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Université Pierre et Marie Curie case 74,

Campus Jussieu, F-75252 Paris Cedex 05, France

3Bell Laboratories, Alcatel-Lucent, Murray Hill, NJ 07974, USA

4Department of Physics, the Hong Kong University

of Science and Technology, Hong Kong, China∗

Abstract

We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectan-

gular corrugations with depth comparable to the separation between the surfaces. In the proximity

force approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the

force, leading to a distance dependence that is distinct from a flat surface. The measured Casimir

force is found to deviate from the PFA by up to 15%, in good agreement with calculations based

on scattering theory that includes both geometry effects and the optical properties of the material.
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The Casimir force between two neutral conductors arises from the change of the zero point

energy associated with quantum fluctuation of the electromagnetic field in the presence of

boundaries. Between two parallel plates, the Casimir force is attractive and its magnitude

increases rapidly as the separation decreases. In recent years, the Casimir force has received

significant attention, from fundamental interests to possible applications in micro and nano-

electromechanical systems [1–12]. For instance, fundamental questions on how to account

for the temperature corrections to the Casimir force remain a controversial topic [13]. At the

same time, there has been much progress in the control of the Casimir force by modifying the

optical properties of the interacting surfaces, such as using dissimilar metals [6], replacing

one surface with semiconductors with different carrier concentrations [7], and inserting fluid

into the gap between the surfaces [11]. In addition, a number of efforts aim at generating

repulsive Casimir forces with a vacuum gap using metamaterials [14, 15].

Apart from the optical properties of the material, the Casimir force depends on the

shape of the interacting objects in non-trivial ways. For small deviations from the planer

geometry, the Casimir force can be estimated by the proximity force approximation (PFA)

[16]. In the common experimental configuration of sphere and plate, the PFA works well

provided that the separation is much smaller than the radius of the sphere. However,

the PFA breaks down for other geometries. Theoretical analysis indicates that for a thin

conducting spherical shell [17] or a rectangular box with a certain aspect ratio [18], the

Casimir energy has opposite sign to parallel plates, opening the possibility of generating

repulsive Casimir forces. Advanced theoretical approaches are now capable of calculating

the Casimir force between structures of arbitrary shapes [19–21]. These approaches are not

limited to perfectly conducting objects, but can also take into account the optical properties

of the material. Experimentally, revealing the strong geometry dependence of the Casimir

force involves introducing deformations on a planar surface. The first such attempt was

performed by Roy and Mohideen, who measured the Casimir force on surfaces with small

sinusoidal corrugations [3]. Subsequently, the lateral Casimir force in similar structures has

been demonstrated by the same team to deviate from the PFA [12]. Recently, we measured

the Casimir force on a surface with an array of high aspect ratio trenches [8]. Deviation

of up to 20% from PFA is observed. While this experiment provides evidence for the non-

trivial boundary dependence of the Casimir force, the measured results are smaller than

the predicted values for perfect metallic structures of the same geometry [16]. It becomes
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apparent that meaningful comparison of experimental results to theory would require both

geometry effects and finite conductivity of the material to be included.

In our previous experiment [8], we considered the Casimir force between a surface with

an array of deep rectangular trenches and another flat surface on top. The trench array is

assumed to have solid volume fraction equal to p. In the PFA picture, the total interaction

is a sum of two contributions: (1) the interaction between a fraction p of the flat surface and

the top surface of the trench array separated by distance z; and (2) the interaction between

a fraction of (1− p) of the flat surface and the bottom of the trench array at distance z+ a,

where a is the depth of the trenches. The second contribution is negligible for such deep

trenches because the Casimir force at this separation (z + a > 1 µm) is too small to be

detected in our measurement setup. Therefore, under the PFA, the force on the trench

array is practically identical to the force between two parallel flat surfaces at separation

z multiplied by a constant factor p. In other words, for the deep trenches, the distance

dependence of the force under the PFA is the same as a flat surface.

In this Letter, we report measurements of the Casimir force between a gold sphere and a

silicon plate with nanoscale, rectangular corrugations with depth comparable to the separa-

tion between the surfaces. In the PFA, both the top and bottom surfaces of the corrugations

contribute to the force, yielding a distance dependence that is distinct from a flat surface.

The measured Casimir force is found to deviate from the PFA by about 10%. We present cal-

culations based on scattering theory that includes the finite conductivity of silicon, yielding

good agreement with measurement. Our results demonstrate that for surfaces with nanoscale

deformations, the Casimir force depends on a profound interplay between geometry effects

and material properties.

Figure 1(a) shows a scanning electron micrograph of the cross section of the trench array

with periodicity of 400 nm. We fabricate the trenches by dry etching into a highly p-doped

silicon wafer with a lithographically defined silicon oxide pattern as the etch mask. In the

reactive ion etching step, an inductively-coupled plasma of SF6 and Ar was used without any

passivation gas. The reactant flow rate, pressure and bias were optimized to yield a smooth

and flat bottom surface so that its contribution to the PFA can be easily determined. Such

a recipe, however, produced a sidewall at 94.6 ◦ to the top surface, close to but not exactly

vertical. After etching, the oxide mask is removed using hydrofluoric acid (HF). Another

sample, consisting of a flat surface with no corrugations, is also prepared. Both samples
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FIG. 1. (a) Scanning electron micrograph of the cross section view of the trench array. (b)

Schematic of the experimental setup (not to scale). (c) Measurement scheme with electrical con-

nections. Vac1 and Vac2 are the excitation voltages applied to the bottom of the electrodes.

are fabricated from the same wafer to ensure that the optical properties of the silicon are

identical.

Accurate determination of the dimensions of the trench array is crucial in the electrostatic

force and the Casimir force calculations. Ten cross section views [similar to Fig. 1(a)] at

different positions of the trench array are taken using a scanning electron microscope (SEM).

The lengths of the top surface and the bottom surface in one period are measured to be

l1 = 185.3 nm and l2 = 199.1 nm respectively. An atomic force microscope is used to obtain

the depth of the trenches. The average of one set of ten scans of 2 µm square and another

set of 1 µm square at different locations gives t = 98 ± 0.7 nm. This depth is chosen to be

smaller than the typical separation between the two interacting bodies, so that the force

from the bottom surface is not negligible if the PFA is assumed to be valid:

FPFA = (1/λ)

∫ λ

0

Fflat(z(x))dx

= p1Fflat(z) + p2Fflat(z + t) + 2

∫ p3

0

Fflat(z + tx/p3)dx, (1)

where Fflat is the force on a flat surface made of the same material, p1 = l1/λ, p2 = l2/λ

and p3 = (1 − p1 − p2)/2. In Eq. (1), the first two terms represent the contributions of

the top and bottom surfaces respectively, accounting for ∼ 97% of the force under the PFA.

The third term introduces a small modification originating from the sidewalls that are not

perfectly vertical. While deriving the force on such corrugated structures using the PFA is

rather straight forward, the actual Casimir force is expected to deviate from the PFA due to

its non-trivial dependence on the geometry of the interacting objects. Since such deviations

increase with the ratio z/λ [16], the corrugated sample is chosen to have the smallest λ that

can be reproducibly fabricated with our lithography and etching tools. Calculations of the

Casimir force on this exact geometry using scattering theories will be presented later.
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Figure 1(b) shows a schematic (not to scale) of a micromechanical oscillator that measures

the force gradient between the corrugated surface and a spherical surface. The oscillator

is made of a 3.5 µm thick, 500 µm square heavily doped polysilicon plate suspended by

two torsional rods. Underneath the oscillator’s top plate, there are two fixed electrodes.

Torsional oscillations of the top plate are electrostatically excited when a small ac voltage

close to the resonant frequency of the oscillator (f0 = 1783 Hz and quality factor 32,000)

is applied to one electrode. Motion of the top plate is detected by the capacitance change

between the top plate and the electrodes using additional ac voltages at amplitude of 100mV

and frequency of 102 kHz. Two glass spheres, each with radius R = 50 µm, are coated with

a layer of gold with thickness of 4000A. They are stacked and attached onto one side of the

top plate using conductive epoxy at a distance of b = 210 µm from the rotation axis.

Preparation of the silicon surfaces involves a number of important steps. First, the

native oxide on the surfaces of the silicon samples was removed by HF. This procedure also

passivates the silicon surface so that oxide does not re-form in ambient pressure for a few

hours [7]. To eliminate residual water on the corrugations, the silicon chip was baked at

120 ◦C for 15 minutes. Afterwards, the silicon sample is positioned face down at a few µm

from the top of the spheres. The chamber is then immediately evacuated to a base pressure

of 10−6 torr by dry pumps.

A closed-loop piezoelectric actuator controls the distance between the silicon sample and

the sphere. The distance z is given by z = z0 − zpiezo − bθ, where z0 is the initial gap

between two surfaces, zpiezo is the piezo extension and bθ is a correction term to account for

the tilting angle θ of the top plate. A phase locked loop is used to track the frequency shift

of the oscillator as the sphere approaches the silicon sample. At small oscillations where

nonlinear effects can be neglected, the shift in the resonant frequency is proportional to the

force gradient

∆f = C
∂F

∂z
(2)

where C = −b2/8π2If0 and I is the moment of inertia of the top plate together with the

two spheres. The oscillation amplitude of the oscillator is reduced as z decreases to avoid

the oscillation from becoming nonlinear.

We apply electrostatic forces to calibrate the constant C and the initial distance between

the surfaces z0. The electrostatic force between the grounded gold sphere and the flat plate
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at voltage V is given by:

Fe = 2πǫ0(V − V0)
2

∞
∑

n=1

[coth(α)− n coth(nα)]

sinh(nα)
, (3)

where ǫ0 is the permittivity of vacuum, α = cosh−1(1+d/R) and d is the separation between

the sphere and the plate. The residual voltage V0 is measured to be −0.499 V by finding

the voltage at which the frequency shift ∆f attains minimum at a fixed distance. V0 is

found to change by less than 3 mV for z ranging from 100 nm to 600 nm. In Fig. 2, the

solid circles represent the measured electrostatic force gradient on the flat silicon sample

at V − V0 = 300 mV and the solid line is a fit using Eqs. (2) and (3) after subtracting

the contribution of the Casimir force (the measurement of which is described later). C is

determined to be 614 ± 3 m N−1 s−1 by averaging six sets of data with V − V0 between

245mV and 300mV. For the corrugated silicon sample, the calibration procedure is similar.

However, since there is no analytic expression for the electrostatic force, it is necessary to

solve Poisson’s equation in 2D numerically. The boundary conditions, as shown in the inset

of Fig. 2, are set by maintaining a fixed potential between the trench array and a flat surface,

with periodic boundary conditions applied to one period of the array. Then, the potential

distribution is calculated using finite element analysis, with the confined area divided into

N > 10, 000 triangles. Since R >> z, the proximity force approximation Fs,grat = 2πREf,grat

is used to obtain the force Fs,grat between a sphere and a corrugated surface, where Ef,grat

is the electrostatic energy per unit area between a flat surface and a corrugated surface. To

ensure the convergence of the numerical calculation, we checked that the calculated force

varies by less than 0.1% even when N is doubled.

Next, the Casimir force gradient F ′

c,flat on the flat silicon surface is measured by setting

V equal to V0. In Fig. 3(a), the circles are the measured data and the solid line represents

the theoretical values. To account for the finite conductivity of the materials, the dielectric

functions evaluated at imaginary frequencies ǫ(iω) are used in Lifshitz’s formula. For gold,

we use optical data extrapolated at low frequencies by the Drude model ǫg(iω) = 1+
ω2
p,g

ω(ω+γg)

with a plasma frequency ωp,g = 9 eV and a relaxation rate γg = 35 meV. For silicon, the

Drude-Lorentz model is used: ǫsi(iω) = ǫi(iω) +
ω2

p,si

ω(ω+γsi)
. ǫi(iω) is the dielectric function for

intrinsic silicon, taken from Ref. [22]. The plasma frequency ωp,si (1.36× 1014 rad.s−1) and

the relaxation rate γsi (4.75× 1013 rad.s−1) are interpolated from the data in Ref. [23] for a

carrier density of 2 × 1018 cm−3 determined from the dc conductivity of the wafer. Figure
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FIG. 2. The electrostatic force gradient as a function of distance for V = V0 + 300 mV on the flat

silicon surface (solid circles) and corrugated silicon structure (hollow squares). The solid line is a

fit using Eq. (3) for a flat surface and the dash line is a fit using the numerical calculations for

the corrugated structure. Inset: Meshing of the gap between the two surfaces to solve the Poisson

equation in 2D (z = 150 nm). The number of triangles is 40 times larger in the actual calculation.

3 (b) shows the dielectric functions used for doped silicon and gold. The force calculated

by Lifshitz’s formula is further modified by the roughness correction using the geometrical

averaging method [24]. The contribution to the roughness correction originates mainly from

the gold surface (∼ 4 nm rms) rather than the silicon wafer (∼ 0.6 nm rms).

The Casimir force gradient F ′

c,grat between the same gold sphere and the corrugated

silicon sample is then measured and plotted as circles in Fig. 3(c). Comparison to the

PFA is performed by evaluating Eq. (1) with the measured Casimir force on the flat silicon

surface. As described earlier, the force gradient on the corrugations under the PFA, F ′

c,PFA,

is the sum of the force on the top and bottom surfaces, with a small contribution from

the slightly slanted sidewalls. The deviations of the measured Casimir force from the PFA

arise due to the strong geometry dependence of the Casimir force. For a more quantitative

analysis of the deviation, the ratio ρ = F ′

c,grat/F
′

c,PFA is plotted in Fig. 3(d). The measured

F ′

c,grat clearly exceeds F ′

c,PFA, by up to 15%.

We perform exact calculations for the Casimir force Fc,grat(z) per unit area between a flat

gold plate and the corrugated silicon surface, taking into account the non-specular reflections

introduced by the grating structure. Then, we use the PFA to relate the sphere-plane and

the plane-plane geometries according to F ′

c,grat = 2πRFc,flat. The theory for calculating the

Casimir energy based on scattering theory [19] for structures involving gratings has been

presented elsewhere [25] and will be only briefly summarized. The zero temperature Casimir
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FIG. 3. (a) Measured Casimir force gradient between the gold sphere and the flat silicon surface

F ′

c,flat. The solid line represents the theoretical calculation including finite conductivity and surface

roughness corrections. (b) Dielectric functions evaluated at imaginary frequencies for doped silicon

(plain line) and gold (dashed line). (c) Measured Casimir force gradient on corrugated silicon

structure. The line represents the force gradient expected from the PFA. (d) The squares are the

ratio ρ of the measured Casimir force gradient to the force gradient expected from the PFA. The

solid line plots the theoretical values including both geometry and finite conductivity effects.

force per unit area between two reflecting objects separated by a distance z is

F = −~

∫∫∫

tr
(

(1−M)−1 ∂zM
)

d2k⊥ dξ (4)

where k⊥ gather the components of the wave vector in the plane of the objects and

ξ = iω is the Wick-rotated imaginary frequency. M is the open-loop function M =

R1(ξ)e
−κzR2(ξ)e

−κz with R1 and R2 the reflection operators for the two objects and

κ =
√

ξ2/c2 + k2
⊥
. For planar objects, the reflection operators are diagonal in the plane

wave basis and collect the appropriate Fresnel coefficients. For gratings, this does not hold

anymore. The reflection operators are not diagonal as they mix different polarizations and

account for non specular reflections. Therefore, in general the matrices Ri and e−κz do

not commute and we write −∂zM = R1(ξ)κe
−κzR2(ξ)e

−κz +R1(ξ)e
−κzR2(ξ)κe

−κz. The

results of the exact calculation, normalized by the PFA, are plotted as the solid line in Fig.

3(d), yielding good agreement with measurements.

Our results demonstrate that it is possible to both calculate and measure the Casimir
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force in nanostructured surfaces of unconventional shapes with high accuracy. The interplay

between finite conductivity and geometry effects holds promise as an important tool to

control the Casimir force between mechanical components at close proximity.
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