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Abstract

In the last decade, a large body of literature has been developed to explain the
universal features of inequality in terms of income and wealth. By now, it is es-
tablished that the distributions of income and wealth in various economies show a
number of statistical regularities. There are several models to explain such static
features of inequality in an unifying framework and the kinetic exchange models,
in particular, provide one such framework. Here we focus on the dynamic features
of inequality. In the process of development and growth, inequality in an economy
in terms of income and wealth follows a particular pattern of rising in the initial
stage followed by an eventual fall. This inverted U-shaped curve is known as the
Kuznets Curve. We examine the possibilities of such behavior of an economy in
the context of a generalized kinetic exchange model. It is shown that under some
specific conditions, our model economy indeed shows inequality reversal.

1 Introduction

The distributions of income and wealth have long been found to possess some
robust and stable features independent of the specific economic, social and
political conditions of the economies. Traditionally, the economists have pre-
ferred to model the left tail and the mode of the distributions of the workers’
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incomes with a log-normal distribution and the heavier right tail with a Pareto
distribution. For incomes from assets, other functional forms have been used
as models, e.g., the family of functions introduced by Camilo Dagum [1]. For a
detailed survey of the distributions used to fit the income and wealth data see
Ref. [2]. However, there have been several studies recently that argue that the
left tail and the mode of the distribution fit well with the gamma distribution
and the right tail of the distribution follows a power law [3]. It has been ar-
gued that this feature might be considered to be a natural law for economics
[4]. There is yet another well known observation, represented by the so-called
Kuznets Curve, that over time a growing economy shows a rise in inequality
followed by the eventual fall [5].

The standard explanation of the Kuznets Curve [6,7] goes like the following.
Suppose, there is an economically underdeveloped area A, one in which peo-
ple live from pre-industrial farming, perhaps not even involved in much of a
monetized market economy. They generate little wealth and less money. Then
a small part of A, say B, undergoes initial industrialization generating more
wealth and creating a small monetized market economy. Hence, A’s inequality
as a whole increases because those who are in B, enjoy a larger amount of
wealth and the rest still remain the same. However, as more and more in-
dustrialization takes place, a larger fraction of A’s people come into B and
hence, inequality falls. It is clear that this explanation rests on the effects of
migration and growth of an economy during the process of industrialization.

However, in this paper, we examine the possibility of such inequality reversals
in a conservative kinetic exchange model of market economy where no growth
or migration takes place. Angle et al [8] made one of the first attempts to
explain the Kuznets Curve by a kinetic exchange model. They assumed two
populations characterized by two different gamma distributions and by incor-
porating the effects of ‘education’ and ‘purchaing power of money’, they had
shown the possibility of Kuznets Curve in such an economy. Here, we consider
only a single population of constant size. A very simple binary trading process
based on a micro-economic framework, is modeled. Later, we show that the
same process essentially captures the idea of the market returns being cor-
related. Next, it is shown that this model is very general as it reproduces a
number of basic ideal gas like market models in certain limits of its param-
eters and the model becomes useful as it allows us to examine the effects of
the variations in the savings propensity and the correlation in market returns
explicitly.

We then study the dynamic behavior of the steady state distributions of asset
with changes in the savings propensity and the correlation parameter. We show
that in this model economy, the incorporation of the above two phenomena
can produce the ‘inequality reversal’ in terms of asset-holding.
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This paper is organized as follows. In section 2, we propose a particular kind
of binary trading process in a competitive market. In the next section, we
propose a model which enables us to examine the effects of correlation in
market returns when the agents trade in several markets simultaneously. It is
shown that same binary trading process can be used to capture the effects of
correlation in market returns as well. In section 4, we study the derived kinetic
exchange model and in the next section, we derive the Kuznets Curve. Then
follows a summary.

2 The Asset Exchange Equations

Borrowing the framework studied in Ref. [9], we consider an N -agent exchange
economy. Each of the agents produce a single non-storable good and each of
the goods is different from another. Money is treated as another commodity.
However, the model is conservative in that money is neither created nor de-
stroyed. No agent dies and none is born. Money facilitates transactions in this
model economy. Time is discrete. The agents care for their future consump-
tions and hence they care about their savings in the current period as well.
Each of these agents are endowed with an initial amount of money which we
assume to be unity for every agent for simplicity. At each time step, two agents
are chosen randomly and they carry out transactions according to their utility
maximization principle in a general equilibrium set up i.e., prices are so de-
termined that the demands of the goods are exactly matched by the supplies,
clearing the markets. We assume that the parameters of the utility function
can vary over time [9,10] reflecting the fact that the agents’ preferences alter
with time. Ref. [10] presented a similar framework in a different context.

Suppose agent 1 produces Q1 amount of commodity 1 only and agent 2 pro-
duces Q2 amount of commodity 2 only and the amounts of money in their
possession at time t are m1(t) and m2(t) respectively. In this scenario, both of
them would be willing to trade and buy the other good by selling a fraction of
their own productions as well as with the money that they hold. Hence, at each
time step there would be a net transfer of money from one agent to the other
due to such trade. For notational convenience, we denote mi(t+1) as mi and
mi(t) as Mi (for i = 1, 2). We define the utility functions as follows. For agent
1, U1(x1, x2, m1) = xα1

1 xα2

2 mλ
1 and for agent 2, U2(y1, y2, m2) = yβ1

1 yβ2

2 mλ
2 . The

arguments in both of the utility functions are consumption of the first (i.e.,
x1 and y1) and second good (i.e., x2 and y2) and amount of money in their
possession respectively. For simplicity, we normalize the sum of the powers to
1 i.e., α1 + α2 + λ = 1 and β1 + β2 + λ = 1. Let the market clearing prices be
denoted by p1 and p2. Note that money acts as the numeraire good. Hence,
its price is unity. Now, we can define the budget constraints as follows. For
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agent 1 the budget constraint is p1x1 + p2x2 +m1 ≤ M1 + p1Q1 and similarly,
for agent 2 the constraint is p1y1 + p2y2 +m2 ≤ M2 + p2Q2.

Proposition: In such a competitive market with binary trading between agents

characterized by the above-mentioned Cobb-Dauglas type utility function, the

asset exchange equations will contain two correlated random variables.

Proof: Formally, agent 1’s problem is to maximize U1(x1, x2, m1) = xα1

1 xα2

2 mλ
1

subject to the budget constraint p1x1 + p2x2 + m1 = M1 + p1Q1 and for
agent 2, the problem is to maximize U2(y1, y2, m2) = yβ1

1 yβ2

2 mλ
2 subject to the

constraint p1y1 + p2y2 +m2 = M2 + p2Q2.

Let us solve the problem for the first agent by using Lagrange multiplier
technique.

L = xα1

1 xα2

2 mλ
1 − µ(p1x1 + p2x2 +m1 −M1 + p1Q1) (1)

Equating the first derivatives (with respect to x1, x2, m1 and µ) with zero,
one can derive the demand functions of the first agent as the following.

x∗
1 = α1

(M1 + p1Q1)

p1
, x∗

2 = α2
(M1 + p1Q1)

p2
,

m∗
1 = λ(M1 + p1Q1).

Similarly for agent 2, the demand functions are

y∗1 = β1
(M2 + p2Q2)

p1
, y∗2 = β2

(M2 + p2Q2)

p2
,

m∗
2 = λ(M2 + p2Q2).

The market clearing conditions are x∗
1 + y∗1 = Q1 and x∗

2 + y∗2 = Q2 (i.e.,
demand is exactly matched by supply in both the markets). By substituting
the values of x∗

1, x
∗
2, y

∗
1 and y∗2 and by solving these two equations we get

market clearing prices (p̂1, p̂2) where

p̂1 =
(λα1 + β1(1− λ))M1 + β1M2

λQ1(1− α1 + β1)

and

p̂2 =
α2M1 + ((1− λ)α2 + λβ2)M2

λQ1(1− α1 + β1)
.

By substituting (p̂1, p̂2) in the money demand equations, we get

m∗
1 =λM1 +

λα1 + (1− λ)β1

1− α1 + β1

M1 +
β1

1− α1 + β1

M2
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m∗
2 =λM2(t) +

α2

1− α1 + β1
M1 +

λβ2 + (1− λ)α2

1− α1 + β1
M2. (2)

Now, we denote mi as mi(t+ 1) and Mi as mi(t) (for i = 1, 2).

Note that by assuming αi = βi (for i=1, 2) one can derive the CC model [14]
(see Ref. [9] for the derivation of the CC model). The above set of equations
can be rewritten as

m1(t+ 1)=λm1(t) + θ11m1(t) + θ12m2(t)

m2(t+ 1)=λm2(t) + θ21m1(t) + θ22m2(t) (3)

by appropriately defining θijs (for i, j=1, 2). One can very easily verify that
the total amount of money remains conserved at each trading i.e.,

m1(t+ 1) +m2(t+ 1) = m1(t) +m2(t).

The presence of a positive savings propensity is evident in Eqn. 3. Assuming
that αi and βi (for i=1, 2) are random variables (because of the time depen-
dence of preference ordering), we see that the θijs are correlated (for i, j=1, 2).
Hence, the money transfer equations consists of two correlated random terms.

�

For simplicity we assume the θijs to be correlated in the following form.

mi(t+ 1)=λmi(t) + ω1(1− λ)mi(t) + (αω1 + (1− α)ω2)

(1− λ)mj(t)

mj(t+ 1)=λmj(t) + (1− ω1)(1− λ)mi(t) + (1− αω1 − (1− α)ω2)

(1− λ)mj(t) (4)

where ω1, ω2 ∼ uniform[0, 1] and independent. Note that in the above formu-
lation ω1 and (αω1 + (1− α)ω2) are the two correlated random terms. Later,
in section 5, we shall see that the distributional assumptions of ω1 and ω2 will
help us to calculate the moments of the resultant steady state distributions
of money, very easily. The savings propensity and the degree of correlation
between the stochastic terms are denoted by λ and α respectively and both
can vary between 0 and 1. Technically, α is not the correlation coefficient. It is
a term that helps us to tune the correlation betweeen the two random terms.

While deriving the above model, we have assumed that the agents are produc-
ing only one commodity at every time-point. However, we can present the same
model by incorporating the idea of risk-aversion explicitly where each agent
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produces a vector of commodities. Below we discuss the notion of correlation
in the returns from trading of several commodities simultaneously.

3 Correlated Markets

Let us begin with a simple calculation. Suppose, an agent invests a certain
amount of money inK number of assets where the returns are stochastic. More
precisely, let us assume that the returns (ǫk) are i.i.d. variables with finite mean
(µ) and variance (σ2). The problem of the agent is to decide what fractions
(fk) of his money holding he would invest in each asset k for k = 1, 2, ..., K.
Assuming risk aversion, the problem is to minimize the variance of his portfolio
(
∑

k ǫkfk) or formally, the problem is to minimize

σ2(ǫ)
(

f 2
1 + f 2

2 + ... + f 2
K

)

subject to the condition that

f1 + f2 + ...+ fK = 1.

Clearly, the solution would be f ∗
k = 1/K for all k. Now, consider the follow-

ing set of stochastic difference equations representing how the money-holding
changes among the agents over time.

mi(t+ 1)= ǫ[mi(t) +mj(t)]

mj(t+ 1)= (1− ǫ)[mi(t) +mj(t)]

(5)

This framework had been borrowed from the statistical mechanics of the scat-
tering process and numerous variations of Eqn. 5 have been studied in the
literature, in the context of income and wealth distributions (see e.g., Ref.
[4,11]). However, Ref. [9] presents a microeconomic model in which the same
set of equations is obtained by the market-clearing trading process between
the agents. There it had been assumed that each of the agents produced a
single non-storable commodity and money acted as an asset that helps to
make transactions (the same assumptions have been made in the last section
while deriving the binary trading equations). However, we can generalize the
situation assuming that each of the agents produce a vector of commodities
and engage in trading with each other, then it is perfectly possible for a risk
averse agent to diversify his money holding at time t following the above cal-
culation, instead of putting all his money in trading of a single commodity.
The market has the following structure. Each agent produces K (K ≥ 1)
number of commodities and each of these commodities is different from the
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Money distribution among risk-averse agents. Four cases are shown above,
viz., K = 1 (+), K = 2 (×), K = 3 ( ∗), K = 4 (�). All simulations are done
for O(106) time steps with 100 agents and averaged over O(103) time steps.

other. Hence, the agents would be willing to trade with each other. Ref. [9]
deals with the case where K = 1 i.e., each agent produces a single commodity
and it shows that Eqn. 5 captures the basic process of money exchange in such
an economy. Here, we consider the case where K ≥ 1. Clearly, the risk averse
agents would diversify their money holding in order to minimize the risk from
trading. The mode of trading is such that at each instant, two randomly cho-
sen agents engage in trading each producing K number of different goods so
that, in total, 2K number of goods are traded at each instant. For trading the
k-th pair of goods (k = 1, 2, ..., K), the i-th and the j-th agent uses mi/K and
mj/K amounts of money respectively because we have already shown that the
variance (risk) minimizing choice is to diversify equally among all assets. So
the money transfer equations become the generalisation of Eqn. 5, viz.,

mi(t + 1) =

∑

k ǫk
K

[mi(t) +mj(t)]

mj(t+ 1) =
(

1−
∑

k ǫk
K

)

[mi(t) +mj(t)]

(6)

for all possible integer values of K.

Corollary: If K is 1, then we get back Eqn. 5 which implies that the steady
state distribution of money would be exponential. In the other extreme for
lim K → ∞, by applying Lindeberg-Levy central limit theorem, we have

(

Σkǫk√
K

)

∼ N(µ, σ2)

where µ and σ2 are finite for uniformly distributed variables ǫk. This in turn
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implies that

Σkǫk
K

∼ N(µ,
σ2

K
).

Hence, the distribution is a ∆ function at µ for large K. The resulting dis-
tribution of money would also be a ∆ function i.e., perfect equality will be
achieved. For finite values of K greater than unity, the distribution of money
would resemble a gamma probability density function (see Fig. 1). �

It may be noted that the assumption of the returns having the same mean
and variance alongwith independence among themselves, is not very realistic.
We relax the assumption of independence below but the assumption of the
means and the variances being the same, is maintained throughout the paper
as it helps to avoid unnecessary complications. Also note that the shifts in
the distribution are discrete since the distribution alters only if the number of
pairs of the different commodities traded (K) alters. This is because we have
made a strong assumption that the returns viz., ǫ1, ǫ2,..., ǫK etc. are i.i.d.
variables as has been mentioned above.

By allowing the returns to be correlated we can generate continuous shifts in
the distributions instead of discrete jumps for K = 1, 2, 3... etc. For example,
consider two specific cases where in the first case, there is only one pair of
commodities and in the other, two pairs of commodities to be traded (more
precisely, we assume K = 1 and 2 respectively in Eqn. 6). In the first case, the
steady state distribution of money would be a pure exponential whereas in the
second case, the distribution resembles a gamma pdf (see Fig. 1). By assuming
zero correlation we can derive these two limits only. However, if we assume
that the returns may be correlated then by varying the degree of correlation
we can get continuous shifts. One noteworthy feature of this case, is that for
a risk-averse agent the risk-minimizing choice would be to diversify equally
even if there is any correlation among the random terms.

4 A Generalized Kinetic Exchange Model

However, it becomes very difficult to work with the Eqn. 6 since there are two
parameters viz., K (the number of commodities traded) and the correlation
among the returns. An even more troublesome issue is that as K changes, the
equilibrium distribution jumps discontinously. Hence, we simplify Eqn. 6 by
assuming that there are only two simultaneous trading processes going on at
each instant (that is K = 2, which essentially implies that there are only two
random terms; recall the proposition stated earlier). We modify the model to
incorporate the savings propensity and the correlation parameter explicitly in
the trading equations in the following fashion.
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mi(t+ 1)=λmi(t) + ω1(1− λ)mi(t) + (αω1 + (1− α)ω2)

(1− λ)mj(t)

mj(t+ 1)=λmj(t) + (1− ω1)(1− λ)mi(t) + (1− αω1 − (1− α)ω2)

(1− λ)mj(t) (7)

which is identical to Eqn. 4. Several points are to be noted.

(a) If λ = 0 and α = 1, then we have the very basic framework of ideal gas
which gives rise to a purely exponential distribution (Gibbs distribution:
p(m) ∼ e−m/T with T = 1 in this case). See Ref. [4,12].

(b) If λ = 0 and α = 0, then we have a model with two uncorrelated stochas-
tic terms. This model has been studied and solved in Ref. [13]. This
model gives rise to a probability distribution characterized by a gamma
probability density function of the form p(m) ∼ 4me−2m.

(c) If lim λ → 1, then the distribution would be a delta function.
(d) If only α = 1, the above model reduces to the so-called CC model [14]

which gives rise to gamma-function like behavior.
(e) If only α = 0, then we have a new model which has savings propensity

(CC model) and two uncorrelated random terms (see point (b) above).

5 Inequality Reversal

Inequality can be measured by a number in indices. However, the most useful
one in this case is simply the coefficient of variation which is basically the
standard deviation of the distribution normalized by the expectation. The
economy is modelled in such a way that the expectation is always set equal to
unity (recall that all agents are initially endowed with unit amount of money
and the economy under study is a conserved one i.e., money is neither created
nor annihilated in this economy). We can calculate the moments recursively
(see Ref. [15] for more on finding the moments). We consider the i-th agents
money evolution equation only.

mi(t+ 1) = [λ+ ω1(1− λ)]mi(t) + [αω1 + (1− α)ω2](1− λ)mj(t) (8)

Lemma 1: 〈m〉=1.
Proof: By taking expectation over both sides of Eqn. 8, we get

〈mi(t + 1)〉 = [λ +
1

2
(1− λ)]〈mi(t)〉+

1

2
(1− λ)〈mj(t)〉.
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Note that 〈mj(t)〉=
∑N

j=1mj(t)/N=1. Since the expected money-holding is
free of the time index, the result readily follows. �

Lemma 2:

∆m=
2(1− λ)

[

α(1−λ)
3

+ λ
2
+ (1−λ)(1−α)

4

]

1− z
− 1

where z = (1− λ)2
(

1
3
+ λ

(1−λ)2
+ α2+(1−α)2

3
+ α(1−α)

2

)

.

Proof: It follows from the definition of variance that

∆mi = 〈m2
i 〉 − (〈mi〉)2

where mi is given by Eqn. 8 and ∆ stands for the second central moment
(variance). By substituting mi in the l.h.s. of the expression of variance and
noting that 〈m〉 = 1, we get

∆mi(t + 1) = 〈[(λ+ ω1(1− λ))mi(t) + (αω1 + (1− α)ω2)(1− λ)mj(t)]
2〉 − 1.

Here, we use the fact that in the steady state, the variance of the distribution
should be free of the time and the agent indices. Also, since ωi ∼ uniform
[0,1], 〈ωi〉 = 1/2 and ∆ωi = 1/12 (for i =1, 2). On simplification, we get

∆m = z(∆m + 1) + 2(1− λ)〈(λ+ ω1(1− λ)) (αω1 + (1− α)ω2)〉 − 1

where z = (1−λ)2
(

1
3
+ λ

(1−λ)2
+ α2+(1−α)2

3
+ α(1−α)

2

)

. On further simplification,
we get

∆m =
2(1− λ)

[

α(1−λ)
3

+ λ
2
+ (1−λ)(1−α)

4

]

1− z
− 1 (9)

where z is defined as above. �

Clearly the variance is a function of λ and α only. Now, we make use of two
observations. First, for a sustainable growth the savings propensity has to
increase (see Ref. [16] for more on this topic). The second observation is that
the modern markets are characterized by correlated returns with fluctuations
[17] in the most efficient state [18]. The implications are that both λ and α
increases over time unidirectionally. By plugging different values of λ and α
in the expression of variance, one can find how inequality changes over time
with increases in the parameters. Note that since the parameters are ranging
between 0 and 1, the parameter space is a square with unit length (Fig. 3
shows the relevant region). Now, we assume that the path followed by the
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Fig. 2.

Steady state distributions of money for different values of the parameters.
Curve A: λ = 0 and α = 0. Curve B: λ = 0 and α = 0.7. Curve C: λ = 0 and

α = 1. Curve D: λ = 0.5 and α = 1. As the correlation goes up the
distribution becomes more skewed to the left (from A to B to C; see the
arrow). Then as the savings propensity goes up, it moves in the opposite
direction (from C to D; see the arrow). All simulations are done for O(106)

time steps with 100 agents and averaged over O(103) time steps.
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The (λ, α) parameter space. If the economy moves through the shaded region
(the region above the curve α = λ1/5) then it shows inequality reversal.

economy starts from the origin (λ = 0, α = 0) and ends at (λ = 1, α = 1).
The simplest functional relationship between λ and α satisfying the above
assumption is of the form

α = λ
1

τ (10)

where τ is a positive number. It is numerically seen that for τ ≥ 5, the economy
shows a very prominent inequality reversal (see Fig. 4). It should be noted,
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Left panel: The changes in the variance of the distribution (∆m) is shown
with changes in the savings propensity (λ) (from below, τ=5, 7, 10 and 13).
The Monte Carlo simulation results agree with the theoretical curves (dotted
lines) obtained from the Eqn. 9 and 10. Right panel: The Kuznets Curve in
terms of the Coefficient of Variation i.e.,

√
∆m (from below, τ=5, 7, 10 and

13): inequality increases and then falls.
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The Kuznets Curve in terms of the Gini concentration ratio (from below,
τ=5, 7, 10 and 13): inequality increases and then falls. All Monte Carlo
simulations are done for O(105) time steps with 100 agents and averaged

over O(102) time steps.

however, that if the economy follows some other paths in the parameter space,
then it may show other types of behavior as well.

For the sake of completeness, we also provide Monte Carlo simulation results
of the Kuznets Curves where the inequality is measured in terms of the Gini
concentration ratio. The definition of the measure G is the following [2].

G ≡
∑N

i=1

∑N
j=1 | mi −mj |

2µN(N − 1)
(11)
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where N is the number of agents (which is set to 100), µ is the money per
agent (which is set to unity) and mi is the money holding of the i−th agent.
Fig. 5 shows the rise and the subsequent fall in the Gini concentration ratio.

In its original formulation, the Kuznets Curve is a plot of income distribution
with the changes in income per capita. However, the trading process that we
have considered is a conservative one, implying that the average income in
this model remains fixed over time. Instead of average income, we consider
the changes in the savings propensity and the correlation among the markets
and we trace the corresponding changes in the inequality in money-holding. In
such cases, it is clearly seen that the economy shows Kuznets-type behavior.

6 Summary

The presence of inequality is a persistent phenomena in any economy. The
static nature of inequality has been under investigation for more than a decade
[3,4]. Here in this paper, we examine the dynamic aspects of inequality. It is
seen that as an economy grows over time, its inequality first increases and then
falls with further growth. This particular dynamic feature was first pointed
out by Kuznets [6,7]. This observation has attracted considerable interests
in Economics. In this paper, we have tried to explain the origin of such a
phenomena in an appropriately modified kinetic exchange model (see Ref.
[3,11] for recent reviews on kinetic exchange models).

First, following Ref. [9] we propose a basic binary trading process and we de-
rive the corresponding money transfer equations as the competitive solution
the trading action. Then we propose another model to show the effects of
correlated returns on the equilibrium distributions of money. Here, we con-
sider the case where each agent produces a number of commodities and hence,
would diversify their money holding in trading of different commodities to
minimimize the risk (Sec. 3). Then we formulate a very general kinetic mar-
ket model incorporating the effects of savings propensity and correlated re-
turns (Sec. 4) explicitly. In different limits, this model gives rise to a num-
ber of kinetic exchange models viz., the Dragulescu-Yakovenko model [12],
Chakraborti-Chakrabarti model [14] and yet another model proposed in Ref.
[13]. It is observed that with the growth of an economy, the savings propen-
sity of its people increases [16] and the efficient markets are characterized by
correlated returns from trade [17,18]. Using these observations, we show that
if the economy moves through a certain region in the parameter space then it
shows inequality reversal as was found by Kuznets [6,7] (Sec. 5). The Monte
Carlo simulation results are also explained by finding out the expression of
the inequality index as well (Eqn. 9).
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