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Abstract

This note is a review of known results about the paths of security prices

in idealized financial markets that satisfy a version of the no-arbitrage

condition. Without making any probabilistic assumptions, it is sometimes

possible to characterize the roughness of the price paths. A few simple

new results are also stated.

1 Introduction

This note contains the references and proofs for my talk with the same name
at the 10th International Vilnius Conference on Probability and Mathematical
Statistics (28 June to 2 July 2010), section “Random Processes”, session “Rough
Paths”. It will be updated shortly before the conference.

The study of rough paths “without probability” is an active field of research
(Dudley and Norvaǐsa, Lyons,. . . ). This note is a contribution to this field,
studying price paths of financial securities in idealized markets. It comes from
the tradition of “game-theoretic probability” (an approach to probability going
back to von Mises and Ville). No probabilistic assumptions are made about
the evolution of security prices (a non-stochastic notion of probability can be
defined, but this step is optional). The early work on price paths in game-
theoretic probability relied on using non-standard analysis (as in [12]); this note
follows Takeuchi et al.’s recent paper [14] in avoiding non-standard analysis.

We will consider the price path of one financial security, in most of the note
over a finite time interval [0, T ]; all the results can be stated for [0,∞), but
considering a finite time interval helps intuition. Our key assumption is that
the market in our security is efficient, in the following weak sense (resembling the
no-arbitrage condition): a prespecified trading strategy risking only 1 monetary
unit (e 1 for concreteness) will not bring infinite capital at time T . Our other
assumption is that the interest rate over the time interval [0, T ] is 0, but it is
easy to relax and made only for simplicity.

Let ω : [0, T ] → R be the price path of our financial security. In Section 3
we consider the simplest case where ω is continuous; in this case there is no
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need to assume that ω ≥ 0 (although this assumption is usually satisfied in real
markets). This is the main case, where our understanding is deepest. A typical
result is that the p-variation of ω is finite when p > 2 and infinite when p ≤ 2
(meaning that there is a trading strategy risking e 1 that brings infinite capital
at time T whenever this condition is violated). Section 2 discusses the case
where ω is assumed to be càdlàg and positive (meaning ω ≥ 0); in this case it
is only known that the p-variation of ω is finite when p > 2. In Section 4 we
discuss the case where ω is only assumed right-continuous.

This note mainly reviews known results, but it also contains a few new
ones. I will also state several open problems (which might well be easy for
professionals).

Mathematical preliminaries and notation

The words “positive” and “increasing” are always understood in the wide sense
of ≥; the adverb “strictly” will be added when needed.

For each p ∈ (0,∞), the p-variation vp(f) of a function f : [0, T ] → R is
defined as

vp(f) := sup
κ

n
∑

i=1

|f(ti)− f(ti−1)|
p
,

where n ranges over all strictly positive integers and κ over all partitions 0 =
t0 ≤ t1 ≤ · · · ≤ tn = T of the interval [0, T ]. It is obvious that, when f
is bounded, there exists a unique number vi(f) ∈ [0,∞], called the variation
index of f , such that vp(f) is finite when p > vi(f) and infinite when p < vi(f);
notice that vi(f) /∈ (0, 1).

2 Volatility of càdlàg price paths

Most of the work on “volatility without probability” has been done for continu-
ous paths, but I will start my talk from the case of positive càdlàg price paths:
since I do not have much to say about them, I will get this topic out of the way
quickly.

Let Ω be the set of all positive càdlàg functions ω : [0, T ] → [0,∞). For each
t ∈ [0, T ], F◦

t is defined to be the smallest σ-algebra that makes all functions
ω 7→ ω(s), s ∈ [0, t], measurable; Ft is defined to be the universal completion of
F◦

t . A process S is a family of functions St : Ω → [−∞,∞], t ∈ [0, T ], each St
being Ft-measurable (we drop the adjective “adapted”). An event is an element
of the σ-algebra FT . Stopping times τ : Ω → [0, T ] ∪ {∞} w.r. to the filtration
(Ft) and the corresponding σ-algebras Fτ are defined as usual; ω(τ(ω)) and
Sτ(ω)(ω) will be simplified to ω(τ) and Sτ (ω), respectively (occasionally, the
argument ω will be omitted in other cases as well).

Remark. We define Ft to be the universal completion of F◦

t in order for the
hitting times of closed sets in R to be stopping times [9], which will be used in
the proof of Lemma 2 below.
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Informal Remark. An alternative approach would be to define Ft := F◦

t+

(except that FT := F◦

T ) and to use the fact that the hitting times of open sets
in R are stopping times. The disadvantage of this definition is that using the
filtration F◦

t+ allows “peeking ahead”. It can be argued that in our context
peeking ahead, just one instant into the future, is tolerable: since the price
path is right-continuous, we can avoid peeking by updating our portfolio an
instant later rather than now; the security price will not change. But perhaps
not everybody will find this argument convincing, and so our definition does
not use F◦

t+.

The class of allowed trading strategies is defined in two steps. A simple
trading strategy G consists of an increasing sequence of stopping times τ1 ≤
τ2 ≤ · · · and, for each n = 1, 2, . . ., a bounded Fτn-measurable function hn. It
is required that, for any ω ∈ Ω, only finitely many of τn(ω) should be finite. To
such G and an initial capital c ∈ R corresponds the simple capital process

KG,ct (ω) := c+

∞
∑

n=1

hn(ω)
(

ω(τn+1 ∧ t)− ω(τn ∧ t)
)

, t ∈ [0, T ] (1)

(with the zero terms in the sum ignored); the value hn(ω) will be called the

portfolio chosen at time τn, and KG,ct (ω) will sometimes be referred to as the
capital process of G started with c.

A positive capital process is any process S that can be represented in the
form

St(ω) :=

∞
∑

m=1

KGm,cm
t (ω), (2)

where the simple capital processes KGm,cm
t (ω) are required to be positive, for

all t and ω, and the positive series
∑

∞

m=1 cm is required to converge. The sum

(2) is always positive but allowed to take value ∞. Since KGm,cm
0 (ω) = cn

does not depend on ω, S0(ω) also does not depend on ω and will sometimes be
abbreviated to S0. In our discussions we will sometimes refer to the sequence
(Gm, cm)∞m=1 as a trading strategy risking

∑

m cm and refer to (2) as the capital
process of this strategy. (So that in this case the initial capital is regarded as
part of the strategy.)

Informal Remark. The intuition behind the definition of positive capital pro-
cesses is that the initial capital is split into infinitely many accounts and the
investor runs a separate simple trading strategy on each of these accounts.

We say that E ⊆ Ω is null if there is a positive capital process that starts
from 1 and tends to ∞ on E. A property of ω ∈ Ω will be said to hold almost
surely (a.s.), or for almost all ω, if the set of ω where it fails is null. Intuitively,
we expect such a property to be satisfied in a market that is efficient at least to
some degree.

Theorem 1. For almost all ω ∈ Ω,

vi(ω) ≤ 2. (3)
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In the case of semimartingales, the property (3) was established by Lepingle
([8], Theorem 1(a)). Intuitively, Theorem 1 says that the price paths cannot be
too rough. In fact, this theorem, and all other results of this kind in this note,
can be strengthened to say that there is a trading strategy risking at most e 1
whose capital process is ∞ at any time t such that the volatility index of ω over
[0, t] is greater than 2.

Theorem 1 can be easily deduced from a pathwise result established by
Stricker [13] (who extended a result by Bruneau [2] for continuous functions).
Our proof will follow [13] closely (analogously to the proof of Theorem 2 below,
as given in [16], which follows [2]).

Let Mb
a(f) be the number of upcrossings of the open interval (a, b) by a

function f : [0, T ] → R during the time interval [0, T ]. For each h > 0 set

M(f, h) :=
∑

k∈Z

M
(k+1)h
kh (f).

The following key result is proved in [13] (the second part of Proposition 1, with
[0,∞) in place of [0, T ]).

Lemma 1. Let p ≥ 1 and r > p. There exists c > 0 such that, for all f ∈ Ω
and all λ ≥ θ := sups f(s)− infs f(s),

vr(f) ≤ c

(

θr + θr−p sup
h=λ2−i

hpM(f, h)

)

,

i ranging over the positive integers.

Another key ingredient of the proof of Theorem 1 is the following game-
theoretic version of Doob’s upcrossings inequality:

Lemma 2. Let 0 < a < b be real numbers. There exists a positive simple capital
process S that starts from S0 = a and satisfies, for all ω ∈ Ω,

ST (ω) ≥ (b − a)Mb
a(ω).

Proof. The following standard argument is easy to formalize. A simple gambling
strategy G leading to S (with initial capital a) can be defined as follows. At
first G chooses portfolio 0. When ω first hits [0, a], G chooses portfolio 1 until ω
hits [b,∞), at which point G chooses portfolio 0; after ω hits [0, a], G maintains
portfolio 1 until ω hits [b,∞), at which point G chooses portfolio 0; etc. Since
ω is positive, S will also be positive.

Now we are ready to prove the theorem. We need to show that the event
vi(ω) > 2 is null, i.e., that vi(ω) > r is null for each r > 2. Fix such an r. It
suffices to show that vr(ω) = ∞ is null, and therefore, it suffices to show that
the event

Er,λ :=

{

ω ∈ Ω

∣

∣

∣

∣

∣

vr(ω) = ∞ & sup
t∈[0,T ]

ω(t) < λ

}
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is null for each λ > 0. Fix such a λ and fix p ∈ (2, r).
By Lemma 2, for each i = 0, 1, . . . and each k ∈ {0, . . . , 2i − 1} there exists

a positive simple capital process Si,k that starts from kλ2−i and satisfies

Si,kT (ω) ≥ λ2−iM
(k+1)λ2−i

kλ2−i (ω)

for all ω ∈ Ω. Summing λp2−ipSi,k/λ2−i over k ∈ {0, . . . , 2i − 1}, we obtain a
positive simple capital process Si such that

Si0 = λp2−ip
2i−1
∑

k=0

kλ2−i

λ2−i
≤ λp2−ip22i−1,

SiT (ω) ≥ λp2−ipM(ω, λ2−i), ∀ω ∈ Er,λ.

Summing over i = 0, 1, . . ., we obtain a positive capital process S such that

S0 ≤

∞
∑

i=0

λp2−ip22i−1 =
λp2−1

1− 22−p
,

ST (ω) ≥ sup
i

(

λp2−ipM(ω, λ2−i)
)

, ∀ω ∈ Er,λ.

On the event Er,λ we have, by Lemma 1, supi
(

λp2−ipM(ω, λ2−i)
)

= ∞. This
shows that ST = ∞ on Ep,λ and completes the proof.

3 Volatility of continuous price paths

Let Ω be the set of all continuous functions ω : [0, T ] → R. Intuitively, this is the
set of all possible price paths; now we do not insist that the price path should
be positive. The σ-algebras F◦

t are defined as before, but now we simply set
Ft := F◦

t (there is no need for universal completion). The definitions of events,
processes, positive capital processes, and null events are the same as before.

The following elaboration of Theorem 1 for continuous price paths was es-
tablished in [16] using direct arguments (relying on the result in [2] mentioned
earlier for the inequality vi(ω) ≤ 2 and a standard argument for the inequality
vi(ω) ≥ 2 for non-constant ω).

Theorem 2. For almost all ω ∈ Ω,

vi(ω) = 2 or ω is constant. (4)

This theorem is similar to the well-known property of continuous semimartin-
gales (Lepingle [8], Theorem 1(a) and Proposition 3(b)). Intuitively, Theorem 2
seems to suggest that volatility is created by the process of trading itself, and
not, for example, by news.

Open problem. Can anything similar to (4) be said in the case of positive
càdlàg paths, as in the previous subsection? (It is obvious that (4) itself cannot
be asserted a.s. in this case: for example, the event that ω is piecewise constant
but not constant is not null.)
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Theorem 2 says that, almost surely,

vp(ω)

{

<∞ if p > 2

= ∞ if p < 2 and ω is not constant.

The situation for p = 2 is clarified by a result from [17] which we will state
below as Theorem 3; this result will also give an analogue of Taylor’s [15] much
more precise result. In particular, we will see that, for almost all non-constant
ω, v2(ω) = ∞, similarly to the case of continuous martingales (see [8], proof of
Proposition 3(b)).

Let us replace in the definitions given above the time interval [0, T ] by [0,∞)
(this will make Theorem 3 easier to state); the only substantial change is that
now in the definition of simple trading strategies we require, for all ω, that
τn(ω) → ∞, instead of requiring τn(ω) = ∞ from some n on. At the beginning
of the next section we will revert to the finite time interval [0, T ].

A time change is defined to be a continuous increasing (not necessarily
strictly increasing) function f : [0,∞) → [0,∞) satisfying f(0) = 0. Equipped
with the binary operation of composition, (f ◦ g)(t) := f(g(t)), t ∈ [0,∞), the
time changes form a (non-commutative) monoid, with the identity time change
t 7→ t as the unit. The group of space shifts is the additive group of real num-
bers; we will consider it as a monoid. The monoid of space/time changes is the
direct sum of the monoid of space shifts and the monoid of time changes. Each
space/time change is a pair (c, f), where c ∈ R and f is a time change, and
the product of space/time changes (c1, f1) and (x2, f2) is the space/time change
(c1 + c2, f1 ◦ f2). The action of a space/time change (c, f) on ω ∈ Ω is defined
to be ω(c,f) := c+ω ◦ f ∈ Ω. The trail of ω ∈ Ω is the set of all φ ∈ Ω such that
φ(c,f) = ω for some space/time change (c, f). (In the standard case of monoids
that are groups, trails are called orbits.)

A subset E of Ω is space/time-superinvariant if together with any ω ∈ Ω
it contains the whole trail of ω; in other words, if for each ω ∈ Ω and each
space/time change (c, f) it is true that

ω(c,f) ∈ E =⇒ ω ∈ E. (5)

The space/time-superinvariant class K is defined to be the family of those events
(elements of F∞) that are space/time-superinvariant.

Remark. The space/time-superinvariant class K is a monotone class; however,
simple examples show that it is not a σ-algebra.

The upper probability of a set E ⊆ Ω is defined as

P(E) := inf
{

S0

∣

∣ ∀ω ∈ Ω : lim inf
t→∞

St(ω) ≥ IE(ω)
}

, (6)

where S ranges over the positive capital processes and IE stands for the indicator
of E. It does not matter whether we write lim inft→∞, lim supt→∞

, or supt in
(6). Simple examples show that P is not a probability measure, even if restricted
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to F∞. Strictly speaking, in this note we do not need the general notion of upper
probability (only the events of upper probability zero matter here), but I think
Theorem 3 looks more intuitive when stated in terms of upper probability.

It is natural to say that E ⊆ Ω is null if P(E) = 0. This is equivalent to our
“official” definition:

Lemma 3. If P(E) = 0, there is a positive capital process that starts from 1
and tends to ∞ on E.

Proof. Suppose P(E) = 0. For each i = 1, 2, . . . there is a positive capital
process that starts from 2−i and whose lim inf is at least 1 on E. Sum these
positive capital processes.

Let W be the Wiener measure. The following theorem can be regarded as
an analogue of the well-known Dubins–Schwarz result [6].

Theorem 3. Each event E ∈ K satisfies

P(E) ≤ W(E). (7)

Let ψ : [0,∞) → [0,∞) be Taylor’s [15] function

ψ(u) :=
u2

2 ln∗ ln∗ u
,

where ln∗ u := 1 ∨ |lnu|. For f : [0,∞) → R and T ∈ [0,∞), set

vψ,T (f) := sup
κ

n
∑

i=1

ψ (|f(ti)− f(ti−1)|) ,

where κ ranges over all partitions 0 = t0 ≤ t1 ≤ · · · ≤ tn = T of [0, T ]. See [1]
for a much more explicit expression for vψ,T (f).

Corollary 1. For almost all ω for every T ∈ [0,∞)

ω is constant on [0, T ] or vψ,T (ω) ∈ (0,∞). (8)

Proof. First let us check that under the Wiener measure (8) holds for all T for
almost all ω. It is sufficient to consider only rational T . Therefore, it is sufficient
to consider a fixed rational T . And for a fixed T this follows from what Taylor
proved in [15].

In view of Theorem 3 it suffices to check that the complement of the event
(8) is space/time-superinvariant. It is sufficient to check (5), where E is the
complement of (8), for c = 0. In other words, it is sufficient to check that
ω(0,f) = ω ◦ f satisfies (8) whenever ω satisfies (8). It remains to notice that
vψ,T (ω) = vψ,T ′(ω ◦ f), where T ′ ∈ f−1(T ).

Corollary 1 immediately implies that vi(ω) = 2 and v2(ω) = ∞ almost
surely, as claimed above.

7



Open problem. Can Corollary 1 be partially extended to càdlàg functions to
say that vψ,T (ω) <∞ a.s.

The quantity vψ,T (f) is not nearly as fundamental as the following quantity
introduced by Taylor [15]: for f : [0,∞) → R and T ∈ [0,∞), set

wT (f) := lim
δ→0

sup
κ∈Kδ[0,T ]

nκ
∑

i=1

ψ (|ω(ti)− ω(ti−1)|) , (9)

where Kδ[0, T ] is the set of all partitions 0 = t0 ≤ · · · ≤ tnκ
= T of [0, T ] whose

mesh is less than δ: maxi(ti − ti−1) < δ. Notice that the expression after the
limδ→0 in (9) is increasing in δ; therefore, wT (f) ≤ vψ,T (f).

Corollary 1 can be restated in terms of w:

Corollary 2. For almost all ω for every T ∈ [0,∞)

ω is constant on [0, T ] or wT (ω) ∈ (0,∞). (10)

Corollary 2 follows from this lemma:

Lemma 4. For all ω ∈ Ω, wT (ω) <∞ if and only if vψ,T (ω) <∞.

Proof. It suffices to prove the part “only if”. Let wT (ω) <∞ but vψ,T (ω) = ∞.
Take any δ > 0 such that the expression after the limδ→0 in (9) is finite; without
loss of generality let δ = T/N for some N ∈ {1, 2, . . .}. Let A be the value of this
expression. Take any C ≥ sup |ω| and any partition 0 = t0 ≤ t1 ≤ · · · ≤ tn = T
satisfying

n
∑

i=1

ψ (|ω(ti)− ω(ti−1)|) > A+N sup
u∈[0,2C]

ψ(u).

Adding to this partition the points kT/N , k = 1, 2, . . . , N − 1, we obtain a
partition in Kδ[0, T ] for which the expression after the limδ→0 in (9) is greater
than A.

The value wT (ω) defined by (9) can be interpreted as the quadratic variation
of the price path ω over the time interval [0, T ]. Another non-stochastic defini-
tion of quadratic variation serves in [17] as the basis for the proof of Theorem 3
(informally, quadratic variation defines the time change transforming the price
path into Brownian motion). The definition given in [17] is quite different from
(9) and resembles Föllmer’s [7] definition; in particular, the definition from [17]
can be used to define the notion of stochastic integral w.r. to ω satisfying Itô’s
formula (cf. the theorem in [7]; this theorem is generalized in [10]).

4 Right-continuous price paths

The time interval is now again finite, [0, T ]. We have already considered two
choices for the set Ω of allowed price paths: C[0, T ] in Section 3 and the positive
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functions in D[0, T ] in Section 2. In one case Ft was generated simply by the
projections ω 7→ ω(s), s ≤ t, and in the other case we applied, additionally,
universal completion. In this section we assume that each price path ω is positive
and has limits on the right, so that Ω is the set of all positive right-continuous
functions ω : [0, T ] → R. Right-continuity is a natural relaxation of continuity
that agrees with the direction of time: for each t, ω will not deviate much from
ω(t) immediately after t. The choice of Ft is now much more natural than
before: each σ-algebra Ft consists of all “cylinder sets”, i.e., all sets E ⊆ Ω such
that

(

ω ∈ E,ω′ ∈ Ω, ω|[0,t] = ω′|[0,t]
)

=⇒ ω′ ∈ E.

(Potential difficulties with this definition will be discussed later.) When defining
P(E) for E ⊆ Ω, the lim inf t→∞ St(ω) in (6) is replaced by ST (ω). Otherwise,
all definitions are as before.

As an example of using our new definitions, we can state the following simple
result (a version of [5], VI.3(2)).

Proposition 1. Almost surely, the price path ω is càdlàg.

Proof. It suffices to prove that the number of upcrossings of any open interval
(a, b) with rational endpoints is finite almost surely ([4], Theorem IV.22). Fix
such a and b. We can now follow the proof of Lemma 2; under the current
definitions it is obvious that the hitting time of a closed interval is a stopping
time.

I know that the reader wants an assurance that our definitions are “free of
contradiction”: the σ-algebras of this section just appear too big. There is no
formal contradiction, like the one we get assuming the existence of an extension
of the Lebesgue measure on [0, 1] to the power set of [0, 1] (without rejecting the
axiom of choice). But there is a danger that results such as Proposition 1 are
vacuous. For example, is it possible that the investor has a strategy making him
infinitely rich at time T no matter what ω crops up? It is easy to see that such
a strategy does not exist: the initial capital will never increase if ω is constant.
The next question is: is there a strategy that makes the investor infinitely rich
when ω is not constant? Again the answer is negative:

Lemma 5. For any positive capital process S there exists a non-constant càdlàg
ω ∈ Ω such that ST (ω) ≤ S0.

Proof. Consider any representation of S in the form (2). Let (τmn ) and (hmn ) be
the stopping times and functions involved in the definition of Gm. The set of
all stopping times τmn is countable. Choose any t ∈ (0, T ) that is different from
all τmn (1), where 1 stands for the element of Ω that is identically equal to 1. For
each m, let n(m) be the largest integer such that τm

n(m) < t (with τ0 understood

to be 0). Now we can define ω by the requirements that it should be equal to 1
in the interval [0, t), be constant in the interval [t, T ], and satisfy

ω(t)− ω(t−) =

{

1 if
∑

m hn(m)(1) ≤ 0

−1 if
∑

m hn(m)(1) > 0.

9



The step of Lemma 5 (borrowed from [3]) can be repeated more than once, which
allows the market to choose from among a lot of piecewise constant functions
ω without allowing the investor to increase his capital. However, the problem
remains:

Open problem. Let E be the set of all non-constant continuous functions in
Ω. Is it true that P(E) = 1 (or at least P(E) > 0)?

The answer appears to be an obvious “yes”, but after Banach–Tarski [18] we
want a proof.

At this point it is natural to show that we do not have a similar problem
for the definitions of Sections 2 and 3. Let Xt : Ω → R be the projection
Xt(ω) := ω(t), where Ω is defined as in either of these two sections.

Proposition 2. Let Xt be a martingale w.r. to a probability measure P on
(Ω,FT ) and the filtration (Ft) (under the definitions of Section 2 or Section 3).
If E ∈ FT satisfies P (E) = 1, then P(E) = 1.

Proof. Under P , any positive simple capital process becomes a positive càdlàg
local martingale, since by the optional sampling theorem, every partial sum in
(1) becomes a càdlàg martingale. Every positive local martingale is a super-
martingale, and so the partial sums corresponding to a given positive capital
process (2) are positive càdlàg supermartingales. Therefore, the existence of a
positive capital process increasing its value between time 0 and T by more than a
strictly positive constant for all ω ∈ Ω would contradict the maximal inequality
for positive càdlàg supermartingales (as applied to the partial sums).

Proposition 2 shows that the results of Sections 2 and 3 are applicable to
the typical paths of numerous stochastic processes, including continuous non-
constant ones (such as Brownian motion).
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[10] Rimas Norvaǐsa. Quadratic variation, p-variation and integration with
applications to stock price modelling. Technical Report arXiv:0108090

[math.CA], arXiv.org e-Print archive, August 2001.

[11] David Oakes. Self-calibrating priors do not exist (with discussion). Journal
of the American Statistical Association, 80:339–342, 1985.

[12] Glenn Shafer and Vladimir Vovk. Probability and Finance: It’s Only a
Game! Wiley, New York, 2001.

[13] Christophe Stricker. Sur la p-variation des surmartingales. Séminaire de
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