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Abstract

This paper, the second in a series (the first one appearing as
arXiv:1001.2489), continues our investigations of a two-oscillator sys-
tem in linear relative motion serving as a simplified model of the
Casimir friction setup. Time-dependent perturbation theory to first
order is used to find the change in energy to second order. The present
results agree with, and confirm, our earlier results obtained via differ-
ent routes.

PACS numbers: 05.40.-a, 05.20.-y, 34.20.Gj

1 Introduction

Consider two dielectric or metallic slabs with parallel surfaces, closely sepa-
rated. If the slabs are set in tangential motion with respect to each other,
with constant velocity, they become exposed to a friction force called Casimir
friction, an effect that has received considerable attention in the recent past.
The physical reason for the effect is that photons transferred between the
slabs are subject to Doppler shifts. Such frequency shifts are physically ex-
pected to lead to energy dissipation, and hence a friction force. Some papers,

1johan.hoye@ntnu.no
2iver.h.brevik@ntnu.no

1

http://arxiv.org/abs/1009.3135v1
http://arxiv.org/abs/1001.2489


limited to the period from 2007 onwards, are listed in refs. [1, 2, 3, 4, 5, 6,
7, 8, 9, 10]. As one might expect, the problem becomes somewhat singular
if the relative velocity of the slabs is assumed constant, from t = −∞ to
t = +∞. It is physically advantageous, therefore, to imagine that the inter-
action is effectively coupled in at a large negative finite time in the past, and
coupled out again at a large positive t. This is, of course, in principle the
same technique as is often employed in scattering field theory.

It might appear most natural to attack the Casimir friction problem by
making use of standard macroscopic electrodynamics for media in constant
rectilinear motion. It means use of Maxwell’s equations in moving matter
endowed with a refractive index n. And as expected, it turns out that most
of the mentioned papers are following this kind of approach. A complicating
factor in the present case is, however, that there is no obvious rest system of
the matter to refer to; none of the slabs plays a privileged role. This contrasts
the usual case in phenomenological electrodynamics where the covariant for-
mulation is simply constructed such that the theory reduces to conventional
electrodynamics in the uniquely defined rest inertial system (cf., for instance,
Refs. [11, 12, 13]).

Faced with this circumstance or difficulty, it lies at hand to search for al-
ternative approaches to the friction problem. On natural possibility is then
to make use of statistical mechanical methods, for harmonic oscillators in
uniform relative motion. These methods were used by us in a recent work
[14], and were used also in previous works [15, 16]. The microscopic method
has some advantages in comparison with macroscopic electrodynamics, most
notably that the formalism becomes more simple and transparent. Yet, the
statistical mechanical approach has the property that it is capable of show-
ing the main features of the problem. The microscopic approach has also
been followed recently by Barton (preprint, personal communication). In
the present paper we continue our investigations from Ref. [14], along similar
lines as there.

Specifically, we shall treat the following aspects of the problem:

• We calculate a general expression for the change ∆E in energy, Eq. (14)
below, by means of quantum mechanical perturbation theory. It turns
out that the change in energy occurs to second order in the pertur-
bation. Nevertheless, time-dependent perturbation theory to the first

order is sufficient to find this second order effect. This is because the
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phases of the perturbed change in amplitudes, and the initial ampli-
tudes of the eigenstates, are uncorrelated at thermal equilibrium. Thus
change in amplitudes of eigenstates will be the square of perturbed am-
plitudes; i.e. there are no cross-terms. We find that ∆E is positive,
corresponding to a friction force. Doubts occasionally raised in the lit-
erature about the very existence of the Casimir friction effect [5] are
thus from this standpoint laid at rest.

• Making use of the mentioned expression for ∆E we compare the present
formalism with that of Ref. [14], the latter result obtained in a quite
different way and on a quite different form. In Ref. [14], the linear
response via the Kubo formalism was used [15, 16, 17] to calculate the
force which in turn could be divided into a reversible and an irreversible
part. It is the latter part that is associated with dissipation. A sat-
isfactory feature is that the present derivation, although being quite
different from that of Ref. [14], leads to the same physical result.

2 Time-dependent perturbation theory

To fix the notation, we start with perturbation theory for a system at thermal
equilibrium. The wave function can be written as

ψ =
∑

n

anψn, (1)

where ψn = ψn(x) are the eigenstates. For simplicity we here let x represent
all the coordinates of the system. If ψ is normalized,

∫

ψ∗ψdx = 1, then
|an|2 is the probability for the system to be in eigenstate n. At thermal
equilibrium this probability is given by the Boltzmann factor

Pn = |an|2 =
1

Z
e−βEn, (2)

where En is the energy eigenvalue of the state and Z is the partition function

Z =
∑

n

e−βEn . (3)

Let now the Hamiltonian be perturbed by the time-dependent interaction

V (t) = −Aq(t), (4)
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where A is a quantum mechanical operator while q(t) is a scalar function.
The A is time independent.

Due to the perturbation the coefficients an will change. If the system
starts in a state m there are transitions to other states given by a change in
an

∆an = bnm. (5)

The bnm is given by the standard expression

bnm =
1

ih̄

∫ t

−∞
Vnm(τ)e

iωnmτdτ, (6)

where
Vnm(τ) =

∫

ψ∗
n V (τ)ψmdx = −Anm q(τ),

Anm = 〈n|A|m〉 =
∫

ψ∗
nAψmdx. (7)

Here ωnm = ωn − ωm, with ωn = En/h̄.
As mentioned above, we will assume that the perturbation vanishes after

some time. Then we will obtain the total change in ∆an with

bnm = − 1

ih̄
Anm q̂(−ωnm),

q̂(ω) =
∫ ∞

−∞
q(t)e−iωtdt, (8)

where the hat denotes Fourier transform.
From a general perspective, the system may start in a combination of

eigenstates with transitions from several states. (It might be natural in this
context to think about the Casimir-Polder setup with molecules traveling
close to a dielectric surface. For molecules, in contrast to atoms, the energy
levels are closely separated and may thus easily allow transitions. For recent
investigations along these lines, cf. Refs. [18, 19].) With this, Eq. (5) will
be modified to ∆an =

∑

m6=n ambnm. Now, the state n does not only receive
contributions, but gives away contributions to other states also. The latter
must follow from the corresponding increase of probabilities for the other
states. Omitting the latter for the moment, the perturbed coefficients are

a1n = an +∆an = an +
∑

m6=n

ambnm. (9)
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The an will have complex phase factors, and in thermal equilibrium one must
assume the phases of an and am (m 6= n) to be uncorrelated. Thus by thermal
average

〈a∗nam〉 = 0. (10)

With this the new probability of the state n becomes

P1n = 〈a∗1na1n〉 = |an|2 +
∑

m6=n

|am|2Bnm,

Bnm = bnmb
∗
nm = |bnm|2. (11)

The last term is the increase in probability from the other states. Likewise,
the state n must obey a similar loss of probability to other states to conserve
probability. The loss to other states is thus

∑

m6=n |an|2Bmn. With Eq. (6)
we have bmn = b∗nm, by which Bmn = Bnm. The latter equation reflects that
the transition probabilities between each pair of states are the same in either
direction. With this, the resulting perturbed probability of state n modifies
the expression (11) into

P1n = |an|2 +
∑

m6=n

(|am|2 − |an|2)Bnm = Pn +
∑

m

(Pm − Pn)Bnm. (12)

The change in energy can now be evaluated as

∆E =
∑

n

En(P1n − Pn) =
∑

nm

En(Pm − Pn)Bnm

=
∑

nm

(En −Em)PmBnm +
∑

nm

(EmPm − EnPn)Bnm =
∑

nm

(En −Em)PmBnm.

(13)
Utilizing the symmetry with respect to n and m in this expression and in-
serting for Pm from Eq. (2) we find

∆E =
1

2

∑

nm

(En−Em)(Pm−Pn)Bnm =
1

Z

∑

nm

e−
1

2
β(En+Em)∆nm sinh(

1

2
β∆nm)Bnm,

(14)
with ∆nm = En − Em, and where from Eqs. (8) and (11)

Bnm =
1

h̄2
AnmA

∗
nmq̂(−ωnm)q̂(ωnm). (15)

Here it is to be noted that ∆E ≥ 0. We conclude that whenever a system in
thermal equilibrium is disturbed by some external perturbation the energy
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always increases (or, is unchanged), i.e., energy is dissipated. The dissipa-
tion occurs to second order in the perturbation. To first order there is no
dissipation; the changes are adiabatic.

We note in passing the similar nature of the formalism for an electromag-
netic field in a dissipative medium: the mean quantity of heat developed per
unit time and volume is

Q = ωε′′(ω)〈E2〉,
where ε′′ denotes the imaginary part of the permittivity, ε = ε′ + iε′′. Ir-
reversibility of the dissipation process implies the condition ε′′(ω) > 0 for
positive ω. Cf., for instance, ref. [20], Sec. 80.

3 Energy dissipation from friction force

Recently we evaluated the dissipated energy via the friction force [14]. The
q(t) denotes (or can be interpreted to denote) the position

x = x(t) = q(t), (16)

then A is the operator for a force. By use of the Kubo relation [15, 16, 17]
for this situation the resulting force due to the perturbation is

Ff =
∫ t

−∞
φAA(t− t′)q(t′)dt′, (17)

where

φAA(t) =
1

ih̄
Tr {ρ[A,A(t)]} . (18)

Here

ρ =
e−βH

Z
, with Z = Tr(e−βH),

is the canonical density matrix, and

A(t) = eitH/h̄Ae−itH/h̄, (19)

with H the Hamiltonian. With velocity

v(t) = ẋ(t) = q̇(t) (20)

the total energy dissipated by the system is

∆E = −
∫ ∞

−∞
v(t)Ffdt = −

∫ ∞

−∞

[
∫ t

−∞
q̇(t)φAA(t− t′)q(t′)dt′

]

dt, (21)
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which is the same result as in Eq. (27) in Ref. [14]. Now the quantity q(t)
need not be a position as given by Eq. (16), but as it can be interpreted as a
position in a generalized sense, we concluded in [14] that the result (21) has
a broader applicability. We will now show that this is actually the case, by
showing that the result (21) is the same as the new result (14) obtained in
the present work, by means of time-dependent perturbation theory.

With wave function representation we first have

e−βH →
∑

n

ψn(x)e
−βEnψ∗

n(x1), (22)

ρAA(t) =
1

Z

∑

nmk

∫

ψn(x)e
−βEnψ∗

n(x1)Aψm(x1)e
iωmtψ∗

m(x2)A

× ψk(x2)e
−iωktψ∗

k(x3)dx1dx2. (23)

Thus we obtain

Tr(ρAA(t)) =
1

Z

∑

nm

e−βEnAnme
iωmtAmne

−iωnt, (24)

as
∫

ψ∗
k(x)ψn(x)dx = δkn (x3 = x1 = x), and Anm is given by Eq. (7).

Likewise we calculate Tr(ρA(t)A) by exchange of ωn and ωm in Eq. (24).
The response function becomes

φAA(t) =
1

ih̄
Tr {ρ[A,A(t)]} =

1

ih̄

∑

nm

Mnm(e
−iωnmt − eiωnmt), (25)

with

Mnm = − 1

Z
e−

1

2
β(En+Em) sinh(

1

2
β∆nm)AnmA

∗
nm (26)

(recall that ∆nm = En−Em = h̄ωnm, Amn = A∗
nm). The expression for Mnm

follows if one first exchanges n and m in Eq. (24), then adds the resulting
term to it and divides by 2. By inserting Eq. (25) into Eq. (21) one gets the
integral

I =
∫

t>t′

∫

q̇(t)q(t′)
(

e−iωteiωt
′ − eiωte−iωt′

)

dt′dt, (27)

where here ω = ωnm [(En − Em)/h̄ = ∆nm/h̄]. By partial integration and
exchange of integration variables t and t′ (in the last term below ) we get

I = iω
∫

t>t′

∫

q(t)q(t′)
(

e−iωteiωt
′

+ eiωte−iωt′
)

dt′dt
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= iω
∫ ∞

−∞

∫ ∞

−∞
q(t)q(t′)e−iωteiωt

′

dt′dt = iωq̂(ω)q̂(−ω). (28)

By inserting this into Eq. (21) via Eq. (25) we get for the dissipated energy

∆E =
1

h̄

∑

nm

Mnm ω q̂ (ω) q̂(−ω). (29)

With ω = ωnm = ∆nm/h̄ and Mnm given by the expression (26) this is
nothing but the result (14) together with (15) obtained by time-dependent
perturbation theory. Thus we have been able to derive the same expression
for the dissipated energy in two independent ways.

4 Friction between harmonic oscillators

In our recent work [14] the friction between a pair of harmonic oscillators
with interaction

−Aq(t) = [ψ(r0) +∇ψ(r0) · vt+ ...]x1x2 (30)

(t > 0), was evaluated. Here, we will evaluate the energy dissipation by a
direct use of Eq. (14) or (29). The first term in Eqs. (30) can be disregarded
as it gives a reversible force, distinct from dissipation. Further, we replace t
with te−ηt (η → 0) to make the interaction vanish as t→ ∞.

For harmonic oscillators one can introduce the usual annihilation and
creation operators

xi =

(

h̄

2miωi

)1/2

(ai + a†i ) (31)

(i = 1, 2), with properties

a†|n〉 =
√
n + 1 |n+ 1〉,

a|n〉 =
√
n |n− 1〉. (32)

With this the interaction becomes

−Aq(t) = γ(a1a2 + a1a
†
2 + a†1a2 + a†1a

†
2) te

−ηt, (33)

where

γ = (
1

2
Dh̄)1/2(v · ∇ψ), D =

h̄

2m1m2ω1ω2
. (34)
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Since here only small η (→ 0) is considered, the terms a1a2 and a
†
1a

†
2 will not

contribute. Thus we can use

A = a1a
†
2 + a†1a2, and q(t) = γte−ηt. (35)

For the matrix elements (7) we then get

An1,n2,n1+1,n2−1 = 〈n1n2|a1a†2|n1 + 1, n2 − 1〉 =
√
n1 + 1

√
n2,

An1,n2,n1−1,n2+1 = 〈n1n2|a†1a2|n1 − 1, n2 + 1〉 = √
n1

√
n2 + 1, (36)

while all other elements are zero. The Fourier transform of q(t) is, for t > 0,

q̂(ω) = γ
∫ ∞

0
te−ηte−iωt =

γ

(η + iω)2
, (37)

so that, for η → 0,

q̂(ω)q̂(−ω) = γ2

(η2 + ω2)2
→ πγ2

2ηω2
δ(ω). (38)

here ω = ω1 − ω2, where ω1 and ω2 are the eigenfrequencies of the two
oscillators. Further, with ω → 0 (m = n± 1)

∆nm sinh(
1

2
β∆nm) →

1

2
β∆2

nm =
1

2
β(±h̄ω)2 = 1

2
βh̄2ω2. (39)

Then the matrix elements (36) should be squared and averaged by the Boltz-
mann distribution given by Eq. (14). We have 〈n1〉 ≈ 〈n2〉 ≈ 〈n〉, with
ω1 → ω2, and

〈n〉 =
√
x

Z

∞
∑

n=0

nxn =
x

1− x
, x = e−βh̄ω1 ,

Z =
√
x

∞
∑

n=0

xn =

√
x

1− x
. (40)

Then 〈n〉+ 1 = 1/(1− x), by which

〈(n1 + 1)n2 + n1(n2 + 1)〉 = 2(〈n〉+ 1)〈n〉

=
2x

(1− x)2
=

1

2 sinh2(1
2
βh̄ω1)

. (41)
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Inserting in Eqs. (14) and (15) by multiplying together Eqs. (38), (39), and
(41) we obtain for the energy dissipation

∆E =
πβh̄2γ2

8η sinh2(1
2
βω1)

δ(ω1 − ω2). (42)

With γ inserted from Eq. (34) this is the same as the result (21) of Ref. [14]
with its Eq. (19) for the friction force inserted.

According to Eq. (42), the case of zero temperature (β → ∞) yields
∆E → 0. This result is related to our assumptions, including slowly varying
coupling or low velocities, i.e. η → 0 in Eqs. (35) and (38). At more rapidly
varying coupling or higher velocities also finite frequencies would contribute,
leading to a finite energy change and a finite friction force at T = 0.

5 Summary

We have evaluated the total energy dissipation for a system perturbed by a
time-dependent interaction. This task was achieved by using standard time-
dependent perturbation theory to obtain the change in energy to second order
in the perturbation. This change is always positive or zero. The result agrees
with, and confirms, our previous result of Ref. [14] obtained in a different,
and independent, way.

Our theory assumes thermal equilibrium, low velocities, and nonrelativis-
tic mechanics. Photons accordingly are not present in the theory. Photons
were included, however, in our earlier study [16].
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