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We study simultaneous price drops of real stocks and show that for high drop thresholds they
follow a power-law distribution. To reproduce these collective downturns, we propose a self-organized
model of cascade spreading based on a probabilistic response of the system elements to stress
conditions. This model is solvable using the theory of branching processes and the mean-field
approximation. For a wide range of parameters, the system is in a critical state and displays
a power-law cascade-size distribution similar to the empirically observed one. We further generalize
the model to reproduce volatility clustering and other observed properties of real stocks.

I. INTRODUCTION

Cascade spreading is an important emergent prop-
erty of various complex systems. Real life examples
of cascades are numerous and range from infrastruc-
ture failures and epidemics to traffic jams and cultural
fads [1, 2]. Theoretical models of cascades usually as-
sume that agents can be in one of two states (healthy
or failed) and an agent’s failure puts some stress on its
neighbors which may consequently fail too. See [3] for a
recent survey of this field offering a novel unifying view.

In this paper we focus on cascades in economic sys-
tems which can be identified with stock prices suddenly
dropping in a major market crash [4] or with companies
going bankrupt simultaneously and leading to global re-
cession [5]. Corresponding theoretical models are based
on shortage and bankruptcy propagation in production
networks [6], default propagation in credit networks [7, 8],
interaction of firms through one monopolistic bank [9]
or in a complex credit network economy [10], and herd-
ing behavior of traders [11, 12]. While these models
help us to understand cascade processes in economic sys-
tems, they are mostly too involved to allow for analytical
solutions—their study relies on numeric simulations and
agent-based modeling [13].

A simpler point of view on cascade phenomena is of-
fered by the concept of self-organized criticality (SOC)
which has had a deep impact on the science of complexity.
First introduced more than twenty years ago to explain
the ubiquitous 1/f noise [14], it caused a blossoming of
toy models, computer simulations, and real life experi-
ments [15]. The analytical techniques employed include
scaling arguments [16], mean-field theories [17], renor-
malization methods [18, 19], and rigorous algebraical
techniques [20].

SOC is a mechanism which explains the emergence
of complex behavior in many diverse real world sys-
tems [21, 22]. The generic behavior of SOC models is: (a)
they evolve so that they always stay close to the critical
point, (b) long periods of robustness and moderate activ-
ity are interrupted by sudden breakdowns. This indeed
qualitatively resembles “stock markets which expand and
grow on relatively long time scales but contract in stock-
market crashes on relatively short time scales” [15] and

“stock crashes caused by the slow buildup of long-range
correlation leading to a global cooperative behavior of
the market eventually ending into a collapse in a short
time interval” [4]. This similarity provides motivation for
the present study.
We begin our work with an empirical investigation of

simultaneous price drops of real stocks and show that
the size distribution of observed events is broad (for high
drop thresholds it follows a power-law distribution). This
observation confirms that simultaneous stock downturns
are a collective phenomenon. We propose a dynami-
cal model which for a wide range of parameters self-
organizes into a critical state. Unlike most SOC models,
our model assumes a probabilistic response mechanism
where a node has only a certain probability of reacting to
the current stress conditions. The basic idea behind mod-
eling simultaneous stock downturns with cascades is that
decline of a single stock may provoke investors’ reactions
which consequently may cause other stocks to decline
and the “infection” to spread. The key premise is that
while failed nodes become significantly more resistant in
the next time step, healthy nodes become slightly less
resistant. This close parallel with the slow growth/fast
decay picture described above is further supported by our
analysis of empirical data which shows that majority of
stocks behave in this way.
The basic proposed model has the advantage of be-

ing simple, analytically solvable in some cases, and eas-
ily generalizable to more complicated settings. We an-
alyze it using the formalism of branching processes, the
mean-field approximation and, for complex topologies of
nodes’ interactions, using numerical simulations. Ob-
tained cascade-size distributions exhibit a close similarity
to our empirical observations. Introduction of memory
within the model allows us to reproduce other empirically
observed features, such as volatility clustering, though at
the cost of analytical tractability. We conclude our study
with a discussion of further model’s generalizations and
possible areas of application.

II. EMPIRICAL DATA

Here we investigate co-occurring price movements of
real stocks. Adopting the vocabulary of cascade models,
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FIG. 1. The empirical size distribution observed with real
stock prices for thresholds H = 0% and H = 10%.

we say that a stock fails when the relative loss of its price
over a given time interval ∆t exceeds a certain threshold
H . Denoting the price of stock i at time t as pi(t), its fail-
ure occurs when [pi(t)−pi(t+∆t)]/pi(t) > H . The num-
ber of stocks failing at time t, nF (t), is a direct analog of
the cascade size in a model of cascade spreading. As the
input data we use daily prices (hence ∆t = 1day) of 500
stocks from the standard U.S. index S&P 500 (this data
is freely available at, for example, finance.yahoo.com).
To achieve a fixed system size, we consider only those 332
companies which are in the stock market since the begin-
ning of 1992 and use their prices during the 18-years long
period ending in May 2010 for our analysis.

The empirical distribution of failure sizes is shown in
Fig. 1 for H = 0% and H = 10%. We see that for this
large value of H (which is in line with the notion of stock
failures), the observed size distribution has a power-
law shape. Using the methodology described in [23],
we obtained the power-law exponent 2.19 ± 0.05 with
the lower bound for the power-law behavior nmin = 3.
The corresponding p-value (obtained using the standard
Kolmogorov-Smirnov statistic) is 0.92, which confirms
that the data is consistent with the hypothesis of a
power-law distribution. Similar results are obtained also
for other threshold values so long as H & 8%. When
H . 8%, the resulting size distributions are broad but
probably not power laws. Finally, when H = 0% (i.e.,
any price drop is interpreted as a failure), the size dis-
tribution is roughly symmetric around the value corre-
sponding to one half of the system size (see Fig. 1).

The power-law shape itself suggests that big stock
downturns occurring on the same day are rather a col-
lective phenomenon than independent events. This hy-
pothesis is further supported by the average correlation of
simultaneously failing stocks, 0.35 (again including only
events with at least three simultaneously failing stocks),
which is significantly higher than the overall average
stock correlation, 0.25. Another sign of a strong con-
nection among simultaneously failing stocks comes from

their known division to ten different industrial sectors.
The effective number of sectors participating in a cas-
cade is defined as

e =

( 10
∑

i=1

r2i

)−1

where ri is the share of sector i in the cascade and
∑10

i=1 ri = 1. By averaging this quantity over all cas-
cades of a given size S, we obtain e(S). This number can
be compared with the effective number of sectors cor-
responding to selecting failed stocks at random, e′(S).
The analysis of stock prices shows that for any S > 3,
e(S) is significantly smaller than e′(S) which implies that
simultaneous stock failures preferentially affect strongly
connected stocks in one sector or in a small number of
sectors.
The second part of our analysis of empirical data

is devoted to time correlations of consecutive failures.
The autocorrelation of the number of failing stocks with
the time lag one day C(nF (t), nF (t + 1)) ≈ 0.15 is
comparable with the autocorrelation of absolute returns
C(|r(t)|, |r(t + 1)|) ≈ 0.25. Both values are signs of
volatility clustering which is known to appear in finan-
cial data [24]. We further estimate conditional failure
probabilities for individual stocks: for example, P (F |N)
denotes stock’s failure probability given that this stock
didn’t fail in the previous time step. When the results
are averaged over all stocks, we obtain P (F |F ) = 0.039
which is much higher than the overall failure probability
P (F ) = 0.003—this is another sign of volatility clustering
in our data. On the level of individual stocks, however,
62% of all stocks with at least three failures strongly sat-
isfy the inequality P (N |F ) > P (N) which is equivalent
to P (F |F ) < P (F ) (because P (F |F ) + P (N |F ) = 1).
(By strong satisfying we mean that the difference of the
two probabilities is greater than the sum of their uncer-
tainties.) We see that despite volatility clustering in the
data, most stocks are more “resistant” to failures after
they have just undergone one. For the remaining stocks,
probabilities P (N |F ) and P (N) either differ less than the
sum of values’ uncertainties (for 14% of stocks) or even
strongly satisfy the opposite inequality P (N |F ) < P (N),
with corresponding values of P (F |F ) often as high as
0.30 (24% of stocks). We can conclude that while after
a failure, most stocks become more resistant to another
failure, there is a fraction of stocks which are prone to
consecutive failures.

III. BASIC MODEL AND ITS MEAN-FIELD

SOLUTION

In this section we present a simple model which is
amenable for analytical treatment and qualitatively re-
produces some of the features observed in empirical data.
In its basic formulation, this model is particularly suit-
able for stocks that, as discussed in the previous section,
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after a failure become more robust. Generalization of
the model aiming at reproducing other observed features
(volatility clustering, for example) is discussed in Sec-
tion IV.
Consider a system of N nodes where node i (i =

1, . . . , N) has two possible states: failed (i ∈ F) and
healthy (i 6∈ F). With each node i we further associate
fragility fi ∈ [0, 1] which measures how this node reacts
to failures of its neighbors (the higher the fragility, the
more likely is the node to follow a neighbor’s failure).
The dynamics of the model is governed by the following
simple rules. (i) In each time step, the first failed node
(“trigger”) is chosen at random and may induce failures
of other nodes. (ii) If a neighbor of node i fails, node i
follows it with the probability fi. The cascade of failures
propagates until all remaining nodes resist the damage.
(iii) At the end of the time step, fragilities of all nodes
are updated according to

fi(t+ 1) =
{ λfi(t) i ∈ F
(1 + β)fi(t) i 6∈ F (1)

where 0 < β ≪ 1 and λ ∈ (0, 1) are parameters of
the model (in effect, failed nodes become less fragile and
healthy nodes become slightly more fragile). All values
fi(t+1) > 1 are truncated to 1 (this may occur when the
parameter β is large). After this update is finished, all
nodes are again marked as healthy, the current time step
ends and the new one begins with point (i). Note that un-
like some other models of cascade spreading, failed nodes
are not removed from the system in our case. If a long
enough equilibration period is applied before measuring
the system behavior, the initial fragility values fi(0) are
of little importance (see Section III E for a detailed dis-
cussion); we set them randomly in the range (0; 1) in all
our simulations (unless stated otherwise).
According to the rules above, when n neighbors of node

i fail, node i resists with the probability (1−fi)
n and fails

with the complementary probability

PF (fi, n) = 1− (1− fi)
n. (2)

This response to failures is “path-independent” in some
sense: the probability that a node resists failure of n of
its neighbors, (1− fi)

n, is the same as the probability of
resisting two consequent waves of failures of x and n− x
neighboring nodes, (1− fi)

x(1 − fi)
n−x.

We simplify the system by assuming that interactions
of all nodes are equally strong (the general case will be
studied in Section IIID). This renders the notion of
“node’s neighbors” superfluous because each node’s fail-
ure affects all remaining healthy nodes in the system.
Now assume that after the initial failed node is chosen,
n1 nodes respond to this failure and fail too. Each of the
remaining N − n0 − n1 nodes (here n0 = 1 is the ini-
tial number of failed nodes) then has some n1-dependent
failure probability which results in n2 new failures, and
so on, until in iteration m, nm = 0 is achieved. The cas-
cade size is then defined as the total number of failures,

0 0.01 0.02
β

0

0.005

0.010

PF 0 0.1 0.2
β

0

0.05 PF

FIG. 2. Average failure probability PF : analytical (solid black
line), approximate analytical (dashed blue line) and numerical
(symbols) results for N = 103, λ = 0.1, averaged over 106

time steps. The vertical dotted line indicates β0 obtained
with Eq. (5).

S = n0 + · · ·+ nm, and node fragilities are consequently
updated according to Eq. (1). Since cascade sizes are
limited by the system size, S ≤ N .
The dynamics of the system, based on a failure prop-

agation process and fragility updating, is fully contained
in the three described simple rules. In the following para-
graphs we shall study when these rules drive the system
to the critical point and how this self-organized criticality
manifests itself in the distribution of cascade sizes P (S).

A. Failure probability

Let PF be the average failure probability of a given
node in one time step (or, equivalently, the average frac-
tion of failed nodes in one time step). Assuming that teq
is some sufficiently long time after which the system is
equilibrated (we use teq = 104 for all our simulations),
fragility values averaged over time, 〈fi〉, do not evolve
anymore. All nodes interact equally strongly, hence 〈fi〉
is independent of i and it can be replaced with 〈f〉. Since
in a large number of time steps T each node undergoes
PFT failures and (1−PF )T non-failures, Eq. (1) implies

〈f(teq + T )〉 = 〈f(teq)〉λPF T (1 + β)(1−PF )T . (3)

Using the equilibrium condition 〈f(teq + T )〉 = 〈f(teq)〉,
we can solve this equation with respect to PF to get

PF (β, λ) = − ln(1 + β)

ln λ
1+β

≈ − β

lnλ
(4)

where the approximate result is valid for β ≪ 1 (see
Fig. 2 for a comparison of these results with numerical
simulations).
A node may fail because it is selected as the first failed

node (with probability 1/N) or due to failure propagation



4

(with probability PP ); PF thus can be written as PF =
1/N + PP . Since the value of PF depends solely on β
and λ, PP = PF − 1/N may be negative for a small
system which is, of course, impossible in practice. This
situation occurs when for given λ,N , the value of β is
smaller than a certain threshold β0 and hence it does
not suffice to compensate for the fragility decay due to
λ. Eq. (3) then has only the trivial solution 〈f〉 = 0 and
hence PF (β, λ) = 1/N (failures do not spread). When
β is small, the approximate form of PF can be used to
solve this equation with respect to β and we get

β0 ≈ − lnλ

N
(5)

which agrees with numerical simulations (see Fig. 2).
Note that if the number of initial failed nodes grows with
the system size as wN (w ≪ 1), we get β0 ≈ −w lnλ
which is independent of N .
When model parameters are set to extreme values (for

example, N = 103, β = 103, λ = 10−3), the system
exhibits unusual modes of behavior where active turns
(with nearly all nodes failed) alternate with calm turns
(with nearly all nodes healthy). While Eq. (4) holds also
in such conditions, our further analysis focuses on β ≪ 1
which renders more realistic behavior.

B. Average fragility

When nfi ≪ 1, Eq. (2) can be approximated with
PF (fi, n) = nfi which can be interpreted as indepen-
dence of stress inflicted by n individual failed nodes. This
further means that each failed node has its failing descen-
dants independently of other failed nodes and hence one
can use the theory of branching processes [25] to describe
the cascade spreading. Note that by use of this theory
we implicitly assume that the system size is infinite. For
a discussion of the finite-size effects on the size of an epi-
demic outbreak see [26].
As already mentioned, when interactions of all nodes

are equal, 〈fi〉 is independent of i. If we further neglect
fluctuations of fi, then all nodes have identical fragility
〈f〉. This is a mean-field-like approximation which re-
places the exact cascade spreading with cascade spread-
ing in a homogeneous averaged medium. Since the num-
ber of direct descendants now follows a simple binomial
distribution with mean N〈f〉, we can use elementary re-
sults of branching process theory to express the average
cascade size (the total progeny) as 〈S〉 = 1/(1 − N〈f〉).
Further, using 〈S〉 = NPF (β, λ) we obtain the average
fragility

〈f〉 = 1

N

(

1− ln
[

(1 + β)/λ
]

N ln(1 + β)

)

. (6)

Since β > 0 and λ < 1, 〈f〉 is always less than 1/N . Com-
parison with numerical simulations (not shown) confirms
that Eq. (6) is valid only for β ≪ 1.

C. Cascade size distribution

The size distribution for a critical branching process is
known to have the power-law form P (S) ∼ S−3/2 (see,
for example, [27]). However, critical cascades represent
only one of possible modes of model’s behavior and hence
we briefly discuss the general size distribution P (S|β, λ).
According to a theorem from [28], if the generating func-
tion for the number of direct descendants d is π(x), the
total progeny of the resulting branching process Y has
the distribution

P (Y |n0) =
n0

Y
p
(Y )
Y−n0

(7)

where p
(b)
a is defined using

[π(x)]b = p
(b)
0 + p

(b)
1 x+ . . . (8)

and n0 is the number of ancestors (in our case, the num-
ber of initial failed nodes). Since d obeys a binomial
distribution its generating function is simply π(x) =
(1− 〈f〉+ 〈f〉x)N and we get

P (S|β, λ) = 1

S

(

NS

S − 1

)

〈f〉S−1
(

1− 〈f〉
)NS−S+1

(9)

where we used n0 = 1 and 〈f〉 is given by Eq. (6). Note
that the resulting probability is positive for S > N which
contradicts the model assumptions (each node fails at
most once in a given turn). This is a direct consequence
of using the theory of branching processes which assumes
that the system size is infinite. This problem is of little
importance for small values of β when the obtained values
of P (S) are negligible for S > N .
When 1 ≪ S ≪ N , Eq. (9) can be approximated with

P (S|β, λ) = (N〈f〉)S−1eS(1−N〈f〉)

√
2πS3/2

. (10)

According to Eq. (6), limN→∞ N〈f〉 = 1 for any given
β, λ and hence in the limit of large system size is
P (S|β, λ) ∼ S−3/2 which corresponds to the critical
branching process mentioned before. For any finite-size
system, the smaller the value of β, the larger the value of
1−N〈f〉. Consequently, the power-law scaling holds only
for S ≪ βN (this agrees with Fig. 3 where for β = 10−3,
the power-law behavior disappears at S ≈ 10). On the
other hand, the range of β and λ for which the system
self-organizes to a critical state is wide and we can say
that this is an SOC system.
A comparison of the obtained analytical results with

numerical simulations is shown in Fig. 3. The agreement
is good for small values of β (β . 0.01) and the initial
slope of the distributions (before the finite size effects be-
come apparent) is close to −3/2. Results obtained with
β = 0.001 confirm that when β is small enough, P (S)
decays faster than as a power law. When β is large, true
P (S) deviates from the analytical prediction and exhibits
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FIG. 3. Cascade size distribution: numerical results (color
lines), analytical results according to Eq. (9) (dashed lines)
and the power-law decay with exponent −3/2 (thick solid line)
for N = 104, λ = 0.1, 107 time steps, and β = 0.001 (red
line, fastest decay), β = 0.01 (green line, medium decay),
β = 0.1 (blue line, slowest decay). The analytical solution is
not plotted for β = 0.1 because it is very similar to that for
β = 0.01.

a secondary maximum at a large size value—this effect is
well visible in Fig. 3 for β = 0.1. This maximum, formally
simply a super-critical phase of the model, resembles the
so-called meaningful outliers discussed in [29]. To esti-
mate the value of β at which the secondary maximum
appears and Eq. (9) ceases to hold, we take the average
number of failures computed both from Eq. (9) and from
Eq. (4). By comparing the two results we obtain

NPF (β, λ) =

N
∑

S=1

SP (S|β, λ). (11)

When β is small, both sides of this equation depend on
β and the equality can hold. However, Eq. (10) shows
that when β is sufficiently large, the size distribution is
approximately power-law and it does not change with β
anymore. As we increase β further, the power-law dis-
tribution does not suffice to provide enough failures and
for Eq. (11) to hold, an additional contribution must ap-
pear on the rights side. The value β∗ when this happens
can be found by substituting P (S) ∼ S−3/2 on the right
side and approximating the summation with integration.
When N is large, we obtain

β∗ ≈ − lnλ

√

2

πN
(12)

which complements the previously found threshold β0

given by Eq. (5). For N = 104 and λ = 0.1, we obtain
β∗ ≈ 0.02 which agrees with our empirical observation
(β . 0.01 for Eq. (9) to hold) above.
Finally, by comparing the empirical observations pre-

sented in Fig. 1 with the obtained analytical results, we
can conclude that the presented model exhibits qualita-
tive agreement with the studied real system.

D. Generalizations

To test how robust are the obtained results, we con-
sider simple generalizations of the proposed model. First
of all, when the multiplicative fragility update rule
Eq. (1) is replaced by an additive one, the behavior of
the system does not change considerably. The second
generalization relates to the assumed even influence of a
node’s failure on all the remaining nodes. Denoting the
strength of failure propagation from node i to node j as
Ci,j , the probability that node j fails as a result of i’s
failure can be generalized to Ci,jfj. The probability that
node j fails as a result of a group F of failed nodes (given
by Eq. (2) before) generalizes to the form

PF (fj ,F) = 1−
∏

i∈F

(1 − Ci,jfj). (13)

Matrix C encodes the structure of the network of node
interactions.
When the elements Ci,j are drawn independently from

a given distribution and the system size is large, the
mean-field approximation is again appropriate to de-
scribe the system behavior and the power-law size distri-
bution with exponent 3/2 results. Similarly when C con-
tains a block structure with inter-block elements drawn
from a different distribution than intra-block elements
(this mimics the well-known sector structure of the stock
correlation matrix), the original power-law size distribu-
tion remains largely unchanged (unless either the block
division of C or one of the two probabilistic distributions
are such that they do not allow to use the mean-field ap-
proximation). Analogous behavior results from the “ran-
dom neighbor approximation” in which node’s neighbors
are chosen anew repeatedly (see [30] for this kind of anal-
ysis of a different model).
When all elements Ci,j are either zero or one, matrix C

can be represented by a network and a complex topology
of node interactions can be introduced by using some of
the standard network models [31]. We studied two dif-
ferent types of networks: the Erdös-Rényi network where
Ci,j = 1 with probability p and Ci,j = 0 otherwise and
the growing Barabási-Albert network where each new
node is attached to I old nodes. (These two kinds of net-
works are structurally very distinct as the former consists
of nodes of approximately identical degree and the lat-
ter exhibits a power-law degree distribution.) Numerical
results for both cases are shown in Fig. 4. As expected,
for the Erdös-Rényi network with p > 1/N , the size dis-
tribution exponent remains unchanged. When p < 1/N ,
the network consists of small unconnected components
and hence big cascades cannot occur. The irregular size
distribution P (S) observed for β = 5 · 10−5 is due to
topological properties of the particular network realiza-
tion where the model was simulated (i.e., positions of
respective ups and downs of the size distribution depend
on the network realization). These results agree with a
previous study of the sandpile dynamics [32] (see [33] for
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FIG. 4. The cascade size distribution on complex networks:
(a) sparse Erdös-Rényi networks with p = 5 ·10−5, 10−4, 10−3

(red, green, and blue line, respectively; the indicative thick
line has slope 1.5), (b) Barabási-Albert networks with I = 1
and I = 10 (red and blue line, respectively; the indicative
thick line has slope 1.65). Parameters of the system: N = 104,
β = 0.005, λ = 0.1, 107 time steps.

an extensive recent review of critical phenomena in com-
plex networks). By contrast, Barabási-Albert networks
yield cascade size distributions with significantly higher
exponents (approximately 1.65) which is probably due
to strong inhomogeneity of the network. When I = 1,
the size distribution deviates from a power law, probably
as a consequence of the scale-free network topology (the
same shape of the distribution is observed for different
realizations of the network).

E. Role of the initial fragility values

While it sounds plausible that due to model’s stochas-
ticity, the initial fragility values have no influence on the
equilibrium fragility distribution, the situation is in fact
more complicated. For example, a simple numerical sim-
ulation with fi(0) = 1/N for all i shows a case where:
(i) no stationary fragility distribution arises, (ii) at any
time step, only a small number of distinct fragility val-

0
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FIG. 5. Fragility distributions at different time steps (the
initial fragility values are set to 1/N , N = 104, β = 0.001,
λ = 0.1).

ues is observed (see Fig. 5). What causes the discreteness
of fragility values? Denoting the number of failing and
healthy time steps of node i as Fi and Hi, respectively,
it must hold that Fi+Hi = t where t is the current time
step. This node’s fragility now can be written as

fi(t) = fi(0)(1 + β)t
[

λ/(1 + β)
]Fi

. (14)

When all fi(0) are identical, the possible values of fi(t)
are discrete at any time step t and the ratio of neighbor-
ing possible values is (1 + β)/λ. If λ is small (as it is in
our simulations), this ratio is large and hence the number
of actually observed fragility values is small (because val-
ues much smaller or greater than the average fragility are
unlikely). Eq. (14) implies that possible fragility values
depend on t and hence there can be no stationary fragility
distribution—this is confirmed by Fig. 5 where fragility
peaks constantly shift to higher values and change their
relative heights. Interestingly, even this peculiar setting
of fi(0) does not alter the long-term model’s behavior
substantially and the aggregate quantities (such as the
average failure probability or the cascade size distribu-
tion) are similar to those found for randomized initial
fragility values before.
Differences between neighboring peaks are λ/(1 + β),

hence the time after which the fragility distribution pat-
tern repeats can be estimated as ln

[

λ/(1+β)
]

/ ln(1+β).
Since this is a typical time of fragility evolution, one
can use it also as an estimate of the initial equilibration
time Teq. For the smallest value of β in our simulations
(β = 0.005) we obtain Teq ≈ 4 600 which ex post confirms
our setting of the equilibration time to 104. Finally, note
that while the random setting of fi(0) prevents discrete
fragility values from appearing, some remnants of the
initial fragility values can be preserved by Eq. (14). To
obtain a fragility distribution truly independent of the
initial values, one has to assume annealed dynamics, i.e.
fragility updating by randomized values of β and λ.
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IV. GENERALIZED MODEL WITH PARTIAL

MEMORY

Fragility updating rules defined by Eq. (1) imply that
nodes become more robust after a failure and hence au-
tocorrelation of their failures as well as autocorrelation
of the total number of failures are negative (their mag-
nitudes depend on β and λ). As discussed in Section II,
this is true for majority of stocks but certainly not for
all of them. To allow for repeatedly failing stocks, we in-
troduce the probability α with which a failed node stays
failed also in the next time step (and consequently acts
as an additional initial failed node). This probability has
the role of partial memory in the system and, as we shall
see, gives rise to volatility clustering and other effects
observed in real financial data. Note that memory or de-
layed stress propagation are quite often part of cascade
spreading models as in, for example, [34]. In our case
it is assumed that fragilities of nodes which stay failed
due to α are not updated in the given time step (as long
as α is small, this assumption has little influence on the
results).
Since P (F ) ≪ 1, the probability of a node’s repeated

failure is now P (F |F ) ≈ α which, in combination with
the empirical results presented in Section II, allows us
to set α = 0.04. We further choose β = 0.01 and
λ = 0.1 which best correspond to the critical regime in
Fig. 3. Using this setting we numerically obtain con-
ditional probabilities consistent with those observed in
the empirical data: P (F |F ) = 0.041 (empirical value
is 0.039), P (F ) = 0.004 (empirical value is 0.003) and
P (F |N) = 0.004 (empirical value is 0.003). As long as
we stay in the critical regime, these values depend on
β and λ weakly. Presence of volatility clustering is con-
firmed by the significantly positive autocorrelation of the
number of failures C(nF (t), nF (t + 1)) ≈ 0.3 (empirical
value is 0.15). The precise value depends on α and λ
(and much less on β) but strongly positive autocorrela-
tion is always observed. For comparison, α = 0 yields
P (F |F ) ≈ P (F ) and C(nF (t), nF (t + 1)) ≈ −0.04. Fi-
nally, Fig. 6 shows P (S) for different values of α. We
see that for small values of α, the size distribution re-
mains power-law with exponent k gradually decreasing
as α grows. Due to the additional complexity introduced
by partial memory, the cascade size distribution for this
generalized model has not been obtained yet.

V. DISCUSSION

We studied empirical data with stock prices and found
that large simultaneous downturns follow a broad dis-
tribution consistent with a power law with exponent
2.19 ± 0.05. To reproduce this behavior, we proposed
a simple stochastic model of failure propagation. Using
a mean field approximation and branching process the-
ory we derived the general cascade size distribution and
determined the range of parameters which give rise to the
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FIG. 6. Cascade size distribution for the modified model:
numerical results for β = 0.01, λ = 0.1, N = 104, 107 time
steps, and α = 0 (steepest green line), α = 0.04 (medium blue
line), α = 0.08 (least steep red line).

critical regime. To reproduce other features observed in
financial data, such as volatility clustering, partial mem-
ory was introduced in the basic model.

Our results still leave some open and challenging ques-
tions which deserve further investigation. Firstly, since
the cascade sizes corresponding to the secondary max-
imum in Fig. 3 are comparable with system size, this
behavior cannot be described within the formalism of
branching processes where an infinite system size is as-
sumed. While we found an approximate condition for the
appearance of the secondary maximum, how to proceed
further towards an exhaustive description of the result-
ing size distribution is still an open question. Secondly,
it would be interesting to reach an analytical expression
for the size distribution exponent in scale-free networks
where it appears to differ from the mean-field value 3/2.
Thirdly, generalized model with “partial memory”, only
studied numerically here, calls for analytical approaches.
Fourthly, it would be interesting to know whether the
model can be modified to produce power-law size distri-
butions with exponents considerably higher than those
reported here. One opportunity for such a generalization
is to assume a dynamic network structure whose evolu-
tion depends on nodes’ failures, similarly to the approach
used in [35, 36] for different models. Alternatively, as a
generalization of the current binary model where nodes
are either healthy or failed, one could define a multi or
continuous-state model in which the probability of fol-
lowing a neighbor’s failure depends on the failure’s mag-
nitude.

We stress that the probabilistic spreading mechanism
proposed here is a general one and its use is not limited
to market crashes or firm bankruptcies. For example,
on a two or three dimensional lattice, a similar mech-
anism might be employed to model earthquakes as the
failure at one place of the Earth’s crust exerts some stress
on its neighborhood (the number of failed nodes would
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then represent the earthquake size). In summary, the
proposed model, together with its generalizations, has
proven to be simple yet rich in behavior. It poses a vari-
ety of new research questions and we are looking forward
to its future development and applications.
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