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Quantum phases of naturally-occurring systems exhibit rich nature as manifestation of their
many-body correlations, in contrast to our persistent technological challenge to build at will such
correlations artificially from scratch. Here we show theoretically that quantum correlations exhibited
in the two-dimensional valence bond solid phase of a quantum antiferromagnet, modeled by Affleck,
Kennedy, Lieb, and Tasaki as a precursor of spin liquids and topological orders, are sufficiently
complex yet structured enough to simulate universal quantum computation when every single spin
can be measured individually. This unveils that an intrinsic complexity of naturally-occuring 2D
quantum systems — which has been a long-standing challenge for traditional computers — could
be tamed as a computationally valuable resource, regardless of our constraint not to create newly
entanglement during computation. Our constructive protocol leverages a novel way to herald the
correlations suitable for deterministic quantum computation through a random sampling, and may
be extensible to other ground states of various 2D valence bond phases beyond the AKLT state.

I. INTRODUCTION

Daily stories about a quantum computer have earned
in our mind its image as a super postmodern technol-
ogy based on an artificial full control of quantum sys-
tems in the highest possible precision. Most current ap-
proaches to implement a quantum computer are based on
a bottom-up idea in that we intend to build it by com-
bining key elementary objects, as well summarized by the
celebrated DiVincenzo criteria [1]. The idea implies that
it should be equally, i.e., reversibly, doable to both create
and annihilate at will many-body correlations (or entan-
glement if its nonlocal character has to be emphasized)
among many qubits artificially. However, despite various
promising candidates for a qubit and remarkable experi-
mental progresses in their physical implementation, this
unitary control of many-body entanglement in a scalable
fashion is believed to remain the hardest challenge.

On the other hand, in a historical perspective, human-
ity has strived to find and tame, with our limited ability,
resources present naturally on the earth. Speaking of en-
ergy resources for instance, we have learned to take ad-
vantage of more and more elaborated natural resources,
e.g., from wood and water to oil and nuclear. Here, based
on the fact that nature realizes various quantum phases
as manifestation of underlying many-body entanglement,
we suggest taking a complementary, top-down vision in
that we attempt to tame a resource of suitably structured
entanglement, which could either exist in nature or be
simulated relatively naturally within our technology.

A key point is our limited ability such that once a
specific natural resource of structured many-body entan-
glement is provided, we are supposed to utilize only op-
erations which just consume entanglement without its
new creation, such as local measurements and local turn-
ing off of an interaction. In this regard, our approach
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can be best compared to hewing out an arbitrary quan-
tum evolving system from the “carving” resource, in en-
hancing Feynman’s original intuition [2] about quantum
simulation in a computationally universal manner. A
perquisite is that we could be content with our limited
ability to prepare only one specific resource of structured
many-body correlation, that is less demanding than the
full unitary control over arbitrary correlation. Moreover,
if such a resource is available as a stable ground state
of a naturally-occurring system, that gives us several
possibilities to prepare, such as dissipative coolings or
adiabatic evolutions, in a similar way that nature pre-
sumably does. Our target of the naturally-occuring two-
dimensional (2D) system is the valence bond solid (VBS)
phase of spin 3

2 ’s on the 2D hexagonal lattice, modeled
by Affleck, Kennedy, Lieb, and Tasaki (AKLT) [3, 4],
which is widely recognized as a cornerstone in condensed
matter physics. Their VBS construction of the ground
state in terms of the distributed spin singlets (or the va-
lence bonds) has become one of most ubiquitous insights
in quantum magnetism as well as in high-Tc supercon-
ductivity, and leads to modern trends of spin liquids and
topological orders.

It turns out here that the 2D VBS phase, represented
by the AKLT ground state, provides an ideal entangle-
ment structure of quantum many-body systems that can
be suitably tamed through our limited capability to the
goal of universal quantum computation. Our top-down
vision is materialized conveniently in taking advantage of
a conventional framework of measurement-based quan-
tum computation (MQC) whose methods have been de-
veloped to “steer” quantum information through given
many-body correlations using only a set of local measure-
ments and classical communication, under which entan-
glement is just consumed without new creation. Later
we extend that in a wider program to tame naturally-
occuring many-body correlations.

In the context of MQC, the so-called 2D cluster state
[5] is the first and canonical instance of such an entangled
state that pertains to a universal quantum computational
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capability when every single qubit (spin 1
2 ) is measured

individually and the outcomes of the measurements are
communicated classically [6, 7]. Remarkably, it was al-
ready noticed in Ref. [8] that MQC on the 2D cluster
state utilizes a structure of entanglement which is analo-
gous to that of the aforementioned VBS state. Following
such an observation, the tensor network states, as a class
of efficiently classically parameterizable states in extend-
ing the VBS construction, has been used in Refs. [9, 10]
to construct resource states of MQC, where it was indi-
cated that a certain set of the local matrices or tensors
that describe the correlations (cf. Eq. (2) in our case)
can result in a quantum unital map through the single-
site measurement. Notably, however, most known exam-
ples considered so far, including additionally those e.g.
in Refs. [11–16], are constructed to have such a conve-
nient yet artificial property — as often referred as one of
peculiar properties of the correlations of the 2D cluster
state — that it is possible to decouple deterministically
(by measurements of only neighboring sites) a 1D-chain
structure that encodes the direction of a simulated time
as a quantum logical wire of the quantum circuit model.
This peculiarity is said to be artifact of another less re-
alistic feature of the 2D cluster state in that it cannot be
the exact ground state of any two-body Hamiltonian of
spin 1

2 ’s [17, 18], and thus one cannot expect such conve-
nience in the correlations of a genuine 2D ground state
of a naturally-occuring spin system.

The main result of our paper is summarized in the fol-
lowing (informal) theorem and illustrated in the Figure 1.
As elaborated in the text, we introduce a novel way to
herald the correlations suitable for deterministic quan-
tum computation through a random sampling, to tame
for the first time the genuine 2D naturally-occurring cor-
relation, which otherwise has natural tendency to split an
incoming information into two outgoing information be-
cause of certain symmetric nature of the three directions
at every site of the 2D hexagonal lattice. This seems
to be the reason why MQC on the 2D AKLT state has
been a open question in a long time, although the AKLT
state by the 1D spin-1 chain was shown in Ref. [11] to be
capable of simulating a single quantum wire of MQC.

Theorem. A universal quantum computation can be
simulated through consuming monotonically entangle-
ment provided as the 2D AKLT state |G〉 (defined as the
VBS state of a spin 3

2 per site and described as a tensor
network state of Eq. (2)) of the size proportional to the
target quantum circuit size, in terms of single-site mea-
surements of every individual spin 3

2 , a bounded amount
of classical communication of measurement outcomes per
site, and efficient classical side-computation.

We note that at the near completion of the work, an-
other proof of the theorem is presented independently
in Ref. [19] by Wei, Affleck, and Raussendorf recently,
through transforming the 2D AKLT state into a 2D clus-
ter state using a clever mastery of the graph states (an
extension of the cluster state to a general graph). In

standard basis: x      y      z
complementary basis: x      y      z

FIG. 1: A scheme of quantum computation through measur-
ing the correlations of the 2D AKLT state, a representative
state of the 2D VBS phase of spin 3

2
’s on the 2D hexagonal

lattice. After a random sampling which assigns every spin per
site to one of three axes x, y, and z, the typical configuration
of the outcomes enables us to choose the backbone structure
(described by a shaded region) along which quantum compu-
tation is deterministically simulated in terms of a quantum
circuit. Our protocol harnesses a pair (depicted as a dotted
bond of the hexagonal lattice) of neighboring sites where one
is measured in a standard basis and the other is done in a
complementary basis, to accommodate the desired structure
of space-time along the region of the backbone. An emergence
of the time is simulated if both two bits of information per
site are communicated to the same direction (as depicted as
the double arrows), on the other hand, an emergence of the
space is simulated if two bits of information are communi-
cated to the opposite directions (as depicted as a pair of the
single arrows pointing apart). The figure illustrates a micro-
scopic view of the Figure 2, and the two-qubit CNOT gate
is implemented in the middle region between two quantum
logical wires running from the right to the left.

comparison, our proof constitutes a more direct protocol
to use the correlations of the 2D AKLT state to simulate
straightforwardly the quantum circuit model, with much
less resort to the known machinery of the cluster state.
Our construction of the protocol also respects more ex-
plicitly the physics and topological nature of the 2D VBS
phase, such as the edge states at the boundary and the
(widely-believed) energy gap at the bulk. It clarifies their
operational usage in quantum information in that the for-
mer is used to process the logical information of quan-
tum computation in the degenerate ground subspace and
the latter could contribute to its protection, in providing
some robustness against local noise, as the ground-code
version of MQC discussed in the Section VI.
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II. 2D VALENCE BOND SOLID GROUND
STATE

The 2D VBS phase can be modeled by a nearest-
neighboring two-body Hamiltonian of the antiferromag-
netic Heisenberg-type isotropic interaction (i.e. J > 0)
[4, 21],

H = J

n.n.∑
(k,k′)

[
Sk · Sk′ +

116

243
(Sk · Sk′)2 +

16

243
(Sk · Sk′)3

]
,

(1)
where Sk is the spin- 3

2 irreducible representation of su(2)
at the site k, and the summation is taken over all the
nearest neighboring pairs (k, k′) of spin 3

2 ’s on the 2D
hexagonal lattice. The particular weights to the bi-
quadratic and bicubic terms are chosen conventionally
to be the projector onto the subspace of the total spin 3
for every pair of (k, k′). However the 2D VBS phase itself
is supposed to persist around this AKLT point without
a fine tuning of these weights, in the same way as the
1D case. It is important to mention that our 2D VBS
phase should be distinguished from the 2D valence bond
crystals (VBC) phase, since VBC is usually used to re-
fer to the phase that consists of the valence bonds in a
broader sense, namely including not only the VBS phase
but also the dimer phase etc. However, there are con-
siderable differences between VBS and the dimer phase,
for example, regarding the global nature of entanglement
and the origin of the ground-state degeneracy (with an
open boundary condition).

The 2D AKLT ground state is such a VBS wavefunc-
tion that the symmetrization of three spin 1

2 ’s to repre-

sent the physical spin 3
2 per site is made on the singlet

pairs of (virtual) spin 1
2 ’s, each of which is distributed

along every bond of the hexagonal lattice. The construc-
tion can be visualized like in the Figure 3.2 of Ref. [4] for
instance. It is straightforward, for our convenience, to
describe it as a tensor network state via the celebrated
Schwinger boson method [20],

|G〉 =
∑
αk,αk′

tr

[
B
∏
k∈>

A>[αk] |αk〉
∏
k′∈⊥

A⊥[αk′ ] |αk′〉

]
,

(2)
where αk(k′) at the site k (or k′) runs over
3
2

z
, 1

2

z
,− 1

2

z
,− 3

2

z
, and the trace is taken by the contrac-

tion of the tensors according to their geographic locations
on the 2D hexagonal lattice. The boundary condition is
assumed to be open in that we are simply given a finite
bulk portion of the lattice, and, the boundary tensor B
is set to be the identity according the Appendix A. The
tensors at the site with the >-shaped or ⊥-shaped bonds

are found to be given by

A>[ 3
2

z
] = |0z〉〈1z| ⊗ 〈1z| ,

A>[ 1
2

z
] =
−1√

3
(|0z〉〈1z| ⊗ 〈0z|+ Z ⊗ 〈1z|) ,

A>[− 1
2

z
] =

1√
3

(−|1z〉〈0z| ⊗ 〈1z|+ Z ⊗ 〈0z|) ,

A>[− 3
2

z
] = |1z〉〈0z| ⊗ 〈0z| ,

(3)

A⊥[ 3
2

z
] = −|0z〉〈1z| ⊗ |0z〉 ,

A⊥[ 1
2

z
] =

1√
3

(−|0z〉〈1z| ⊗ |1z〉+ Z ⊗ |0z〉) ,

A⊥[− 1
2

z
] =

1√
3

(|1z〉〈0z| ⊗ |0z〉+ Z ⊗ |1z〉) ,

A⊥[− 3
2

z
] = |1z〉〈0z| ⊗ |1z〉 ,

(4)

respectively. Here the first ket and bra correspond to
degrees of the freedom by the left and the right, and
the second ket and bra correspond to those by the up
and the down, respectively. The Pauli matrices are de-
fined as Z = |0z〉〈0z| − |1z〉〈1z|, X = |0z〉〈1z| + |1z〉〈0z|,
and Y = iXZ with the imaginary unit i =

√
−1, and

an element of the Pauli group, including the identity,
will be denoted as Υ later. In this tensor network de-
scription, the effective spin 1

2 labeled by |0z〉 , |1z〉 should
better be understood as a manifestation of the fraction-
alized degree of freedom, the edge state, emergent at the
boundary across a single bond. Later it will turn out that
these tensors are interpreted as the logical action on these
emergent edge states (in other words, degenerate ground
states), when the spin is measured in the direction by its
argument.

The set of tensors in terms of the other bases has
exactly the same structure (up to a possible overall
phase) because of the rotational symmetry. In defining
|0/1x〉 = 1√

2
(|0z〉 ± |1z〉) and |0/1y〉 = 1√

2
(|0z〉 ± i |1z〉),

A>[αx] = A>[αz]|z 7→x, A⊥[αx] = −A⊥[αz]|z 7→x,
A>[αy] = −iA>[αz]|z 7→y, A⊥[αy] = A⊥[αz]|z 7→y,

(5)

where α = 3
2 ,

1
2 ,−

1
2 ,−

3
2 and our notation, for example for

the Sx basis, is meant to describe the tensors obtained
in replacing |0/1z〉 and 〈0/1z| into |0/1x〉 and 〈0/1x| as
well as Z into X in Eqs. (3) and (4).

The 2D AKLT state inherits various characteristics
from the 1D VBS state. For example, its correlations
measured in terms of the two-point function was shown
to decay exponentially in lattice distance with the cor-
relation length ξ = 1/ ln(3/2) ≈ 2.47 [21]. Furthermore,
in very contrast with the dimer phase, it also realizes
a fractionalized degree of freedom on every boundary,
called the edge state, as mentioned above. A numerical
calculation [22] of the entanglement entropy confirms a
qualitative nature of edge states. On the other hand,
the spectral gap to the excited states in the 2D AKLT
model is widely believed to persist in the thermodynam-
ical limit, but has yet to be proved.
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backbone

matched bonds
off-limits

matched bonds
branching-out

FIG. 2: (Left) Illustrated is a typical distribution of matched bonds (depicted as thicker, dark-cyan bonds) where a pair of
neighboring sites are assigned to the same axis through the polarizing measurement at the first stage. (Right) The backbone
(described as a shaded, orange region) is identified efficiently by analyzing classically such a distribution, so that it can skirt
all pieces of “off-limits” matched bonds (depicted as thicker, light-cyan bonds) that involve triple matched bonds per site. The
other matched bonds may be freely available as a part of the backbone, with an additional prescription to their “branching out”
(described by a shaded, yellow region). The almost sure success of this classical side-computaton is guaranteed in an analogous
way with the bond percolation phenomenon, based on the statistical property on the occurrence of matched bonds, originated
from a genuine 2D nature of the correlations of the AKLT state. The microscopic view near the CNOT gate is highlighted in
the Figure 1.

III. INSIGHT TO THE MQC PROTOCOL

We intend to simulate the quantum circuit model
through measuring the correlations at every site, and
call the part of the 2D hexagonal lattice sites that corre-
sponds to the quantum circuit (consisting of the quantum
logical wires running almost horizontally and their entan-
gling gates described vertically) a backbone, as seen in
Figure. 2. The degree of the backbone site refers to how
many neighbors it has along the backbone. The degree-3
backbone sites are used at every junction of the horizon-
tal logical wire with a vertical entangling gate, so that
they are required only occasionally.

A key insight to construct our protocol is that since
the reduced density operator of every spin 3

2 per site is
totally mixed and isotropic, i.e., the normalized identity

projector 11
4 , we are able to extract 2 bits of classical infor-

mation by measurements per site. Then it is sensible that
in stead of obtaining them at once, a part of the informa-
tion, indeed log2 3 bits in our case, is first extracted and
we adapt the next stage according to it. It might be sur-
prising that the first measurement induces a kind of ran-
domization, but intuitively speaking, this part is crucial
to separate the original quantum correlation that intrin-
sically involves genuine 2D fluctuations into the classical
correlation (or, a statistical sampling) that can be still
efficiently handled by a classical side-processor and the
“more rigid” quantum correlation suitable for determin-
istic quantum computation. A global statistical nature
of the AKLT correlations through the first stage guaran-
tees, in an analogous way with the classical percolation

phenomenon, that an embedding of the backbone (i.e.
the target quantum circuit) can be found in the typi-
cal configuration of a heralded, randomized distribution
of entanglement. At the second stage which implements
quantum computation, the measurements are invented
in such a way that the standard-basis measurement and
complementary-basis one, both of which are defined later,
are always paired (as depicted by the dotted bonds in the
Figure. 1). This paired processing is crucial to make the
logical information bound in the domain of the backbone,
somehow in a reminiscent way how the deoxyribonucleic
acid (DNA) holds genetic information in its famous dou-
ble strands.

Summary of the MQC protocol

Now we outline our MQC protocol, which consists of
two stages. (i) The first stage is to apply a measurement
{Mx,My,Mz} which depolarizes randomly toward one
of the three orthogonal axes at every site. We define a
degenerate projection Mµ (µ = x, y, z) as

Mµ =
√

2
3 (| 32

µ〉〈 32
µ|+ | − 3

2

µ〉〈− 3
2

µ|). (6)

The set of {Mx,My,Mz} constitutes the posi-
tive operator value measure (POVM) by satisfying∑
µ=x,y,zM

µ†Mµ = 11, so that it is a valid local mea-
surement with three alternative, random outcomes µ.
We must record the outcome µk at every site k and col-
lect the location of the “matched” bonds such that the
pair of the axes for the neighboring sites k, k′ coincides,
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namely µk = µk′ . Based on an occurrence of matched
bonds (that need additional care in their use), we are
able to determine the backbone by efficient classical side-
compuation in circumventing some rare “off-limits” con-
figurations of matched bonds.

(ii) The second stage carries actual quantum computa-
tion, using further projective measurements at every site
and feedforward of their outcomes. Once the backbone
is identified, the computation is deterministic in a very
similar way with MQC on the 2D cluster state.

IV. WIDGETS FOR THE LOGICAL GATES

A basic idea of the widgets to construct the logical
gates from the set of tensors is outlined first. Suppose
the bond is not matched for a pair of the nearest neigh-
boring sites, then either of the sites can be used as the
part of the backbone, by treating the other as the non-
backbone site. Let the outcome of the first-stage depo-
larizing measurement at the backbone site be µ and the
other outcome be ν(6= µ). As an illustration, assume
µ = z at the > site and ν = x at the ⊥ site. It turns out
that in measuring in the basis of {

〈
3
2

x∣∣ , 〈− 3
2

x∣∣} (since the
state is already in this subspace by the preceding Mx)
and obtaining

〈
3
2

x∣∣ for instance at the non-backbone site,
we can get a unitary action at the backbone site along
the other remaining two bonds. This is because condi-
tioned on the specification of the tensor of Eqs. (4,5) to be
|0x〉〈1x| ⊗ |0x〉 by the outcome

〈
3
2

x∣∣ at the non-backbone
site, the tensors at the backbone site are essentially fixed
as

Ã>[ 3
2

z
] = |0z〉〈1z| ⊗ 〈1z|0x〉 = 1√

2
|0z〉〈1z|,

Ã>[− 3
2

z
] = |1z〉〈0z| ⊗ 〈0z|0x〉 = 1√

2
|1z〉〈0z|.

(7)

The overall numerical factor 1√
2

implies the fact that the

outcome
〈

3
2

x∣∣ occurs with probability 1
2 , and of course the

other outcome occurs with the same probability 1
2 . In-

deed, the measurements used for the unitary actions are
unbiased in their output probability. Here after, however,
we do not describe the overall factor explicitly, since it is
irrelevant to the statistics of the logical output of quan-
tum computation. It can be readily seen that we can get
a unitary gate by mixing these two tensors in such a way
that for instance, measuring this backbone site in the
basis { 1√

2
(
〈

3
2

z∣∣+
〈
− 3

2

z∣∣), 1√
2
(−
〈

3
2

z∣∣+
〈
− 3

2

z∣∣)} provides

X(= Ã>[ 3
2

z
] + Ã>[− 3

2

z
]) or XZ(= −Ã>[ 3

2

z
] + Ã>[− 3

2

z
])

respectively. Both unitary actions should be interpreted
as the logical identity since the difference by a Pauli op-
erator can be readily incorporated, as explained later, by
the adaptation of the following measurement basis so that
the Pauli operators are treated as the byproduct opera-
tor Υ. In more general, measuring in a basis on the plane
spanned by the aforementioned two vectors is found to
provide the logical rotation Rz(θ) = |0z〉〈0z|+eiθ|1z〉〈1z|
by an arbitrary angle θ along the axis z. We call

any of such bases complementary to the standard basis
{
〈

3
2

µ∣∣ , 〈− 3
2

µ∣∣} given the axis µ at the site. The choice of
the complementary basis depends on the axis ν of the as-
sociated non-backbone site. Accordingly, we may denote
the complementary basis in an abstract way as {

〈
γµ|ν

∣∣},
which will be explicitly defined later.

Indeed, one may realize that there occur, with small
probability, several configurations of the matched bonds
that prevent our aforementioned prescription, so that
they should be avoided to be used as the backbone. This
motivates us to define the off-limits matched bonds as the
union of either a connected piece of the matched bonds
(with the same axis) that involves a site with the triple
matched bonds or a closed loop of the matched bonds.
The efficient identification of the backbone is addressed
in the Section V as a global nature of computational ca-
pability.

A. Single-qubit logical gates

Any single-qubit logical gate in SU(2) can be im-
plemented by the sequence of the rotations Rµ(θ) =
|0µ〉〈0µ| + eiθ|1µ〉〈1µ| along two independent axes, us-
ing the Euler angles θ’s. Here we take µ = z, x without
loss of generality, and describe the detailed protocol for
Rz(θ).

The Rz(θ) can be only attempted if the axis µ of the
backbone site is assigned to be z after the polarizing mea-
surement at the first stage. Otherwise we teleport the
logical information along the backbone by implementing
the logical identity by measuring the site in the comple-
mentary basis with the fiducial angle (i.e., θ = 0) until
we reach the backbone site with µ = z. Let the axis
of the associated non-backbone site be ν, and the out-
come when measured in the standard basis denoted as
c ∈ {0, 1} in corresponding to

〈
(−1)c 3

2

ν∣∣. The comple-
mentary basis for the given axis µ = z is defined (at both
the > and ⊥ sites) as, if ν = x,〈

γz|x(θ)
∣∣∣ = 1

2
√

2

[
(1 + (−1)beiθ)

(〈
3
2

z∣∣+
〈
− 3

2

z∣∣)+

(1− (−1)beiθ)
(
−
〈

3
2

z∣∣+
〈
− 3

2

z∣∣)] , (8)

where b ∈ {0, 1} corresponds to each outcome of the or-
thogonal projective measurement with the angle θ or θ+π
respectively, and if ν = y,〈
γz|y(θ)

∣∣∣ = 1
2
√

2

[
(1 + (−1)beiθ)

(
−i
〈

3
2

z∣∣+
〈
− 3

2

z∣∣)+

(1− (−1)beiθ)
(
i
〈

3
2

z∣∣+
〈
− 3

2

z∣∣)] .(9)

In all the cases, the logical action is given by∑
α

Ã[α]〈γz|ν(θ)|Mz|α〉 = XZb⊕cRz(θ), (10)

where a partial contraction has been made, in the same
way as in Eq. (7), with the rank-1 tensor from the associ-

ated non-backbone site, to define Ã>[α] = A>[α] |cν〉 and
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µ ax az

γx|ν b⊕ c 1

γy|ν b⊕ c b⊕ c⊕ 1

γz|ν 1 b⊕ c

TABLE I: The indices (ax, az) of the byproduct operator

Υ = XaxZa
z

for the complementary basis measurement
{〈γµ|ν |} given the axis µ, where b is the outcome of the site
measured in this basis, and c is the outcome of the associ-
ated site (connected to the former directly by the unmatched
bond) measured in the standard basis of the axis ν .

Ã⊥[α] = 〈c⊕ 1ν |A⊥[α]. This is the desired rotation up
to a Pauli byproduct Υ = XZb⊕c. Note that the choice
of the various complementary bases only depends on the
axis ν and not on the outcome c at the non-backbone
site, so that once the axis of every site has been assigned
and the backbone structure has been determined, the
backbone site and its associated non-backbone site can
be measured in a parallel way. Likewise, the counterpart
for Rx(θ) can be obtained by〈

γx|z(θ)
∣∣∣ = 1

2
√

2

[
(1 + (−1)beiθ)

(〈
3
2

x∣∣+
〈
− 3

2

x∣∣)+

(1− (−1)beiθ)
(
−
〈

3
2

x∣∣+
〈
− 3

2

x∣∣)] ,(11)〈
γx|y(θ)

∣∣∣ = 1
2
√

2

[
(1 + (−1)beiθ)

(
i
〈

3
2

x∣∣+
〈
− 3

2

x∣∣)+

(1− (−1)beiθ)
(
−i
〈

3
2

x∣∣+
〈
− 3

2

x∣∣)] .(12)

The measurement in these complementary bases result in
ΥRx(θ) with Υ = ZXb⊕c. Although it is straightforward
to define

〈
γy|ν(θ)

∣∣ for Ry(θ), it is sufficient for the later
use that the sites labelled by µ = y are only used for the
logical identity (with θ = 0), whose dependence to the
outcomes is Υ = Xb⊕cZb⊕c⊕1.

In the above, we have assumed that the (degree-2)
backbone site has in tow its neighboring non-backbone
site which is measured in the standard basis along ν and
provides the outcome c. In case, the backbone site is
connected via the matched bond to its associated non-
backbone site, then the latter should be measured in the
complementary basis too, and a correction to |cν〉 (or

〈c⊕ 1ν |) of Ã[α], defined below Eq. (10), is required ac-
cording to the Appendix B. Roughly speaking, the non-
backbone sites connected by the matched bonds need to
be treated in the same way as the degree-2 backbone
sites, so that we have to sum up all their byproduct op-
erators.

B. Two-qubit logical gate: CNOT

Together with the arbitrary single-qubit logical gates
on every logical wire, it is widely known that any en-
tangling two-qubit logical gate is sufficient to achieve the
universality of quantum computation when the quantum
circuit is composed from the set of these gates. Here we

take the target two-qubit logical gate to be the controlled-
not (CNOT) gate, |0z〉〈0z| ⊗ 11 + |1z〉〈1z| ⊗X.

The two-qubit logical gate requires connecting a pair
of the degree-3 backbone sites with the > and ⊥ bonds
for each. By definition of the backbone, each degree-
3 site and its three neighboring sites must be able to be
measured in the complementary bases, which means that
the degree-3 site should be selected from the sites that do
not share any matched bond. In particular, the CNOT
uses the degree-3 > site with the axis µ1 = z and the
degree-3 ⊥ site with µ2 = x. Observe that

A>[γz|x(0)] = 1√
2
Υ> (11⊗ 〈0x|+ Z ⊗ 〈1x|) ,

A⊥[γx|z(0)] = 1√
2
Υ⊥ (11⊗ |0z〉+X ⊗ |1z〉) ,

(13)

where the byproducts are Υ> = XZb> ⊗ 11 and Υ⊥ =
Xb⊥⊕1Z ⊗ Z, and the conditioning axes ν1, ν2 of the
complementary bases can be chosen freely, so that we
have set ν1 = x and ν2 = z for convenience. So,
when the vertical direction (the second degree of free-
dom in the tensor structure of Eq. (13)) is contracted
through the sequence of the logical identities in the
same way as in the part of a quantum logical wire,
it is readily seen that this provides the desired CNOT
(= 1

2 (11⊗ 11 + 11⊗X + Z ⊗ 11− Z ⊗X)).
Here we need to calculate the total byproduct oper-

ator from this intermediate vertical part, namely Υ| =

X
∑

k a
x
kZ

∑
k a

z
k where the summation is taken over the

degree-2 backbone sites symbolically labeled by k. Need-
less to say, if the there are, in between, the branches
by the matched bonds, we have to take their contribu-
tion into account according to the prescription of the Ap-
pendix B, in order to determine (axk, a

z
k) at every junc-

tion to the branch. Thus, Υ| essentially amounts to the
whole accumulation of the byproducts from the vertical
part. By absorbing Z

∑
k a

z
k⊕1 (which has included the

additional one from Υ⊥) into 〈0/1x| of A>, as well as
X

∑
k a

x
k into |0/1z〉 of A⊥, we can reduce them to the

byproduct operators along two logical wires. The whole
logical action is ΥCNOT, where Υ = XZb>⊕

∑
k a

z
k⊕1 ⊗

Xb⊥⊕
∑

k a
x
k⊕1Z.

C. Initialization and readout

The initialization and readout (in the sense of the
quantum circuit model) of the logical wire can be simu-
lated as well. Suppose, without loss of generality, these
are always made in the |0/1z〉 basis. All we have to do
is to find the degree-2 backbone site with µ = z on the
rightmost (for the initialization) and on the leftmost (for
the readout) of every logical wire, and to measure it in
the standard basis {

〈
3
2

z∣∣ , 〈− 3
2

z∣∣}. As already described
through the prescription to the matched bonds, accord-
ing to Eqs. (3, 4), the outcome c must be interpreted as
|cz〉 or 〈c⊕ 1z|. Note, in particular regarding the read-
out, that the outcome c at the leftmost boundary site is
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not immediately the logical outcome of the computation.
The latter is evaluated only together with the byproduct
operator at the end of the computation.

D. Adaptation based on byproduct operators

Since the byproduct operator Υ stays in the Pauli
group, we can use the same machinery as the cluster-state
MQC, to deal with the randomness of the measurement
outcome. The key idea is to postpone the effect of Υ by
adapting the following angles of the logical rotations. As
an illustration, suppose we wish to apply the sequence of
Rz(θ) followed by Rx(θx) up to some byproduct operator
Υ, namely ΥRx(θx)Rz(θz). Since

(Xb′⊕c′ZRx(θx))(XZb⊕cRz(θz)) =

Xb′⊕c′⊕1Zb⊕c⊕1Rx((−1)b⊕cθx)Rz(θz), (14)

we realize that if we adapt the second angle θx to be
(−1)a

z

θx, based on the byproduct index az = b ⊕ c of
the first measurement, we can always apply the desired
sequence of the rotations regardless of the outcomes b
and c. In general, we have to adapt the angle of the next
logical rotation, based on the current byproduct operator
Υ updated according to the simulated time direction of
the quantum circuit. Note that such an adaptation is re-
quired only if the rotation angle is not fiducial, so that the
part by the logical identities does not need the adaption
and can be implemented parallely in principle. Since this
adaptation is now a widely-known machinery in MQC,
we leave the details to the literatures, e.g., Ref. [7] (al-
though in the case of the cluster state there is an ad-
ditional automatic logical operation by the Hadamard
matrix 1√

2
(X + Z) at every single step of computation).

V. GLOBAL NATURE OF EMERGENT
COMPUTATIONAL CAPABILITY

A. Identification of the backbone

In this section, we show that the backbone struc-
ture, which should be intact from the off-limits matched
bonds, can be identified efficiently. Recall that off-limits
matched bonds are defined as the union of either a piece
of the match bonds which includes a single site with the
triple matched bonds or a closed loop of the matched
bonds. The analysis not only guarantees that the wid-
gets for the logical gates in the Section IV can be com-
posed consistently, but also will suggest how the compu-
tational capability as a whole is linked to the emergence
of a macroscopic feature of the many-body system. At
the first stage of the protocol, every outcome of the polar-
izing measurement {Mµ} (µ = x, y, z) occurs randomly
at every site, i.e., with the equal probability 1

3 . Thus,
the bond between a pair of the neighboring sites is un-
matched with probability 2

3 and matched with probabil-

ity 1
3 . Out goal here is to identify a suitable backbone,

based on classical processing of the configuration of the
matched bonds generated this way.

That situation is analogous (but not exactly identi-
cal as explained soon) to a bond percolation model of
the 2D hexagonal lattice, where every bond is occu-
pied (unmatched in our wording here) randomly with a
statistically independent probability p, and unoccupied
(matched) with the rest of probability 1 − p. There is
a minor correction in that every time a cluster of the
matched bonds makes a loop, the probability of occur-
rence of such a configuration differs microscopically from
the bond percolation model. For example, suppose all
six sites along a single hexagon happen to be assigned
to the same axis. This should occur with probability
( 1

3 )6× 3 = (1
3 )5, but if we assume every bond is matched

independently as in the standard percolation model, the
corresponding probability is ( 1

3 )6 because of the six bonds
along the hexagon. However, according to a numeri-
cal simulation of the occurrence of matched bonds up
to 106 sites, the ratio of the matched bonds to the to-
tal bonds indeed quickly converges to 1

3 , so that the ap-

proximation to the bond percolation model with p = 2
3

seems to be sensible, regarding a macroscopically typical
configuration. It is widely known in the bond percola-
tion model that, when p is larger than the critical value
pc = 1 − 2 sin( π18 ) ≈ 0.652 . . . [23] for the 2D hexagonal
lattice, there exists almost surely (i.e., with a probability
close to the unity exponentially in the lattice size) such a
single giant cluster of the occupied bonds, and a multiple
of percolating paths can be found inside. Accordingly, we
could visualize in our mind a typical configuration, whose
sample is presented in the Figure 2, in a very similar man-
ner with the emergence of the percolating cluster by the
unmatched bonds, since our p(= 2

3 ) is barely larger than
the aforementioned pc.

Then, we like to hew out our suitable backbone, in
utilizing this emergent percolating cluster. Importantly,
not only the unmatched bonds but also many matched
bonds can also be a part of the backbone as far as they
do not let the off-limites matched bonds involved, so that
a possible realization of multiple percolating paths is no
worse than that in the bond percolation model. Since
there has been developed a variety of polynomial-time
classical algorithms (see Ref. [24]) to identify the per-
colating cluster or its so-called backbone through trim-
ming off many dangling ends — the latter is apparently
the origin of our wording —, it would be straightfor-
ward to apply those into our context. That may involve
some customization such as a preference to the sites with
certain axes (depending on the choice of the elementary
gates) and optimization in practice, but we do not pursue
further here. The use of a percolation phenomenon has
been previously considered in the context of MQC but in
rather different scenarios [25, 26] where the preparation
of a cluster state suffers some locally probabilistic errors.
For example, Ref. [26] has presented a detailed algorithm
to extract explicitly multiple percolating paths for a 2D
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cluster state. Such machinery to the cluster state is also
applied in another independent proof about the compu-
tational usefulness of the 2D AKLT state in Ref. [19].

According to the numerical simulation, it seems that
quantum wires horizontally running should better be sep-
arated by more than 10 lattice distances (≈ 4 ×ξ), in or-
der to be able to circumvent the off-limits matched bonds
enough probably.

B. Emergence of a simulated space-time

It is remarkable to see how the distinction between
(simulated) space and time emerges in our model. Our
backbone structure after the first step does not distin-
guish them yet, but we can realize, by a careful exam-
ination of the protocol, it originates from the way the
byproduct indices (ax, az), namely two bits of classical
information processed at each site, are communicated to
the neighbors. Time emerges when both two indices are
forwarded in the same (and roughly horizontal here) di-
rection, while space emerges when two are sent in the
opposite (and roughly vertical here) directions as is the
case of CNOT, where ax or az is sent downward or
upward, respectively. Note also that since the spatial-
entangling gate, like CNOT, is simulated only using the
measurements with the fiducial angle and thus need not
be adapted, there is indeed no “time-ordering” along the
simulated spatial direction.

VI. DISCUSSION

A. Ground-code MQC

A feature that our resource is available as the ground
state can be leveraged during the computational process
in addition to the stage of its preparation. As originally
proposed in Ref. [11] as the ground-code version of MQC
using the coupled 1D AKLT states, if we are capable of
turning off selectively and adiabatically a two-body in-
teracting term only to the spin to be measured — that,
importantly, still does not have to create new entangle-
ment — we could indeed make the Hamiltonian in the
remaining bulk coexist without interfering the MQC pro-
tocol for quantum computation. Then, the Hamiltonian
with a (conjectured) gap would be able to contribute to
a passive protection of the logical information stored in
the degenerate ground state, by providing some robust-
ness against local noises, in compared to a scenario where
the bulk Hamiltonian is absent.

Here we need additional care to apply the idea of the
ground code to the 2D AKLT state, since it was assumed
that the spin 3

2 ’s are first assigned to one of three axes
through the polarizing measurement before the quantum
computation starts. It turns out that it is still possible for
the the classical algorithms described in the Section V to
function if the sampling of the matched bonds are made

over the block of a constant number of spins near the
boundary of the unmeasured bulk, without identifying
the full configuration of matched bonds deep inside the
bulk.

B. Persistence of computational capability in the
VBS phase

Another significant merit to have the bulk Hamilto-
nian during the computation is that any ground state
which belongs to the 2D VBS phase (with the global rota-
tional symmetry as is present in the AKLT Hamiltonian)
is conceived to be ubiquitously useful to simulate the
same quantum computation through the aforementioned
adiabatic turning off of the interaction at the boundary.
Its detail will be analyzed elsewhere, but such persis-
tence of computational capability over an entire quan-
tum phase was unveiled in Ref. [27] in examining the
rotationally symmetric 1D VBS phase to which the 1D
AKLT state belongs. A key of the mechanism is indeed
the edge states — fractionalized degrees of freedom emer-
gent at the boundary to the unmeasured bulk part —
that are commonly present in the VBS phase and carry
the logical information of quantum computation in our
context. At any point in the VBS phase, the quantum
correlation between the spin to which the two-body in-
teraction has turned off and the emergent edge state at
a new boundary of the bulk would be modified to ex-
actly that of the AKLT state, since the AKLT Hamil-
tonian satisfies additionally a frustration-free property
(that the global ground state also minimizes every sum-
mand of the Hamiltonian) among a parameterized class
of generally-frustrated Hamiltonians within the phase.
That is how the primitive of the ground-code MQC, the
adiabatic turning off of the interaction followed by the
measurement of the freed spin, can ubiquitously unlock
computational capability persistent over the VBS phase.

In contrast, in case our quantum capability of the selec-
tive control of a single spin at the boundary is further lim-
ited to only its measurement and the bulk Hamiltonian
is neither engineered nor present during the computa-
tional process, we may still consider implementing phys-
ically (namely probabilistically in compensation with a
longer distance scale) a quantum computational renor-
malization, through which the correlations within the
VBS phase are modified into those of a fixed point, ac-
cording to the envision based on Ref. [28] where a pro-
tocol within the 1D VBS phase was constructed so as to
set the AKLT point as its fixed point. An attempt to
construct a 2D counterpart of the protocol may face the
intrinsic difficulty for the traditional computer to ana-
lyze correlations in a 2D system, but recent various de-
velopment of the classical methods (c.f. in Refs. [29–32])
regarding the renormalization of 2D entanglement might
be applicable to our context.
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C. Outlook toward physical implementations

The persistence of such computational capability over
the 2D VBS phase would be encouraging toward physical
implementations of our scheme, since then a fine tuning
to engineer a set of specific coupling strengths in the 2D
AKLT Hamiltonian of Eq. (1) may not be necessary as
far as the system can be set within the “quantum com-
putational” phase in maintaining some key symmetries
such as the rotational symmetry.

The biggest difference from the 1D case is the fact that
the ordinary Heisenberg point (i.e. the ground state of
the Hamiltonian without biquadratic and bicubic terms
in Eq. (1)) has been known to be Néel ordered [4] and
does not belong to the 2D VBS phase unfortunately, al-
though the 1D Heisenberg point is located in the 1D VBS
phase. That implies that we may need a more elabo-
rated interaction than the simplest Heisenberg interac-
tion or a use of geometrically frustrated quantum mag-
nets, in order to set a ground state in the 2D VBS phase.
In fact, the 1D VBS phase has been identified experi-
mentally in several natural chemical compounds such as
CsNiCl3, Y2BaNiO5, and so-called NENP, while the 2D
VBS phase seems to be less studied both theoretically
and experimentally, compared to other kinds of 2D VBC
phases for now.

Another possible realization of the 2D VBS phase is
based on analog engineering of the Hamiltonians of spin
lattice systems. A recent experimental development of
quantum simulators in atomic, molecular, and optical
physics is promising in that Mott insulating phases of
ultracold Fermi spinor gases with a hyperfine manifold
F = 3

2 , e.g., in terms of 6Li or 132Cs atoms trapped in
the optical lattice, might be used to simulate the AKLT
Hamiltonian of spin 3

2 ’s along an extension of the ap-
proach in Ref. [33] for example.
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Appendix A: The boundary tensor in the 2D VBS
state

The boundary tensor B is defined as B =
∏
` Υ`, where

` represents a nonlocal degree of freedom associated with
every pair of the boundary sites which are supposed to
be closed under the periodic boundary condition, and

thus 2|`| represents the total number of the boundary
sites. This term formally provides the 4|`|-fold initial
degeneracy to the ground state, but it turns out that
any of such ground states (and actually even the mixed
state by them through an argument similar to Ref. [27])
is useful to our goal, so that here we set B to be the
identity for simplicity.

Appendix B: Matched bonds branching out from the
backbone

Suppose a sequence of the matched bonds is branching
out from the degree-2 site on the backbone of the axis µ.
By definition of the backbone, the sequence should not
branch out further (since that implies the existence of the
site with the triple matched bonds on the way) and thus
is expected to terminate in the end at a non-backbone
site after a chain of matched bonds. Let us for the mo-
ment label these sites along the matched-bond chain by
k. As said, all the non-backbone sites along the chain
of the matched bonds are measured in the complemen-
tary bases {

〈
γµ|νk

∣∣}, which depend on the axis νk of each
associated site connected by the unmatched bond in the
third direction orthogonal to the matched-bond chain.

At the end of the matched-bond chain, the terminating
site must have two unmatched bonds, and its two asso-
ciated sites are measured in the standard basis of each.
That provides a pair |cν〉 and |c′ν′〉 to the tensors at the

terminating site, so that either one, here |c′ν′〉, can be

used to assign Ã[α] to the terminating site as usual, and
the other |cν〉 plays a role of the “initial” condition to
the matched-bond chain. In the exactly same way as the
chain of the degree-2 backbone sites, this matched-bond
chain behaves as the sequence of the logical identities
acting on the initial state |cν〉. At the junction to the
backbone, the total logical effect is equivalent to input
|c̄ν̄〉 given by

∣∣c̄ν̄〉 =

matched∏
k

Ãk[γµ|νk(0)]|cν〉 = X
∑

k a
x
kZ

∑
k a

z
k |cν〉,

(B1)
where ν̄ = ν and

c̄ =


c⊕

∑
k a

z
k if ν̄ = x,

c⊕
∑
k(axk ⊕ azk) if ν̄ = y,

c⊕
∑
k a

x
k if ν̄ = z,

(B2)

and the indices (axk, a
z
k) of the byproduct operator at ev-

ery site k, measured in the complementary basis along
the matched-bond chain, are determined according to the
rule at the Table I. 〈c̄⊕ 1ν̄ | is determined exactly in the
same formula.
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