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Correlated two-photon transport in a one-dimensional waveguide side-coupled to a

nonlinear cavity
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We investigate the transport properties of two photons inside a one-dimensional waveguide side-
coupled to a single-mode nonlinear cavity. The cavity is filled with a nonlinear Kerr medium.
Based on the Laplace transform method, we present analytic solution of quantum states of the
transmitted and reflected two photons, which are initially prepared in a Lorentzian wave packet.
The solution reveals how quantum correlation between the two photons emerge after the scattering
by the nonlinear cavity. In particular, we show that the output wave function of the two photons in
position space can be localized in the relative coordinates, which is a feature that may be interpreted
as a two-photon bound state in this waveguide-cavity system.

PACS numbers:

I. INTRODUCTION

Creating quantum correlations among photons has
been a subject of main interest for studying foundations
of quantum theory as well as applications in quantum
information science. As direct interactions between pho-
tons in free space are extremely weak, generation of cor-
related photons generally requires nonlinear media. Elec-
tromagnetically induced transparency and photon block-
ade are mechanisms that have been exploited to achieve
strongly interacting photons [1–4]. Recently, studies of
two-photon scattering from a two-level system inside a
one-dimensional (1D) waveguide have also reported var-
ious features of photon correlation [5–7]. For example,
Shen and Fan [6] have discovered the existence of two-
photon bound states, and Roy [7] has indicated an inter-
esting application of the system as a few-photon optical
diode. We also note that Shi and Sun [8] have employed a
formal scattering theory to study multi-photon transport
in a 1D waveguide.

In this paper, we investigate the correlation properties
of two photons in a 1D waveguide, which is side-coupled
to a nonlinear cavity filled with a Kerr medium (Fig. 1).
The nonlinear cavity plays the role of a scatterer. It is
worth noting that such a Kerr nonlinearity has also been
employed in coupled cavity array systems for studying
quantum phase transition [9–14] and nonclassical photon
statistics [15–18]. Here we will focus on the transport
properties of two photons determined by long time so-
lution of the Schrödinger equation, assuming the initial
photons are in wave packet forms. We will present an an-
alytic solution based on the Laplace transform method,
which has been applied to related photon-atom scatter-
ing problems [19]. From the two-photon transmission
and reflection amplitudes, we show how the two scat-
tered photons can be correlated in frequencies and posi-
tion variables, with the latter revealing photon bunching
and anti-bunching effects. Our solution also reveals a
two-photon resonance condition when the incident pho-
ton energies match the cavity frequency shifted by the
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FIG. 1: (Color online). Schematic diagram of the physical
setup. A 1D waveguide is coupled to a cavity filled with a
Kerr-type nonlinear medium. Photons injected from the left-
hand side of the waveguide are scattered by the nonlinear
cavity. As a result, photons are reflected or transmitted in
the waveguide.

Kerr interaction. The behavior of transmission and re-
flection near the resonance will be discussed.

II. PHYSICAL MODEL

The physical model under investigation consists of an
infinite long 1D waveguide and a nonlinear cavity located
at the origin (Fig. 1). We consider a single-mode field in
the cavity, which couples to right- and left-propagating
fields of the waveguide via the side coupling [20, 21] so
that photons can tunnel between the waveguide and the
nonlinear cavity. The Hamiltonian (with ~ = 1) of the
system is given by

Ĥ = ωcâ
†â+

U

2
â†â†ââ+

∫ ∞

0

dkωk(r̂
†
k r̂k + l̂†k l̂k)

+J

∫ ∞

0

dk
[

â†(r̂k + l̂k) + (r̂†k + l̂†k)â
]

. (1)

Here â and â† are annihilation and creation operators
associated with the cavity mode with the resonant fre-
quency ωc. The second term in Eq. (1) describes the Kerr
nonlinear interaction with a strength U . The Hamilto-
nian of free fields propagating in the waveguide is de-

scribed by the third term, where l̂k (l̂†k) and r̂k (r̂†k)
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are, respectively, the annihilation (creation) operators for
left- and right-propagating waves with wave number k
and frequency ωk. These operators satisfy the commuta-
tion relations

[l̂k, l̂
†
k′ ] = [r̂k, r̂

†
k′ ] = δ(k − k′), [l̂k, r̂

†
k′ ] = 0. (2)

Finally, the last term in the Hamiltonian (1) repre-
sents the coupling between the cavity and the waveguide,
where J is the tunneling strength.
For convenience, we introduce even- and odd-parity

modes operators of the waveguide,

b̂k ≡ 1√
2
(r̂k + l̂k), ĉk ≡ 1√

2
(r̂k − l̂k), (3)

so that Hamiltonian (1) can be rewritten as

Ĥ = Ĥ(o) + Ĥ(e) (4)

with

Ĥ(o) =

∫ ∞

0

dkωkĉ
†
k ĉk, (5a)

Ĥ(e) =ωcâ
†â+

U

2
â†â†ââ+

∫ ∞

0

dkωk b̂
†
kb̂k

+ g

∫ ∞

0

dk(â†b̂k + b̂†kâ). (5b)

Here g ≡
√
2J is introduced. We see that the interaction

involves only even modes, and photons in the odd modes
evolve freely in the waveguide. Therefore we shall focus
on the calculation the transport properties of the photons
in even modes.
In the rotating frame with respect to Ĥ

(e)
0 = ωcâ

†â +

ωc

∫∞

0 dkb̂†kb̂k, the Hamiltonian Ĥ(e) can be simplified to

Ĥ
(e)
I =

U

2
â†â†ââ+

∫ ∞

0

dk∆k b̂
†
kb̂k

+g

∫ ∞

0

dk(â†b̂k + b̂†kâ), (6)

where ∆k = ωk − ωc is the detuning. In this paper the
dispersion relation for the modes in the waveguide is as-
sumed to be linear, i.e., ωk = vgk, and we will set the
speed of light in the waveguide, vg = 1.

III. SINGLE-PHOTON TRANSPORT

As a preparation for finding the solution of two-photon
scattering, we first consider the single-photon problem
[22–26]. Note that the Kerr nonlinearity has zero effect
for single photon states. The main purpose in this section
is to present the single-photon transmission and reflection
coefficients, which will appear in the two-photon solution
later in the paper.

In the single-excitation subspace, an arbitrary state
can be written as

|ϕ(t)〉 = α(t)|1〉c|ø〉+
∫ ∞

0

dkβk(t)|0〉c|1k〉, (7)

where |1〉c|ø〉 stands for the state with one photon in the
cavity and no photon in the waveguide, and |0〉c|1k〉 de-
notes the state with a vacuum cavity field and one photon
in the kth (even) mode of the waveguide. The time de-
pendent variables α(t) and βk(t) are the respective prob-
ability amplitudes.

By the Schrödinger equation i|ϕ̇(t)〉 = Ĥ
(e)
I |ϕ(t)〉, we

have

α̇(t) = −ig
∫ ∞

0

dkβk(t), (8a)

β̇k(t) = −i∆kβk(t)− igα(t). (8b)

By performing the Laplace transform defined by f̃(s) ≡
∫∞

0 f(t)e−stdt, Eq. (8) becomes

sα̃(s)− α(0) = −ig
∫ ∞

0

dkβ̃k(s), (9a)

sβ̃k(s)− βk(0) = −i∆kβ̃k(s)− igα̃(s), (9b)

where α(0) and βk(0) are the initial values of the proba-
bility amplitudes.
Assuming initially the cavity is in the vacuum state

and an incident single photon in the waveguide is pre-
pared in a wave packet with a Lorentzian spectrum, the
initial condition reads

α (0) = 0, βk(0) =
G1

∆k − δ + iǫ
, (10)

where δ and ǫ are the detuning and spectral width of
the photon, and G1 =

√

ǫ/π is a normalization constant.
The choice of βk(0) in Eq. (10) has the advantage that
analytic solutions can be obtained conveniently. In addi-
tion, by noting that ǫ→ 0 corresponds to the monochro-
matic limit, an incident wave packet of a general form can
be constructed by coherent superpositions of Lorentzian
wave packets of various frequencies.
After some calculations, we obtain

α̃(s) =
1

s+ γ
2

2πigG1

δ − i(s+ ǫ)
, (11a)

β̃k(s) =
G1

s+ i∆k

(

1

∆k − δ + iǫ
+

1

s+ γ
2

2γ

δ − i(s+ ǫ)

)

.

(11b)

Note that in obtaining Eq. (11), we have made the ap-

proximation:
∫∞

0
g2

s+i∆k
dk ≈

∫∞

−∞
g2

s+i∆k
d∆k = γ/2,

where γ = 2πg2.
Taking the inverse Laplace transform of Eq. (11), in

the long time limit, γt/2 → ∞ and ǫt→ ∞, we have

α(t→ ∞) = 0, βk(t→ ∞) = t̄kβk (0) e
−i∆kt, (12)
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where

t̄k =
∆k − iγ/2

∆k + iγ/2
. (13)

Eq. (12) shows that the scattering process results in a
phase shift θk for a single photon with wave vector k,
where the phase shift is defined by exp(iθk) = t̄k.
In terms of the left- and right-propagation modes, if

we assume a photon packet is incident onto the cavity
from the left, then the initial state can be written as

|ϕ(0)〉 =

∫ ∞

0

dkβk(0)r̂
†
k|∅〉

=
1√
2

∫ ∞

0

dkβk(0)(b̂
†
k + ĉ†k)|∅〉. (14)

In the long-time limit, the wave function becomes,

|ϕ(t → ∞)〉 =
∫ ∞

0

dkβk(0)e
−i∆kt(tk r̂

†
k + rk l̂

†
k)|∅〉, (15)

where the transmission and reflection amplitudes are de-
fined as

tk =
∆k

∆k + iγ/2
, rk =

−iγ/2
∆k + iγ/2

. (16)

A similar result has been obtained for the case that a
single photon is scattered by a two-level system in a 1D
waveguide [22], namely, the transmission amplitudes tk is
zero at the exact resonance. This effect was also reported
in Ref. [20] for side coupling with a classical field.

IV. CORRELATED TWO-PHOTON
TRANSPORT

A. Equations of motion and solution

We now turn to the two-photon scattering problem.
Since the total excitation number operator of the system
is a conserved quantity, we can restrict the calculation to
the two-excitation subspace. An arbitrary state in this
subspace has the form:

|Φ(t)〉 = A(t)|2〉c|ø〉+
∫ ∞

0

dkBk(t)|1〉c|1k〉

+

∫ ∞

0

dp

∫ p

0

dqCp,q(t)|0〉c|1p, 1q〉, (17)

where |2〉c|ø〉 is the state of two photons in the nonlinear
cavity and no photon in the waveguide, and |1〉c|1k〉 is
the state with one photon in the cavity and one photon
with wave number k in the waveguide. The last term
represents the state with no photon in the cavity and
two photons with wave numbers p and q in the waveguide.
A(t), Bk(t), and Cp,q(t) denote the respective probability
amplitudes.

By the Schrödinger equation, the probability ampli-
tudes are governed by:

Ȧ (t) = −iUA (t)− i
√
2g

∫ ∞

0

dkBk (t) , (18a)

Ḃk(t) = −i∆kBk(t)− i
√
2gA (t)− ig

∫ ∞

0

dpCp,k(t),

(18b)

Ċp,q (t) = −i(∆p +∆q)Cp,q(t)− ig(Bp (t) +Bq (t)).
(18c)

We assume that the two injected photons are initially
prepared in a Lorentzian wave packet, the initial condi-
tion of the system reads,

A (0) =0, Bk (0) = 0, (19a)

Cp,q (0) =G2

(

1

∆p − δ1 + iǫ

1

∆q − δ2 + iǫ

+
1

∆q − δ1 + iǫ

1

∆p − δ2 + iǫ

)

, (19b)

with the normalization constant

G2 =
ǫ√
2π

(

1 +
4ǫ2

(δ1 − δ2)2 + 4ǫ2

)−1/2

. (20)

Here δj and ǫj (j = 1, 2) are parameters defining the
detunings and spectral widths of the two photons. Note
that Cp,q has been symmetrized in Eq. (19b) because of
the bosonic character of photons.
We are interested in the asymptotic solution of Cp,q(t)

in the long time limit. After a lengthly calculation (see
Appendix A), we obtain for t≫ γ−1 and ǫ−1,

Cp,q(t) = (t̄pt̄qCp,q(0) +Bp,q) e
−i(∆p+∆q)t, (21)

where t̄p and t̄q are defined in Eq. (13). The expression
of Bp,q is given by

Bp,q =
−2UG2γ

2

(

∆p + iγ2
) (

∆q + iγ2
)

(∆p +∆q − U + iγ)

× 1

(∆p +∆q − δ1 − δ2 + 2iǫ)

×
[

1
(

∆p +∆q − δ1 + iǫ+ iγ2
)

+
1

(

∆p +∆q − δ2 + iǫ+ iγ2
)

]

. (22)

From Eqs. (21) and (22), we notice that the term Bp,q is
a non-factorizable function of p and q, implying a corre-
lation between the two output photons. The Bp,q has a
nominator proportional to the strength of Kerr nonlinear-
ity U in the cavity. In the case U = 0, Eq. (21) reduces to
a simple expression Cp,q(∞) = t̄pt̄qCp,q(0) exp[−i(∆p +
∆q)t], describing two independent scattered photons.
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B. Two-photon correlation in frequency variables

Let us express the results in terms of the left- and
right-propagating modes. Assuming the two photons are
injected from the left-hand side of the waveguide, then
the initial wave function can be written as

|ψ(0)〉 =
∫ ∞

0

∫ ∞

0

dpdqCp,q (0) r̂
†
pr̂

†
q |∅〉 (23)

According to Eq. (3) and the solution (21), we obtain the
long-time wave function, up to an overall phase factor
exp[−i(∆p +∆q)t], as

|ψ (t→ ∞)〉 =

∫ ∞

0

∫ ∞

0

dpdq(Crr
p,q r̂

†
pr̂

†
q + Cll

p,q l̂
†
p l̂

†
q)|∅〉

+

∫ ∞

0

∫ ∞

0

dpdq(Crl
p,q r̂

†
p l̂

†
q + Clr

p,q l̂
†
pr̂

†
q)|∅〉,

(24)

where

Crr
p,q = tptqCp,q (0) +

1

4
Bp,q, (25a)

Cll
p,q = rprqCp,q (0) +

1

4
Bp,q, (25b)

Crl
p,q = tprqCp,q (0) +

1

4
Bp,q, (25c)

Clr
p,q = tqrpCp,q (0) +

1

4
Bp,q. (25d)

Here Crr
p,q and Cll

p,q are, respectively, the two-photon
transmission and two-photon reflection amplitudes,
which correspond to the processes that two photons with
wave numbers p and q are transmitted into the right-
propagation mode or reflected into the left-propagation
mode. In addition, Crl

p,q (Clr
p,q) relates to the process that

the photon with wave number p (q) is transmitted into
the right-propagation mode and the photon with wave
number q (p) is reflected into the left-propagation mode.
We point out two interesting situations revealing the

strong correlation of output photons in frequency do-
main. The first situation is achieved by injecting two
identical photons with δ1 = δ2 = 0 and a narrow spec-
tral width ǫ≪ γ. This corresponds to the case when the
peak frequency of the photons coincide with the resonant
cavity. In this case the two photons are mainly reflected
and uncorrelated [Fig. 2(a)], but if they are transmitted,
they are strongly correlated [Fig. 2(b)]. This can be seen
by the fact that tp = tq = 0 at zero detuning, and hence
the transmission of both photons is dominated by the
Bp,q term. In other words, the two-photon transmission
near δ1 = δ2 = 0 is almost entirely due to the nonlin-
earity in the cavity. Such a pair of transmitted photons
are frequency correlated with the two-photon transmis-
sion probability concentrated along the line ∆p+∆q = 0
[Fig. 2(b)]. The uncertainty of frequencies of individual
transmitted photons is of the order of γ, whereas the
uncertainty of sum of frequencies of both photons is of

FIG. 2: (Color online). (a) and (b) are plots of |γCll
p,q|

2 and
|γCrr

p,q|
2, respectively, when δ1 = δ2 = 0. (c) and (d) are plots

of |γCrr
p,q |

2 and |γCll
p,q|

2, respectively, when δ1 = δ2 = U/2.
Other parameters are set as U/γ = 10 and ǫ/γ = 0.05.

the order of ǫ. The smaller the ǫ, the narrower is the
distribution.
The second situation of interest is two-photon reso-

nance occuring when the sum of energies of the two in-
cident photons equals to that of a cavity containing two
photons, i.e., δ1 + δ2 = U . In this case the photons can
jointly enter the cavity. We show in Figs. 2(c) and (d) an
example with δ1 = δ2 = U/2 ≫ γ, where the frequency
correlation appears more effectively in the reflected am-
plitude Crr

p,q, since rj ≈ 0 (j = p, q). This is shown in the
narrow distribution in Fig. 2(d). The transmission part
[Fig. 2(c)], although they carry most of the probabilities,
are almost uncorrelated.

C. Two-photon correlation in position variables

We now discuss the spatial features of the output pho-
tons. For simplicity, but without loss of the generality, we
consider the monochromatic limit ǫ→ 0 of incident pho-
tons. The two-photon transmission amplitude projected
in position space reads (see Appendix B)

〈x1, x2|ψrr〉 ≈ −16π2MG2e
iE(xc−t)θ(t− xc)φrr(x),(26)

with

φrr(x) = tδ1tδ2 cos(δx) −
U

E − U + iγ

× γ2

(E + iγ)2 − 4δ2
e

(iE−γ)
2 |x|. (27)

Here we have defined xc = (x1+x2)/2 and x = x1−x2 for
the center-of-mass and relative coordinates respectively,
and E = δ1 + δ2 and δ = (δ1 − δ2)/2. We note that
Eq. (26) is a product of center-of-mass wave function and
relative wave function φrr(x), with exp[iE(xc−t)]θ(t−xc)
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FIG. 3: (Color online). Spatial features of two-photon trans-
mission at δ1 = δ2 = 0. (a) |φrr(x)|

2 as a function of scaled
relative coordinate γx, for various values of the scaled Kerr
parameter U/γ. (b) |φrr(0)|

2 as a function of the scaled Kerr
parameter U/γ.

describing the center-of-mass motion of the two trans-
mitted photons. The second term of φrr(x), which is an
localized function around x = 0 with a width γ−1. We
remark that a similar feature was reported in Ref. [6] in a
photon-atom scattering problem, where the exponential
decaying function is connected to the existence of photon
bound states.
To reveal spatial correlations, we take δ1 = δ2 = 0 so

that the first term of φrr(x) can be suppressed. This is
shown in Fig. 3(a) for various values of U . Note that
|φrr(x)|2 is proportional to the joint probability of pho-
tons with a separation x, therefore the decaying feature
corresponds to photon bunching. In particular, the joint
probability of having both transmitted photons at the
same position increases with U , but it saturates when
U ≫ γ [Fig. 3(b)]. For the two-photon reflection ampli-
tude in position space, we carry out a similar calculation
and obtain,

〈x1, x2|ψll〉 ≈ −16π2NG2e
−iE(xc+t)θ(t+xc)φll(x), (28)

with

φll(x) = rδ1rδ2 cos(δx)−
U

E − U + iγ

× γ2

(E + iγ)2 − 4δ2
e

(iE−γ)
2 |x|. (29)

At δ1 = δ2 = δ = 0, the second term causes a dip in
|φll(x)|2 at x = 0 [Fig. 4(a)], which is a signature of
photon antibunching as the reflected photons repel each
other. As U increases, the joint probability of having

-10 -5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

 x

 

 

|
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x)
|2

 U/ =0
 U/ =0.5
 U/ =1
 U/ =10

(a)

 

 

|
ll(
0)

|2

U/

(b)

FIG. 4: (Color online). Spatial features of two-photon re-
flection at δ1 = δ2 = 0. (a) |φll(x)|

2 as a function of scaled
relative coordinate γx, for various values of the scaled Kerr
parameter U/γ. (b) |φll(0)|

2 as a function of the scaled Kerr
parameter U/γ.

both reflected photons at the same position decreases
[Fig. 4(b)], which is in contrast to the transmission part.
Finally we describe the effects of two-photon resonance

around δ1 + δ2 = U discussed in the previous subsection.
For simplicity we again consider the case δ1 = δ2 here.
In Fig. 5, we illustrate the dependence of the relative
two-photon wave function on E = δ1 + δ2. The effect
of two-photon resonance is most apparent in Fig. 5(a),
where the reflected two-photon wave function is strongly
localized around x = 0 when E = U . Away from the res-
onance, the reflected two-photon wave function exhibits
an oscillatory pattern in x [Fig. 5(c)], which is controlled
by the two-photon detuning E − U . We also plot the
transmitted two-photon wave function in Figs. 5(b) and
(d), in which similar oscillatory patterns are observed.

V. CONCLUSIONS

In conclusion, we have presented an analytic solution
of two-photon scattering inside a one-dimensional waveg-
uide, which is side-coupled to a Kerr-type nonlinear cav-
ity. The system provides a scheme to realize correlated
two-photon transport. The Kerr nonlinearity is found
to correlate photons in frequency variables such that
∆p + ∆q is a constant, which is a constraint by the en-
ergy conservation. In position space, we have shown that
the Kerr nonlinearity can cause the two photons ‘stick’
together with an average separation distance of the order
of vgγ

−1. We may interpret the result as a two-photon
bound state, because of the exponential decaying shape
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FIG. 5: (Color online). Dependence of spatial features on
E = δ1 + δ2. (a) |φll(x)|

2 and (b) |φrr(x)|
2. Examples at

particular values of E are shown in (c) and (d). In these
figures, we use U = 10γ and δ = 0.

of relative wave function. However, because of the in-
terference with single photon processes described by the
first term in Eq. (25), features of photon correlation may
only be observed efficiently in certain directions. Finally,
we note that recent studies of the related topic have con-
sidered using a single atom as a scatterer [6, 27]. How-
ever, in view of recent progresses of achieving a giant
Kerr nonlinearity [1–3], our work suggests that a nonlin-
ear cavity may be an alternative regarding the correlated
two-photon transport problem.
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Appendix A: Solution of Eq. (18) by the Laplace transform method

In this Appendix, we give a detailed derivation for solution of Eq. (18) which governs the transport of two photons
in the waveguide. We use the Laplace transform method to solve these equations. Under the initial condition (19),
Eq. (18) becomes

(s+ iU)Ã(s) = −i
√
2g

∫ ∞

0

dkB̃k(s), (A1a)

(s+ i∆k)B̃k(s) = −i
√
2gÃ(s)− ig

∫ ∞

0

dpC̃p,k(s), (A1b)

[s+ i(∆p +∆q)]C̃p,q(s) = Cp,q(0)− ig(B̃p(s) + B̃q(s)). (A1c)

Substitution of Eqs. (A1a) and (A1c) into Eq. (A1b), and make use of the initial condition, we obtain the equation

for variable B̃k (s) as

[∆k − i(s+ γ/2)]B̃k (s) =

∫ ∞

−∞

(

2g2

U − is
+

g2

∆p +∆k − is

)

B̃p (s) d∆p

+2πgG2

(

1

∆k + δ1 − i (s+ ǫ)

1

∆k − δ2 + iǫ
+

1

∆k + δ2 − i (s+ ǫ)

1

∆k − δ1 + iǫ

)

.(A2)

where we have made the approximation
∫∞

0 dp g2

s+i(∆p+∆k)
≈ γ/2.

The solution of B̃k(s) Eq. (A2), by inspection, takes the form:

B̃k(s) =
2πgG2

∆k − i(s+ γ/2)

(

1

∆k + δ1 − i(s+ ǫ)

1

∆k − δ2 + iǫ
+

1

∆k + δ2 − i(s+ ǫ)

1

∆k − δ1 + iǫ

)

(1 + F̃k(s)),(A3)

with

F̃k(s) = −iγ
(

1

∆k + δ1 − i(s+ ǫ)

1

∆k − δ2 + iǫ
+

1

∆k + δ2 − i(s+ ǫ)

1

∆k − δ1 + iǫ

)−1

×
[

(

2

U − is− iγ
+

1

δ2 +∆k − i (s+ ǫ)

)

1

δ2 − i
(

s+ ǫ+ γ
2

)

1

δ1 + δ2 − i (s+ 2ǫ)

+

(

2

U − is− iγ
+

1

δ1 +∆k − i (s+ ǫ)

)

1

δ1 − i
(

s+ ǫ+ γ
2

)

1

δ1 + δ2 − i (s+ 2ǫ)

]

. (A4)
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Then from Eq. (A1c) we obtain the following expression

C̃p,q(s) =
G2

s+ i(∆p +∆q)

[

iγ

s+ γ
2 + i∆p

(

1

s+ ǫ+ i(∆p + δ1)

1

∆p − δ2 + iǫ
+

1

s+ ǫ + i(∆p + δ2)

1

∆p − δ1 + iǫ

)

+
iγ

s+ γ
2 + i∆q

(

1

s+ ǫ+ i(∆q + δ1)

1

∆q − δ2 + iǫ
+

1

s+ ǫ+ i(∆q + δ2)

1

∆q − δ1 + iǫ

)

− 2γ2

s+ γ + iU

1

s+ 2ǫ+ i (δ1 + δ2)

(

1

s+ ǫ+ γ
2 + iδ1

+
1

s+ ǫ + γ
2 + iδ2

)(

1

s+ γ
2 + i∆p

+
1

s+ γ
2 + i∆q

)

− γ2

s+ 2ǫ+ i(δ1 + δ2)

1

s+ ǫ + γ
2 + iδ1

(

1

s+ ǫ + i(δ1 +∆p)

1

s+ γ
2 + i∆p

+
1

s+ ǫ+ i(δ1 +∆q)

1

s+ γ
2 + i∆q

)

− γ2

s+ 2ǫ+ i(δ1 + δ2)

1

s+ ǫ + γ
2 + iδ2

(

1

s+ ǫ + i(δ2 +∆p)

1

s+ γ
2 + i∆p

+
1

s+ ǫ+ i(δ2 +∆q)

1

s+ γ
2 + i∆q

)

+

(

1

∆p − δ1 + iǫ

1

∆q − δ2 + iǫ
+

1

∆q − δ1 + iǫ

1

∆p − δ2 + iǫ

)]

. (A5)

Until now, we have obtained the expression for C̃p,q(s). Then we can get the expression for the probability amplitude

Cp,q(t) by performing inverse Laplace transform of C̃p,q(s). In particular, since we are interested in the output state
of the two photons, here we only present the long-time solution of Cp,q(t→ ∞) as

Cp,q(t→ ∞) = (t̄pt̄qCp,q(0) +Bp,q)e
−i(∆p+∆q)t, (A6)

where t̄p and t̄q have been defined in Eq. (13), and the expression for the correlation term is

Bp,q =
−2UG2γ

2

(

∆p + iγ2
) (

∆q + iγ2
)

(∆p +∆q − U + iγ)

1

(∆p +∆q − δ1 − δ2 + 2iǫ)

×
[

1
(

∆p +∆q − δ1 + iǫ+ iγ2
) +

1
(

∆p +∆q − δ2 + iǫ+ iγ2
)

]

. (A7)

Appendix B: Derivation of two-photon output state in position space

In this appendix, we derive the wave function of two-photon output state (24) in position space. For the two-photon
transmission process, the corresponding wave function in position space can be written as

〈x1, x2|ψrr〉 =

∫ ∞

0

∫ ∞

0

dpdqCrr
p,q〈x1, x2|r̂†pr̂†q |∅〉

≈ M
∫ ∞

−∞

∫ ∞

−∞

(tptqCp,q(0) +Bp,q/4)e
−i(∆p+∆q)tei∆px1ei∆qx2d∆pd∆q + x1 ↔ x2. (B1)

In Eq. (B1), symmetrization of the two photons has been taken into account by introducing 〈x1, x2|r̂†pr̂†q|∅〉 =

M(ei∆px1ei∆qx2 + ei∆px2ei∆qx1). According to the initial condition given in Eq. (19b), we can get the expression
for the independent transport part as

M
∫ ∞

−∞

∫ ∞

−∞

tptqCp,q (0) e
−i(∆p+∆q)tei∆px1ei∆qx2d∆pd∆q

= −8π2MG2tδ1−iǫtδ2−iǫe
(iE+2ǫ)(xc−t) cos(δx)θ(t − xc), (B2)

where we introduce the center-of-mass coordinator xc = (x1 + x2)/2, the relative coordinator x = x1 − x2, the total
momentum E = δ1+δ2, and the relative momentum δ = (δ1−δ2)/2. The θ(x) is the Heaviside step function and tδ1−iǫ

is defined in Eq. (16). Note that here we have taken the approximation exp[γ(x1 − t)/2] → 0 under the assumption
of γ/2 ≫ ǫ.
According to Eq. (A7), the Fourier transform of the correlation part Bpq can be written as

M
∫ ∞

−∞

∫ ∞

−∞

Bp,q

4
e−i(∆p+∆q)tei∆px1ei∆qx2d∆pd∆q = A1 +A2, (B3)
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with

Al = −1

2
MUG2γ

2

∫ ∞

−∞

∫ ∞

−∞

1

(∆q + iγ/2)

1

(∆p + iγ/2)

1

(∆p +∆q − U + iγ)

1

(∆p +∆q − δ1 − δ2 + 2iǫ)

× 1

(∆p +∆q − δl + iǫ+ iγ/2)
ei∆p(x1−t)d∆pe

i∆q(x2−t)d∆q,

(B4)

for l = 1, 2. The Fourier transform of the correlation part can be obtained as

A1 +A2 =
8π2MG2U

(E − U − 2iǫ+ iγ)

γ2

(E + iγ − i2ǫ)2 − 4δ2
e(iE+2ǫ)(xc−t)e(iE+2ǫ−γ) |x|

2 θ(t− xc). (B5)

According to Eqs. (B2) and (B5), the second term in Eq. (B1) can be obtained by making the replacement xc → xc
and x→ −x. Then

〈x1, x2|ψrr〉 = −16π2MG2e
(iE+2ǫ)(xc−t)θ(t− xc)φrr(x), (B6)

with

φrr(x) = tδ1−iǫtδ2−iǫ cos(δx)−
U

E − U − 2iǫ+ iγ

γ2

(E + iγ − i2ǫ)2 − 4δ2
e

(iE+2ǫ−γ)
2 |x|. (B7)

Using the same method, we can obtain the wave function for the two-photon reflection state,

〈x1, x2|ψll〉 =

∫ ∞

0

∫ ∞

0

dpdqCll
p,q〈x1, x2|l̂†p l̂†q|∅〉 ≈ −16π2NG2e

−(iE+2ǫ)(xc+t)θ(t+ xc)φll(x), (B8)

with

φll(x) = rδ1−iǫrδ2−iǫ cos(δx) −
U

E − U − 2iǫ+ iγ

γ2

(E + iγ − i2ǫ)2 − 4δ2
e

(iE+2ǫ−γ)
2 |x|, (B9)

where N is defined by 〈x1, x2|l̂†p l̂†q|∅〉 = N (e−i∆px1e−i∆qx2 + e−i∆px2e−i∆qx1).
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