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I. INTRODUCTION

Quantum computation may solve some complex computational problems and hit the security of the classical cryp-
tography. It has attracted much interest to investigate quantum algorithm and to realize quantum hardware, which
are very important to quantum information processing and quantum computation. The ideas of quantum processors
and computers have been experimented in many physical systems, including ion traps [1], nuclear spins in magnetic
resonance [2], super-conducting resonators [3], semiconductor quantum dots [4], neutral atoms [5], and linear optics
[6–8]. In linear optical system, it is easy to deal with entanglement and decoherence, and the incorporation of de-
tection and post-selection make it possible to achieve all-optical quantum computers [9]. So linear optical system is
a good candidate for implementing quantum algorithms [10, 11]. The system of single-photon few-qubit has been
used to build the deterministic quantum information processor (QIP). And the few-qubit QIPs have drawn much
attention for the applications in quantum optics and quantum computation [12–18]. Especially, the implementation
of single-photon two-qubit (SPTQ) controlled-NOT (CNOT) gate has been reported by Fiorentino et al. [18]. This
robust CNOT gate can be utilized to perform a variety of quantum logic operations that are necessary for SPTQ and
opens a way to the implementation of SPTQ protocols for few-qubit QIP. In this context, by using this robust CNOT
gate and the SPTQ state, we experimentally demonstrate the Deutsch’s algorithm.
The first quantum algorithm was proposed by Deutsch in 1985 [19], then extended by Deutsch and Jozsa in 1992

[20]. Deutsch’s algorithm combines quantum parallelism with a property of quantum interference. The problem which
is solved in Deutsch’s algorithm can be described as follow. Suppose we are given a boolean function f(x) where
x is either 0 or 1. Note that there are only four possible results of this sort: f(x) = 0, f(x) = 1, f(x) = x, and
f(x) = inv(x) (‘inv’ is the inversion operation). Suppose that we do not want to know exactly which of the four
functions f(x) is; rather all we want to know is whether f(x) is a constant function or a balanced function, where
constant function means f(0) = f(1) and balanced function means f(0) 6= f(1). With classical computation, we can of
course simply compute f(x) on both inputs 0 and 1, then judge which it is. But that takes two separate computations.
What Deutsch discovered is that, if f(x) is represented by a system of qubits, it is possible to manipulate the system
so that all the needed computations can be done in parallel, and when a measurement is made at the end, the results
will reveal whether f(x) is balanced or constant, even though it will not reveal preciously which function f(x) is. Due
to Deutsch’s algorithm, we can find a separation between what a classical computer and a quantum computer can
achieve, that is, the classical computer has to run the f(x) twice to distinguish a balanced function from a constant
function while a quantum computer does the job just in one go.
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FIG. 1. Quantum circuit of Deutsch’s algorithm. H is the Hadamard gate.

Fig. 1 is the quantum circuit implementing Deutsch’s algorithm [21]. Uf is the quantum operation which takes
inputs |x, y〉 to |x, y ⊕ f(x)〉. A brief explanation is given below. We start with two qubits, one in state |0〉 and the

other in state |1〉. The Hadamard gate is used to prepare the first qubit in the superposition state (|0〉+ |1〉)/
√
2 and

the other in (|0〉 − |1〉)/
√
2. After the Hadamard transformation,

|Ψ1〉 = Ĥ |Ψ0〉 = (|0〉+ |1〉)(|0〉 − |1〉)/2. (1)

Applying Uf to |Ψ1〉, we obtain |Ψ2〉 to be one of two possible states depending on f(x):

|Ψ2〉 =







±
[

|0〉+|1〉√
2

] [

|0〉−|1〉√
2

]

, f(0) = f(1),

±
[

|0〉−|1〉√
2

] [

|0〉−|1〉√
2

]

, f(0) 6= f(1).
(2)

The final Hadamard gate is applied on the first qubit,

|Ψ3〉 =







± |0〉
[

|0〉−|1〉√
2

]

, f(0) = f(1),

± |1〉
[

|0〉−|1〉√
2

]

, f(0) 6= f(1).
(3)

So we can determine f(x) to be balanced or constant by only measuring the first qubit once.
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TABLE I. Four different cases of Deutsch’s algorithm

Class Function Operation Uf

Constant f(x) = 0 |x, y〉 → |x, y ⊕ 0〉 I (Identity)

Constant f(x) = 1 |x, y〉 → |x, y ⊕ 1〉 NOT

Balanced f(x) = x |x, y〉 → |x, y ⊕ x〉 CNOT

Balanced f(x) = inv(x) |x, y〉 → |x, y ⊕ (x⊕ 1)〉 Z-CNOT

II. IMPLEMENTING OF CNOT GATE

From the above description, to physically test the algorithm, we need a device which can implement the Uf

operations for the four possible functions. All the possible f(x) functions and Uf operations are summarized in Table
I. So the realizations of four different Uf operations are the main works for testing Deutsch’s algorithm. In the first
case of Uf = I. It means that the second qubit never changes whatever the first qubit being 0 or 1. So this can be
recognized as an Identity operation to the two qubits. The second case shows that Uf is a NOT gate. The second
qubit always flips no matter what the first qubit is. In the third case, Uf is a CNOT gate. The second qubit flips
when the first qubit is 1. While in the last case, Uf is a zero-controlled-NOT (Z-CNOT) gate, where the second qubit
flips when the first qubit is 0. For these four different Uf operations, Identity operation and NOT operation are very
simple to be realized; and the Z-CNOT gate can be obtained from CNOT gate with some small changes. So CNOT
gate is the fundamental and essential part to execute the Deutsch’s algorithm. In this context, we start with a CNOT
gate realized by employing polarization and spatial positions of photons [18], construct the four different gates and
Uf operations, and carry out the Deutsch’s algorithm.

A B
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FIG. 2. (a) is the optical implementation of CNOT gate by employing polarization and spatial positions of photons. Dove
prism (DP) is inclined at 45◦. Red lines show the left (l) and right (r) spatial modes, and green lines show the up (u) and
down (d) spatial modes; (b) shows the spatial positions of input and output beams on the splitting plane AB of polarized beam
splitter (PBS).

The CNOT gate is shown in Fig. 2. Dove prism (DP) is inclined at 45◦ angle relative to the horizontal plane
(showing in Fig. 2(a)), so the images which pass through it from left to right will be rotated by 90◦. Suppose the
polarized beam splitter (PBS) here transmits vertical-polarized (V ) photons and reflects horizontal-polarized (H)
ones. So the V photons travel counterclockwise while the H photons travel clockwise. With a DP inclined at 45◦,
the spatial mode of V (H) photons oriented 90◦ (−90◦). Specifically, the left-right (l-r) section of the input photons
are rotated into the up-down (d-u) section of the output beam for V photons but into the u-d section for H photons
(showing in Fig. 2(b)). If we define photon’s polarization as the control qubit (H → 0 and V → 1) and spatial mode
as the target qubit (l&u→ 0 and r&d→ 1), the CNOT operation can be described as follow:

|H〉 |l〉 =⇒ |H〉 |u〉 , |H〉 |r〉 =⇒ |H〉 |d〉 , |V 〉 |l〉 =⇒ |V 〉 |d〉 , |V 〉 |r〉 =⇒ |V 〉 |u〉 . (4)

The CNOT gate of Fig. 2 is a polarization Sagnac interferometer, and the two counter-propagating photons always
undergo the same amount of phase disturbance. So this optical CNOT gate is with an inherent stability which requires
no active stabilization.

III. EXPERIMENT AND RESULTS

We experimentally realize the Deutsch’s algorithm by using the CNOT gate mentioned above. The experimental
setup is shown in Fig. 3. We use a He-Ne laser (MELLES GRIOT, 05-LHP-171) with deep attenuation as the single
photon source (about 150,000 counts per second). All the PBS are quasi-symmetric and transmit V photons while
reflect H photons. Polarizer and half wave-plate (HWP1) are used to prepare photon’s polarization states. Here we
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prepare the initial polarization of photons as H . 50% beam splitter (BS) and a mirror (M) are used to prepare the
photon’s spatial-mode states. The piezo-transmitter (PZT) on the first mirror is used to control the relative phase ϕ
between two spatial modes. HWP2 and HWP3 at 22.5◦ are used as the polarization Hadamard gates. The state after
HWP2 can be written as:

|ψ1〉 =
[ |H〉+ |V 〉√

2

] [ |l〉+ eiϕ |r〉√
2

]

. (5)

Especially when ϕ = π, |ψ1〉 is equal to |Ψ1〉 which is mentioned above. So this single-photon two-qubit state can be
used as the input state of Deutsch’s algorithm as we described in Fig. 1. Then this state will be evolved by the Uf

operation. The detection part consists of a Hadamard gate (HWP3), PBS2 and two single photon detectors (D1 and
D2). Exactly, the detection is a projective measurement on photon’s polarization state, known as the target qubit
state, which is similar to the Deutsch’s algorithm.

Laser HWP1 BS M

HWP2
HWP3 PBS1PBS2

M

MM

D1

D2

DP

PZT

PATT

FIG. 3. Experimental setup of Deutsch’s algorithm. The source is a He-Ne laser (MELLES GRIOT, 05-LHP-171) of wavelength
632.8 nm. We attenuate the coherent light into single photon level by using some neutral attenuators denoted by ATT. P denotes
the polarizer for initial states preparation. Three half wave-plates (HWP) and two polarized beam splitters (PBS) are used in
setup. A PZT actuator is used to modulate the phase ϕ between l and r pathes. Dove plate (DP) is set at 45◦. Detectors (D1

and D2) are single photon counting modules (SPCM-AQRH-14-FC). All the mirrors are marked as M.

The key point to carry out the Deutsch’s algorithm is how to realize the four different cases of Uf operation. We
will discuss these four Uf operations below.
Constant function f(x): In the constant function case, Uf can be Identity or NOT operation. For Identity

operation, we can simply remove PBS1 in our setup and set DP at −45◦. Therefore, photons in l or r will always
undergo a counter-clockwise route and be outputted in u or d respectively, without the effect of polarization. This
means that the target qubit (spatial mode of photons) will not change with control qubit (polarization of photons).
We can deduce the process as follow:

|ψ1〉 I−→ |ψ2〉 =
[ |H〉+ |V 〉√

2

] [ |u〉+ eiϕ |d〉√
2

]

HWP3−→ |ψ3〉 = |H〉 |u〉+ eiϕ |d〉√
2

. (6)

While for the NOT operation, we can remove PBS1 in our setup and set DP at 45◦. Then |l〉 is converted to |u〉 and
|r〉 is converted to |d〉. Applying a Hadamard gate (HWP3), we can obtain

|ψ1〉 NOT−→ |ψ2〉 =
[ |H〉+ |V 〉√

2

] [ |d〉+ eiϕ |u〉√
2

]

HWP3−→ |ψ3〉 = |H〉 |d〉+ eiϕ |u〉√
2

. (7)

For the above two cases, we can only detect the polarization qubits, the results are same and without any changes
when we adjust the relating phase ϕ. So, in our setup, when the boolean function f(x) is a constant function, the
detector D2 will be clicked and no photons arrive at D1. Fig. 4(a) shows our experimental results of Uf = I, and Fig.
4(b) shows the results of Uf = NOT . Because there is no interference in these processes, the counts of D1 and D2 do
not change while modulating the voltage of PZT. We can see that our experimental results are very well fitted to the
theoretical analysis above.
Balanced function f(x): In this case, f(x) = x or f(x) = inv(x). We need to place the PBS1 into our the optical

route. So the H photons and V photons will travel through the DP in different directions. As we have discussed
above, when we set the DP at 45◦ (−45◦), this will be the CNOT (Z-CNOT) gate for the input state |ψ1〉 shown in
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Eq. (5). Using the corresponding relations of Eq. (4), the theoretical analysis of Uf = CNOT is shown below.

|ψ1〉 CNOT−→ |ψ2〉 =
1

2
(|H〉 |u〉+ eiϕ |H〉 |d〉+ |V 〉 |d〉+ eiϕ |V 〉 |u〉)

HWP3−→ |ψ3〉 =
1

2
√
2
[(1 + eiϕ) |H〉 (|u〉+ |d〉) + (1− eiϕ) |V 〉 (|u〉 − |d〉)]. (8)

For Z-CONT operation, we set the DP at −45◦. The output state is

|ψ3〉 =
1

2
√
2
[(1 + eiϕ) |H〉 (|u〉+ |d〉)− (1 − eiϕ) |V 〉 (|u〉 − |d〉)]. (9)

For these two operations, we still detect the polarization qubits. Then we can get two curves which show the photon
counts of two detectors changing with the relative phase between two spatial modes. Fig 4(c) corresponds to CNOT
operation and Fig. 4(d) corresponds to Z-CNOT operation. From Eq. (8) and Eq. (9), we know that the theoretical
results are sinusoidal functions. And our experimental data fit them well.
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FIG. 4. Experimental data of Deutsch’s algorithm. Black square dots show the photon counts of D1 and red round dots show
the photon counts of D2. Fitting lines are also shown in the figures. The dashed vertical lines mark the proper phases of
input state (voltages) of Deutsch’s algorithm. By modulating the voltage of PZT from 0 V to 34 V and every 1 V as a step,
we record the photon counts of D1 and D2 simultaneously. (a) Identity operation of Uf for constant function f(x) = 0; (b)
NOT operation of Uf for constant function f(x) = 1; (c) CNOT operation of Uf for balanced function f(x) = x; (d) Z-CNOT
operation of Uf for balanced function f(x) = inv(x). Green lines are used to mark the proper points (phases) of the initial
states required by Deutsch’s algorithm.

Our experimental results are shown in the Fig. 4. In our experiment, we make the relative phase ϕ adjustable
by using a PZT controller. So the output state |ψ3〉 contains the phase parameter ϕ. When we using a PBS for
the projective detection, the detector of D1 and D2 detect photons of different polarization, V on D1 and H on D2.
From the Eq. (8) and Eq. (9), we can see that the photon counts of D1 and D2 will sinusoidally vary with the ϕ
being continuously changed. We set the phase range for two periods (the voltage of PZT is adjusted from 0 to 34 V)
and plot the counts-voltage curves. To the description of Deutsch’s algorithm, the input state is a certain state with
certain phase (Eq. 1). However, we can get this state simply by setting the phase ϕ = (2N + 1)π (adjust the PZT in
proper voltages), where N is integer. Then, Eq. (8) and Eq. (9) are changed into

|ψ2〉π = ±1

2
(|H〉 − |V 〉)(|u〉 − |d〉); (10)

|ψ3〉π = ± 1√
2
|V 〉 (|u〉 − |d〉), (11)

where ‘+’ is for the CNOT operation and ‘−’ for the Z-CNOT operation. And if we also set the ϕ = (2N + 1)π in
Eq. (6) and Eq. (7), we get

|ψ2〉π = ±1

2
(|H〉+ |V 〉)(|u〉 − |d〉); (12)

|ψ3〉π = ± 1√
2
|H〉 (|u〉 − |d〉), (13)
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where ‘+’ is for the NOT operation and ‘−’ for the I operation. These results are same as |Ψ2〉 and |Ψ3〉 described in
Eq. (2) and Eq. (3). These proper points for Deutsch’s algorithm are marked by green lines shown in the Fig 4. From
these points, we can claim that it is a constant function when D1 clicked and a balanced function when D2 clicked.
Benefit from the Sagnac interferometer, our experimental setup is very stable without any other additional feedback

control. This long-time stability makes it possible to change the voltage 1 V as a step from 0 to 32 V. We can define
η = |CD1−CD2

CD1+CD2

| as a contrast ratio to describe the precision of our results, where CD1 and CD2 denote to the photon
counts of D1 and D2. Theoretically, the contrast ratio η equal to 1. In our experiment, for the constant functions,
ηc = 99.96± 0.03% in Fig. 4(a) and ηc = 99.96± 0.03% in Fig. 4(b); for the balanced functions, the contrast ratio η
equals to the interference visibility, in Fig. 4(c), ηb = 95.76± 0.07%, and in Fig. 4(c), ηb = 96.13± 0.07%. From Fig.
4(a) and 4(b), we can see that the photon counts of D2 fall with the voltage increasing. This phenomenon is mainly
caused by the coupling of multi-mode fiber used in the detection part. We modulate the phase by changing the angle
of the first mirror (change the voltage of PZT). Although the change of the angle is very tiny, it will also affect the
coupling efficiency turning to worse when photons pass though the setup. Our experimental errors mainly cause by
the imperfect of PBS and HWP, the interference visibility, and the effect of DP [22, 23]. However, these errors can
be reduced with the improvement of experimental technique.

IV. CONCLUSION

In conclusion, we have experimentally realized the Deutsch’s algorithm by using linear optical components. We can
determine a property of a function in one evaluation in quantum case instead of two in classical case. When phase
ϕ is zero, we need only a single photon as the input to judge the function f(x): constant function when photons are
in H polarization while balanced function when photons are in V polarization. Oliveira et al. have experimentally
demonstrated the Deutsch’s algorithm with linear-optical components by employing the polarization and transverse
spatial mode of photons as qubit [7]. Compared with it, our experimental setup is more robust because the CNOT
which we use is a polarization Sagnac interferometer with high stability. We believe these can be used to perform
more complex entangled states or few-qubit quantum computation.
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