G001 — @1010011, (26)

Lemma IV .4. Ifl; =1 and at least one other index in dj, . 4, s 1, then Riodi,..1,, = Rio—1di,..1,, =0.

n

Proof. Writing d for dy,..i,, Ried = 0 because we cannot add 6 1’s to the  — 1 a’s that originally had zeros in
position i. R;g_1d has 1’s at position 7 in every a, so we can write R; g_1d = d(|¢)), where |[¢) is a state with

ary. 0,1, = Qiy..1,..1,- This means that |¢)) factorises as (%) @ |)n—i. We now invoke Theorem [V.2] since
{l1,...,1,} splits the partition {i}, {N —i}. O
Lemma IV.5. If we write L;d for the result of replacing all the 1’s in position i in d by 0, and if l; = 1, then L;d = 0.
Proof. The same argument as in the proof above shows that L;d = d(|1))) where |} factorises. O
Theorem IV.6 (Action of local unitaries.). Let l; be one of the indices of dy, ..., , and let g = <Z Z) Assume
that the index set ly,...,l, contains at least two 1’s. Then if [; =0,
0
pi(g)d = Z u’"FoR R, 1, (27)
k=0
and if l; =1,
0—2
pi(g)d = A Z R "2 R, 1, (28)
k=0
where d stands for dj, ..., .
Proof. When [; =0 and m = szl Ay o fam >
0
pilgym = || (uaj, .0, + V05,1 00d00) (29)
g=1

and it is clear that the coefficient of u? is the original monomial m, and the coefficient of u?~*v* is Rikd.
When [; =1,

[%

pi(g)m = (wajp,l»»»oi---jp,n =+ Zajp,l---li»»»jp,n) H (uajq,l---oi»»»jq,n =+ vajq,l»»»li»»»jq,n) ) (30)
q=1,q9#p

where a;, , is the unique a in m that has a 1 at position i. The coefficient of zv?~! is R; g_1d, which is zero by
Lemma[[V4] and for k < 6 — 2 the coefficient of u?=¥=2v* (uz) is ¢P; xd. The coefficient of u’~!w is Ld, which is zero
by Lemma [[V.5] and for k& > 0, the coefficient of u?=* =20 (vw) is R; 41 (Ld) — Rixd = —R; gd. Since A = uz — v,
the theorem follows. O



The polynomials R; jd appearing in equations (27) and (28)) form an irreducible representation for SU(2). To see

this, let h = ( CCL Z . Then, for I; = 0, applying p;(h) to 21 gives
0 0
D u TR (pi (MR kd) = pi(h)pi(g)d = pi(gh) = _(ua +ve)’* (ub + vd)* R nd, (31)
k=0 k=0

and equating coefficients of u?~*v¥ in the left- and right-hand sides of (BI]) gives the action of h at position i on all
the polynomials R; ;d and thus defines the representation matrix, which can easily be recognised as the symmetric
representation with Young diagram (6). When [; = 1, the same argument applied to (28) shows that we obtain the
representation with Young diagram (6 — 1,1). Classically, cumulants were called “half-invariants” ﬂa, ] because, if

¢ is the classical joint cumulant in the random variables X ... X,,, then ¢ is mapped to z"c when X is transformed

by the affine map X; — 2X; +w. The equivalent of an affine map in our setting is the group of matrices ( i} 2 )

with z # 0. From Theorem [V.6] we see that the representation becomes 1-dimensional, sending d — 2%d.

Theorem IV.7 (Formula for invariants). If the index set iy, ..., i, contains at least two 1’s, then

n
— ip . . .
Iil)nwin - z : | | (akpRzpvkp) dll)“wzn
p=1

ki,..kn

(32)

Here, if i, = 0, k, ranges from 0 to 0, and agp = (k‘gp)_l. Ifi, =1, k, ranges from 0 to 6 — 2, and oz,lcp = (91;2)_1

Proof. Combining (1)) and Theorem [V.6 we get terms from [ |p;(g)d|?dg such as [ |u[*®=®)|v|?kdg|R; 1.d|?, and the
integral can be calculated by using Schur’s lemma:

_|_
(p ' ") [ uoftds = Gl [ 4240100012050 6200 gl (33)
= dim Symerq (CQ)_1<¢p,q|PSym|¢p,q> (34)
= dim Sym?*9(C?)~! (35)
=(p+qg+1)7 N (36)

Here Psym is the projector onto the symmetric representation, and |[¢p,4) is the normalised weight vector
(p;’q)fl Yoo lio()  io(ptq))s With i1 = ... =iy, = 0, ipy1 = ... = ipry = 1, and with the sum taken over all
permutations in S,1,. There are n — 6 indices 7, that are zero, where (p+ ¢+ 1) = 6+ 1, and 6 indices i, that are 1,
where (p+ ¢+ 1) = 0 — 1. These terms therefore cancel the constant v, ¢ = (60 +1)"7%(¢ — 1)? in ([ZI)), and the O‘ZI; s
come from the factor (¥ Zq) in (33)). N

There are also cross-terms in [ |p;(g)d|>dg, but these have the form [u®~*Fo*a®=Dzidg (R, ,dR; ;d), and

/U(efk)vkﬂ(efj)ﬂjdg = (Yo—kk|Vo—j,5), (37)

which vanishes for j # k since distinct weight vectors are orthogonal. O

As examples, consider the case of three qubits. From ([32]) we find
1
Lo = |Rs0di10]® + §|R3,1duo|2 + |R3,2d110/%, (38)
which is a polynomial invariant of degree 4. The terms are given explicitly by 4), 25) and (26). There are two

other 4th degree invariants, I19; and Ip1; obtained by permuting the indices. We also have

1

Iy = Z |R1,iR2,;R3 kdi11]?, (39)
i, k=0



which is of degree 6. The theorem excludes the case where there is a single 1 in the index set. For instance, we have
dioo = a100. If we apply Definition I with v, ;1 = 2", we find I1go = (¥[¢), and this result is independent of the
ordering of the indices. This holds for any n, i.e. I;gn—1 = ([2)), where 0% stands for a string of k 0’s, and again the
ordering of indices is immaterial. This invariant is often included in the list, assuming that states are not normalised.

With this assumption, there are altogether six algebraically independent invariants for three qubits ﬂE, @]
further invariant is needed in order to have a Hilbert basis [9], which has the property that every invariant can be
written as a polynomial in the basis elements. However, the seventh invariant can be expressed in terms of Sudbery’s
six if one is allowed a square root, and from the point of view of a quantum information theorist rather than an
algebraist, a complete, algebraically independent set serves to characterise the orbits.

Following ], five of Sudbery’s set of six are the second-degree polynomial J; = (¢]¢), the three fourth-degree
polynomials Jo = trp3, Js = trp3, Jy = trp? and the sixth-degree polynomial J5 = 3tr [(p1 ® p2)p12] — tr(p3) — tr(p3),
where p1 = traz|V) (Y], p2 = triz|) (Y|, p3 = trizh) (Y|, and p12 = trs|y))(]. A straightforward calculation shows
that our invariants can then be expressed in terms of these polynomials by

Lioo = Io1o = Toor = Ji,
ALy = J} + Jo — J3 — Ja,
Al = J7 + J3 — Jo — Ju,
Aloiy = J7 + Jy — Jo — J3,
61111 = 5J; — 3J1 (J2 + J3 + Ju) + 4J5.

Alternatively, they can be identified with five of the list given in ﬂﬂ] Iop1 is their Aq11, I110 is Boo2, and I117 is Cy11.

Next we consider the question of independence of the invariants. We can quickly eliminate certain types of functional
dependence by using the separability criterion, Theorem [V.2l For instance, we cannot have I119 = f(I111, T101, lo11)
for any function f because all the invariants on the right-hand side are zero for any {12}{3}-separable state, whereas
I11¢ can take a range of values according to the choice of the state. However, we cannot use the separability criterion
to rule out a relation of the form I111 = f(Io11, [101, [110), say. Our next aim is to prove that the invariants are in
fact algebraically independent, i.e. that there can be no non-trivial polynomial relation between them.

Theorem IV.8 (Algebraic independence). A polynomial relationship between the invariants I;, . ;,

§ Jk _
azl 1.0k,n 7,1 181, " Iik’l...ik,n - 07 (40)

can only hold if each y, .. 4., = 0.

Proof. Consider the neighbourhood of the fully separable state |0...0), where the a;,. ;,’s with not all i; = 0 are
small. From ([32) and (I8]) we see that the expansion of the invariants in lowest degree terms in these small variables
only has contributions from the term a;, . ;. agf}) in dj, .. ;., and from the corresponding term where operators R; i
applied to positions where the index j; = 0. Thus, assuming that the indices i1, ...,, include at least two 1’s, we
have

1

1
Ly, R %Z Z (e_zjitj>l'il...itl...itz...inu (41)

it, =0

where zj, . ;. = |aj.. ;. |2, and t; ...t,_¢ denote the positions of indices in i1,...,14, that are zero. We also have the
special case

1 1
IlO...O = E e E xil...in
11=0 i =0

Let us write I; = I10...0 — To...0, and ©1 = Z19...0 + 010...0 + - - - To...01- Then the lowest degree expansion defines an
invertible map A. For instance, for n = 3 this map is given by

Ii Lo Lo Ioi1 It

T 1 0 0 0 0
110 1 2000 0 0 0
A= 101 1 0 2000 0 0
zo11 | 1 0 0 Z000 0
111 \ 1 3Zooo  3Tooo 2Tooo  Tdoo
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This extends to a map AP°Y from polynomials in the I’s to polynomials in the ’s. Since A is invertible, the same is
true of AP°Y. If we now take the lowest degree terms in (@0), they map to a polynomial in the 2’s whose coefficients
must be zero, since the z’s are independent variables. Applying the inverse of AP°"Y, we deduce that the corresponding
coefficients in ([@Q) are zero. Looking at the next highest degree terms in ([@0), we again deduce that their coefficients
are zero. And so on for the whole I-polynomial. O

We can therefore conclude that we get 2" — n independent invariants from cumulants, namely one invariant, the
squared-amplitude, from the first-degree cumulants, and 2" —n — 1 from the second and higher degree cumulants. On
the other hand, the total number of independent invariants B] for n > 3is N; = 2"t — (3n+1). Thus asymptotically
there are N;/2 cumulant-based invariants.

V. THE HIERARCHICAL STRUCTURE OF INVARIANTS

The 3-qubit invariants Ip11, [101 and I71¢ are closely related to the 2-qubit invariant I;;. We obtain I719 from 74
by adding a ‘0’ index in the third position to I1; and twirling. More generally, we wish to make an (n + 1)-qubit
invariant from an n-qubit invariant J. Phase invariance requires every term in J to be a product of an equal number
of a’s and @’s. Given a monomial m = [[aj,. j, @k, ..k, in J, of degree 6 in the a’s and a’s, we define

mo = (6 + 1)/ pi(9) [T ajn0scgu i 0, dg. (42)
SU(2)

We refer to this process as lifting and use a subscript ‘0’ to denote a lifted index. Table [l shows lifts of I;; and I3
up to five qubits. We say that an invariant together with its lifts constitute a family.
Lifting can also be understood in terms of tracing-out operations. Let us write a mixed state of n qubits as

p= > i @i G (13)
r=1

i15eeinif1seedin

The following rules, applied to each monomial, enable one to interconvert between a pure state invariant J of degree
0 in the a’s and a’s, and a mixed state invariant J of degree 6 in the coefficients of (43):

[% 0 0
~ B 1 j{’(”.,...jg“‘)
J=Jd: e a0 — 5 D0 [la i (44)
r=1 s=1 ’

oeSe r=1
6 0 0
~ -7 =T
J—=J: ajl 7777 In Air . Qir . (45)
. ZI ..... Z;‘l 7/17“')712 .71)“'7.7:7,
r=1 r=1 r=1

Proposition V.1. If p;i(g)J = J then pi(g)Jpi(g)T = J.

Proof. The following diagram commutes

7 pi(g) J
{ 4
o i (oyCOmi
J pi(9) J

The following is immediate:

Proposition V.2.
Ty (wl) = J(1v)).
Proposition V.3. If [¢) is an n-qubit state and Jp, . p, a polynomial invariant, then
Jpl-..pkO"*’“(lz/’» = jzn...pk (trn—k|w> <¢|)=

where 0" =% means a string of (n — k) ‘07 indices, and tr,_y, means tracing out the last (n — k) systems.



Proof. Let us see how this works in a simple case. The generalisation is then straightforward. So consider the
monomial M = a;,i,aj, j, 0k, k, 01,1, Of a 4th degree 2-qubit invariant Jp,,,. Under the map ([#4) m becomes m =
1 (aklkz il glale akl]”). The monomial m lifts, by ([@2]), to

2 2112 J1J2 1112 7 J1]2

mo = (6 +1) /P3(9)%izoajljzodklkzodllzzodg (46)

in Jp,pe0(]20)) for a 3-qubit state |1)), and (6 + 1) = 3. We therefore wish to show that mg = m, where the coefficients

k1ka
a;'i?, etc., in m come from trs|t) (| This gives

m = ; (@iy i30Tk k20 + Ciyin1Ohy k1) (G 5,080,150 + Gy jo1Gl4151) (47)
+ ; (@iyin001, 150 + Wiyin1G14151) (O 5300k ka0 + gy jo1 ks k1) 5
and from (@G we have
mo = /(uaimo + vai,i,1) (UG5, jo0 + VA, ja1) (Wak, ka0 + VAE k1) (U110 + VA1 1,1).dg (48)

Comparing {T) and [{]), and using B3), B6) and @), we see that mo = m. This argument is unchanged when .J
is an n-qubit invariants (we just permute notationally more cumbersome blocks of indices). When the degree, 26, is
arbitrary, a term in m that has p 0’s in the a’s in the lifted index position occurs p!(f — p)! times in the generalisation
of [@T). With the normlising factor 1/6! from (@), we obtain the coefficient [ |u|?"|v]|??=2 of the corresponding term
in my, as given by ([@S). O

Proposition provides an alternative definition of lifting via tracing-out of subsystems. Combining this Propo-
sition with Proposition [V.2] we get

Corollary V.4. If [¢) = |u)i @ [V)n—k then
Jirapon=+(19)) = Jiy iy, (I14))-

The third, equivalent, definition of lifting comes from a technique called transvection, invented by Cayley in the
19th century heyday of invariant theory. Transvection is a useful device for generating invariants; understanding it
will enable us to interpret the 4-qubit invariants given in ﬂﬂ] in the language used here.

The fundamental form for a n-qubit state is the polynomial f in the a’s and the variables a:(()J ), a:gj ), for1<j<n
given by

f= Z @i, .. angll) . :ng) (49)
If we let g € SU(n) act on the ith index of a’s by the usual transpose action (I8) and upon the 2(?’s via the inverse,

g', then one easily checks that p(g)f = f. More generally, a covariant of weight ¢ is a polynomial p in the a’s and x’s
satisfying

pi(g)p = Alp. (50)
Given two covariants, p and ¢, we define (p, q), by (u(a)|v(a)) = p(a)v(a) for expressions in the a’s, and, for each i,
(g ) ) A E) = 0 il (51)

This is sometimes called the derivative inner product because we obtain it by setting xgi) on the lefthand side to
a/ (%c;-i) and applying these derivatives to (unchanged) z’s on the righthand side.

If p is a covariant, then (p, p) is an invariant, so any means of generating covariants also supplies us with invariants.
Transvection is just such a means. Given two covariants, p(x 5 )) q(y; (@ )) define the transvectant by

o a 0 o 0
(P, @)™ = Qi . Qi (pg) } where X = G~ G5 @ (52)
Y= Oxy’ Oyp O0xy’ Oy,

The vertical bar indicates that, after applying the differential operators ;, we change the y’s to z’s, so (p, q)Zl

is a polynomial in a’s and x’s. A classical theorem ﬂE asserts that, for any binary indices i .. .1, (p q)t s a
covariant if p and ¢ are. Starting with the fundamental form, we can build up a wealth of covamants p and derive
invariants (p|p) from them (see Table [[)).
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TABLE I: Some 2, 3, 4, and 5-qubit invariants related by lifting.

2 qubits| 3 qubits 4 qubits 5 qubits |
I1o T100 T1000 T10000
111 I110, 1101, To11 | 11100, 11010, L0110, L1001, L0101, L0011 T11000, T10100, etc. (10)
- - G111 G11110, G11101, Giio11, Gioii, Gorinn
- I111 I1110, I1101, 11011, Jo111 Ii1100, 11010, etc. (10)
- Haaoo Ha220, Ha202, Ha022, Ho222 Ha2200, H22020, etc. (10)

TABLE II: Sixteen of the nineteen four-qubit invariants in transvectant notation.

Invariants | Corresponding covariants | number | degree |

T1000 f 1 2
G (f, £yt 1 1
T1100 (f, f)r1o 6 1
Tiito (f, (f, f)1100y0010 4 6
Hozoo | (f, (f, (f, f)1100)0010)1110 4 3

Example V.5. For two-qubit states, f = Zaijxgl)x?). Take p = (f, f)'*. Then p = dy1 and (p|p) = |d11|*> = I11.
For three-qubit states, [ = Zaijkxz(-l)x?):c;f). Take 1110 = (f, £)1°. Applying (53) we get

n10 = (f, )M = diro (@) + Rapdino (@) 28Y) + R adiro (21?2,
Using the derivative formula for the inner product {Z1l) we find that (t110]t110) = 41110-

More generally, we have the following result:

Theorem V.6. Let

ot = (f, (fy- - (f, fY10-0)00L-0 300107
Then

<L1k0n—k leon—k> = gllkon—k,

where & = 4((k — 2))* (k)" —F.

Proof. Consider first the terms in t1xgn—x where the subscript in every z is 0.The first transvectant step, (f, f)109,

yields terms

3) (3
> (1000 Q0055 . jn — Q10450 AOLjs. .51 o2l (53)
i3...0n3J3.-Jn
If k = 2, the restriction to z¢’s means that we get
2
3
Lll(O”*Z)lmo = d/ll(O"*?) (CL‘E) ) .. xén)) .

If k > 2, at the next transvectant step we set the 2’s in (B3) to y’s, multiply by the fundamental form f and apply
Q3 to get

" y—T

1 3) (3
Q3 Z akl...an;(ﬁ) cee xé") Z (allig...inaoﬂjg...jn - alOig...ina()ljg...jn) ygg)ylgs,) .- yf:)ygf)
k1...kn

93...0niJ1---Jn
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If we are restricted to xg’s, we must have k1 = ko = 0 since no further € operations are applied in these index positions
and so these z’s will be unchanged. Only certain sets of indices are consistent with a yo remaining after applying 3

to 20y y: namely (1) ks = 0,43 =1, j3 = 0; (2) ks = 0,43 = 0, js = 1; (3) k3 = 1, i3 = 0, j = 0. The result of
this operation is of the form

Y TTE RN CRCRONC RN )

a2 In
i,jk

where «; ji, Bk are terms in the a’s with compound indices ¢ = {i4 ...y}, etc., and «; ;i comes from the conditions
(1) and (2) above on index sets:

Q4 gk = aOOOk4...knR3,1 [a110i4...ina000j4...jn — A010i4...in G100j4...jn] )
whereas from condition (3) we get
ﬁi,j,k = A001ky...ka [a110i4...in A000j4... — a010i4...ina100j4...jn] .

If £ = 3 this simplifies to

3
L111(07l*3)|m0 - I:a,ooo(on—S)Rgﬁ1d110(0n—3) - 2a001(0n—3)d110(07173)} (Igl)xgz)xé3)) (164) e :Zj‘gn‘)) . (54)
Using (8], a straightforward calculation shows that

di11(0n-3) = aooo(on-3)R3,1d110(0n~3) — 2a001(0n-3)d110(07~3)- (55)

Repeating the above argument, we have
k—2 K
Likgn—k |z = dirgn—k (argl) . .xék)) (:E(()k+l) . xén)) ) (56)

and the generalisation of (B3)) is
dlkon—k = G/Oan71d1k—10n—k+1 - 2a0k—110n—k+1 dlk—lon—k+l. (57)

This last equation has a straightforward interpretation. When evaluating f(v) by the Taylor series (), the coefficient
of, say, e; can be obtained by differentiating a%lf(zb) and setting e; = 0, for all 7. Writing ¢ = a+ r, where a = ag. . 9,
we find

ei=0 = f'(a+ T)iT ei=0 = f'(a)aro..0 = f'(a)R1,1a.

(a+7) Ber

90,

We can interpret the last expression above as the formal derivative of f(1)) using the raising operator R; 1, and
similarly the coefficient of any product e;, ...e;, is the result of formal derivatives by R, 1...R;, 1. This can indeed
be taken as the definition of the expansion of f(1), as in ﬂ] For the log function, the coefficient of ej...ex_1 is
c1r-1gn—k+1, and the coeflicient of e; . .. eg, namely cjrgn—+ is obtained by applying Ry 1 to ¢ir-1gn-r+1. Differentiating
log(v) and using cjagn—a = dyagn-a(aon )~ gives (&1).

From (B6) and the definition of the inner product (EII) we find that

<(L1’c0n*k|wo) | (leO"*klﬂm» = §|d1k0n*k|27

where ¢ is the constant given in the Proposition. With the restriction to xo’s we therefore get, up to the factor &,
the term in the formula for I1xgn-r (Theorem [V.7)) where k, = 0 for all p. To complete the proof, one observes that,
(4)

allowing k x;”’s introduces k 1’s into the a’s at position ¢, and is equivalent to applying R;, x, to dixgn-+. The values

. ip’
of the coeflicients a;j; are given by the derivative inner product.
O

This enables us to recognise some of the four-qubit invariants in ﬂﬂ] Up to a constant factor, our Ii0p0, 11100
and 11110 correspond to their A1111, <B()022|B0022> and <01113|01113>, respectively. We use different letters for the
invariants, and our subscripts indicate the total number of 1’s at a given position in successive transvection operations;
see Table [l

We now come to the third way of defining the lift. Suppose that a covariant p;, . ;, is derived by some sequence of
transvectant operations. Define its ¢th lift p;, 0,1, by adding an index position in the ¢th position in the ground
form, and applying the same transvectant operations, but with an ‘0’ added to the transvectant indices in the ith
position.
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Proposition V.7. If P, 1. = (pi,..1, |p1,..1,,) s the invariant derived from the covariant py, ., , then the ith lift of

Py, .., is given by Py, 0,1, = (Piy...0;..1, D1y .04 1) -

Proof. Because there is a 0 at position ¢ in the transvectant indices, §2; is never applied during the transvection
operations. This means that we get all possible products of :1:(()1) and argz), and the terms with k :zrgz) ’s correspond to
products of a’s with k 1’s in index position 1. O

As an example, consider the invariant of highest degree for 3-qubits in [17]. It is given (in our notation) by
Hazo = (haza|haze), where

h222 _ (f, (f, (f, f)llO)OOl)lll' (58)

Equivalently, Haoo = |Det(|))[?, where Det(|1))) = @;jkair jrmQnpk’ Gn/prm €iir €57 €kk? Emm? €nn €ppr 15 the hyperdetermi-
nant [18]. Haoy is Is in Eg], and is closely related to the 3-tangle [4], 7 = 2|Det(])))|. From (G8), the lift of hay at
position 4 is haogo = (f, (f, (f, f)109)0010) 1110 “and therefore by Proposition V7 Hagoo = (hagao|haaoo) is the lift at
position 4 of H222. In the terminology of ], H222 is DOOO and HQQQO is <D0004|D0004>.

Another example is obtained by putting gi111 = (f, f)'!! and setting Gi111 = {(g1111|g1111). This 4th degree
invariant can be written

G1111 = QooooQ1111 — (a1000a0111 + permutations ) + (a1100a0011 + permutations )

In general, for each k, we add a new 2k-party invariant Gi2x = (gy2x|g12+ ), where g2 = (f, f)lzk. Together with all
its lifts, the G family comprises (5) + (%) + (3) + ... = 2"~ ! — 1 independent invariants of degree 4 for an n-qubit
system. This coincides with the family By in

VI. CONCLUSIONS

We have arrived at a view of local unitary invariants of qubit states which can be summarised as follows:

e Half of them (in the limit of large n) can be taken to be twirled cumulants. Thus for n = 3 the cumulants
T100, 1110 and I71; correspond to Aj11, Booe and Ci11, respectively, in ﬂﬂ], which, together with permutations,
account for 5 of the 6 invariants; and for n =4, I000, I1100 and I1119 correspond to their Aj111, (Boo22|Booz2z2)
and (C1113]|C1113), respectively, which, with permutations, gives 11 of the total of 19.

e All the invariants come in families, related by a tracing operation (Proposition [V.3)) that I call a lift and
indicate by a zero in the index string. The cumulant family is obtained this way, from Iy, I11, 1111, etc., by
lifting. A further example is the hyperdeterminant family: for n = 3, Dggo in the notation in ﬂﬂ] is the 3-
tangle (the modulus-squared of the hyperdeterminant), which I denote by Haaz, and their (Dgoos|Dogos) and its
permutations are lifted 3-tangles, Ha29¢ etc. in my notation. These families may overlap. For instance, I1111
is not included in the list of primary invariants in ﬂﬂ], and is therefore algebraically dependent on the lifted
3-tangles and others in their list.

e Many of the invariants are closely related to separability of states. Thus, the vanishing of members of the
cumulant family can be used to characterise multipartite separability (see Theorem [[V.2]). The hyperdetermi-
nant, in its guise as the 3-tangle, is of course also an entanglement measure. Unlike the cumulant invariants,
the 3-tangle measures entanglement of mixed states, whereas the mixed state equivalent of cumulants, IA, only
measure correlation in mixed states.

We can add a number of conjectures to this list:

e [1; attains its maximum of 1/4 on Bell states, and I110 is maximised by ¥ ® |0), with ¥ a Bell state. We can
regard this as an example of monogamy of entanglement @, ], with 119 detecting entanglement between the
first two systems, which achieves its maximum when they are unentangled with the third system. I conjecture
that I1xq is maximised by states of the form |u) ® |0), where the k-qubit state |x) maximises I1x. Equivalently,

I+ (p) is maximised when p is pure.

e For 3 qubits, the highest degree invariant in [17, 23] is Hag, (equal to 172, where 7 is the 3-tangle [4]) is
derived from the covariant ¢111 underlying I111 by applying what one could call the total transvectant operation
hage = (f,1111)*!!, with an Q operation at each index position. Can a highest degree invariant always be derived
this way, by hgn = (f, 11 )Y ? In [17], the highest degree invariant for 4-qubits is defined by (f, (f, to111)*0+1)100,
but we can replace this by Hageo to obtain an algebraically independent set (though not necessarily a Hilbert
basis). I therefore conjecture that Hon constitute another family.
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How far can the ideas here can be generalised beyond pure qubit states? The cumulant-based invariants can be
applied to mixed states via the map ([@4]). However, they then constitute only an exponentially small fraction of the
estimated 22" — 3n + 1 invariants for mixed qubit states ﬂﬂ], and furthermore Theorem [IT1] tells us only about
correlation rather than mixed-state separability. The results also fail to generalise for pure states where the local
dimension exceeds two. We can construct invariants, and Theorem [[IT.11holds, but the invariants are not algebraically
independent. This is seen even for two qutrits, where we have four members of the cumulant family, namely 111, I12,
I51 and Is5, whereas there are only two independent invariants HE] Since four polynomial equations is the correct
number to characterise separability, the simple relationship between invariants and separability cannot hold for d > 2.
Nonetheless the basic concept of lifts and families still applies in all these wider contexts.
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VIII. APPENDIX
A. An alternative cumulant-based invariant

There is a very different way of relating cumulants and invariants, due to Zhou et al. ﬂﬂ] Given an n-party mixed
state p, one defines its cumulant by analogy with (8] as

I~

po= S (=D (xl = ! Q) o, (59)
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where pr, is the result of tracing out from p all systems apart from those with labels in ;. For instance, for three
systems

pe=p—(p1® p2s + p2 @ p13 + p3 @ p12) + 2p1 @ p2 ® p3.

The cumulant operator given by (B9) is not in general a state, but Zhou et al. propose M (p) = %tr| pe| as a measure of

correlation of the mixed state p. It is manifestly invariant under local unitaries, and, because of the general property
cumulants have of vanishing on products, M (p) = 0 whenever p = ps ® pp. For pure states, this means it vanishes
when states are separable.

It therefore seems to have formal similarities to our cumulant-based invariants, and one can carry this further by
defining, in line with Proposition [V.3] the lift of M to be M (tr|i){(1)|). We can in fact adopt parallel notation to the
I'’s, writing, for a 3-qubit state for example, Mi11(|0)) = 2tr| ([¥)(¥]), |, Mi1o(|)) = Ftr| (trs[e)(¢]), |, and so on.
Then M;, .4, (J¥)) = 0 for any m-separable |¢)) where {i; ..., } splits 7. Furthermore, for 3-qubit states M111(|1)) =0
is sufficient for separability of |¢) ([21], Theorem 3), and the same is true if 11 (|¢))) = 0.

These similarities prompt the question of whether there is a functional connection. Can one write M;, , (|¢)) =
F(IL;, i (|Y))), for some function F? For 2-qubit states, My; = I11 + /I;1. However, there is only one 2-qubit
invariant for normalised states, so a functional relationship here is unsurprising. For 3-qubit states of the form
|t)) = a|000) + b|111) one finds

My = 6110 /T— ALy +2y/ T + Ty, — AT, (60)

whereas, for states of the form |¢) = a|100) + b/010) + ¢|001)
I 1
(M — —5)* = ~I111 = 0. (61)

Since ([60) and (E1)) do not define the same function of 111, M71; must depend on other invariants besides I71;.
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