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Quantum computing with nearest neighbor interactions and error rates over 1%
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Large-scale quantum computation will only be achieved if experimentally implementable quantum
error correction procedures are devised that can tolerate experimentally achievable error rates. We
describe a quantum error correction procedure that requires only a 2-D square lattice of qubits
that can interact with their nearest neighbors, yet can tolerate quantum gate error rates over 1%.
The precise maximum tolerable error rate depends on the error model, and we calculate values in
the range 1.1–1.4% for various physically reasonable models. Even the lowest value represents the
highest threshold error rate calculated to date in a geometrically constrained setting, and a 50%
improvement over the previous record.

Building a quantum computer is a daunting task. En-
gineering the ability to interact nonlocal pairs of qubits is
particularly challenging. All existing quantum error cor-
rection (QEC) schemes capable of tolerating error rates
above 1% assume the ability to deterministically interact
pairs of qubits separated by arbitrary distances with no
time or error rate penalty [1–3]. The most recent of these
works estimates a threshold error rate pth of 5% [3].

It is far more physically reasonable to assume a 2-D
lattice of qubits with only nearest neighbor interactions,
proposed realizations of which exist for ion traps [4], op-
tical lattices [5], superconducting qubits [6], optically ad-
dressed quantum dots [7, 8], NV centers in diamond [9]
and many other systems. For such proposals, the leading
QEC scheme [10, 11], which is based on the Kitaev sur-
face code [12], has been shown to possess a pth of 0.75%
[10, 13, 14]. We increase this to 1.1–1.4%, depending on
the error model, bringing the threshold for geometrically
constrained quantum computing above 1% for the first
time. We achieve this by carefully using the given error
model to calculate approximate probabilities of different
error events and removing the need to initialize qubits.

To overview, we will begin by describing stabilizers and
our simplified quantum gate sequence, followed by a de-
tailed discussion of how probable different error events
are and how this information can be fed into the classi-
cal decoding algorithm. We then present the results of
detailed simulations, which apply two-qubit depolarizing
noise with probability p2 after two-qubit quantum gates,
single-qubit depolarizing noise with probability pI after
identity gates, and make use of measurement gates that
report and project into the wrong eigenstate with prob-
ability pM . In addition to the standard error model with
p2 = pI = pM = p, which we focus on, we simulate a
balanced error model with pI = 4p2/5 and pM = 2pI/3,
ensuring idle qubits have the same probability of error
as a single qubit involved in a two-qubit gate and taking
into account the fact that a measurement is only sensi-
tive to errors in one basis. We also simulate the case
pI = p2/1000 and pM = p2/100, modeling typical error
ratios in an ion trap.

A stabilizer [15] of a state |Ψ〉 is an operator S such
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FIG. 1: a) 2-D lattice of data qubits (circles) and syndrome
qubits (dots) and examples of the data qubit stabilizers. b)
Sequence of CNOTs permitting simultaneous measurement of
all stabilizers. Numbers indicate the relative timing of gates.
The highlighted gates can be tiled to fill the plain.
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FIG. 2: Circuit determining the sign of a stabilizer a)
XXXX, b) ZZZZ, without explicit initialization gates.

that S |Ψ〉 = |Ψ〉. An error E that anticommutes with S
can be detected as SE |Ψ〉 = −ES |Ψ〉 = −E |Ψ〉. Exam-
ples of surface code stabilizers [12] are shown in fig. 1a.
Circuits measuring these stabilizers without explicit ini-
tialization gates are shown in fig. 2. We assume quan-
tum nondemolition measurements, which have been ex-
perimentally demonstrated using ion traps [16], optical
lattices [17], superconducting qubits [18] and NV centers
in diamond [19] and theoretically proposed for optically
addressed quantum dots [20, 21]. The initial and final
measurements match when +E is measured and differ
when −E is measured. An appropriate sequence of two-
qubit gates for measuring all stabilizers across the lattice
simultaneously is shown in fig. 1b. Data qubits execute
identity gates while the syndrome qubits are measured.

Repeatedly executing the gates of fig. 1b, along with
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appropriate syndrome qubit measurements and data
qubit identity gates, generates points in space and time
where the stabilizer changes sign, indicating local errors.
Renormalization techniques exist capable of processing
perfect syndrome information [22, 23], however at present
only the minimum weight perfect matching algorithm
[24, 25] can be used to process the output of realistic
quantum circuits.
The minimum weight perfect matching algorithm takes

coordinates and a measure of separation and matches
pairs of coordinates such that the total separation is
a minimum. Chains of corrective operations connect-
ing matched pairs can then be applied. Prior work
has calculated the separation of two syndrome changes
s1 = (i1, j1, t1), s2 = (i2, j2, t2) using d(s1, s2) = |i1 −
i2|+ |j1− j2|+ |t1− t2| [10, 13, 14], however it was shown
in [26] that this is far from optimal and leads to poor per-
formance, particularly at low error rates. In this work, we
instead approximate the probability P (s1, s2) of a given
pair of syndrome changes being connected by an error
chain, and set d(s1, s2) = − ln(P (s1, s2)). This choice of
d(s1, s2) is natural, accounting for the substantial perfor-
mance increase we observe.
To calculate P (s1, s2), we must study the effect gate er-

rors. Fig. 3 shows all possible pairs of syndrome changes
resulting from all possible errors on all meaningfully dis-
tinct gates. The CNOTs shown measure an X-stabilizer.
The effect of errors on the CNOTs used to measure a
Z-stabilizer can be obtained by interchanging X and Z.

Using fig. 3, fig. 4 was constructed, grouping gate er-
rors leading to specific pairs of syndrome changes. The
probability of an odd number of errors occurring in each
group gives the probability of the associated link. Us-
ing the standard error model, the probability of the link
shown in fig. 4a is

pA =
16p

15

(

1−
4p

15

)3

(1− p) + p

(

1−
4p

15

)4

+O(p3).

(1)
Defining similar probabilities pB, pC , pD, pE , pF for
fig. 4b–f, fig. 5 shows the O(p) links from one syndrome
to its neighbors. Some straightforward modifications of
the links and expressions are required at the temporal
and spatial boundaries.
The probability P (s1, s2) that two syndrome changes

are connected is the sum of the probabilities of all con-
necting paths. The probability of a given path is the
product of the link probabilities along the path. Several
approximations of P (s1, s2) are worthy of study. The
simplest approximation is to take a single path of max-
imum probability Pmax(s1, s2) and define dmax(s1, s2) =
− ln(Pmax(s1, s2)). We shall see that this approximation
is sufficient to substantially increase pth, and that more
accurate approximations do not lead to further increase.
The performance of surface code QEC using dmax(s1, s2)
and the standard error model is shown in figs. 6–7.
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FIG. 3: Syndrome changes resulting from a-d) specific two-
qubit errors on specific CNOTs, e) a syndrome qubit mea-
surement error, f) a data qubit memory error.
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FIG. 4: Numbered error processes from fig. 3 contributing to
specific links. Superscripts 1, 2 and 3 indicate errors occur-
ring with probability 8p2/15, 2pI/3 and pM respectively. All
others occur with probability 4p2/15.
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FIG. 5: All possible links from a syndrome change to its neigh-
bors. Letters correspond to figs. 4a–f.
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FIG. 6: Average rounds of error correction before logical
X failure as a function of the gate error rate p when using
dmax(s1, s2) and the standard error model.
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FIG. 7: Average rounds of error correction before logical
Z failure as a function of the gate error rate p when using
dmax(s1, s2) and the standard error model.

Figs. 6–7 give strong evidence of pth = 1.1%. We
have verified this by simulating high distance codes at
p = 1.1% and observing neither increase nor decrease of
the failure time. This is enormously encouraging, and
motivates one to better approximate P (s1, s2) in an ef-
fort to further increase pth. Additional accuracy can be
achieved by taking all shortest length paths (measured in
links) between s1 and s2 and calculating the sum of prod-
ucts of link probabilities along each path. We shall define
the resulting distance measure as d0(s1, s2). We can de-
fine similar distance measures dn(s1, s2) taking into ac-
count all minimum length l paths and paths of length no
greater than l+n. The performance of surface code QEC
around pth using d0(s1, s2) is shown in fig. 8. It can be
seen that pth remains 1.1%.

The fact that d0 results in the same pth as using a sin-
gle maximum probability path distance measure dmax can
be explained by noting that d0(s1, s2) only differs from
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FIG. 8: Average rounds of error correction before logical
X failure as a function of the gate error rate p when using
d0(s1, s2) and the standard error model. pth remains 1.1%.

dmax(s1, s2) if s1, s2 are separated by at least two links.
Single link paths are unique minimum length paths im-
plying d0 = dmax. The vast majority of error chains, even
for p = pth, are single links. We find that the modifica-
tion of the distance associated with the multiple paths of
syndrome changes separated by multiple links is in the
region of 10–20%. Given such multiple link paths are
not leading order contributors to pth in the first place,
this relatively small weight change does not result in an
observable improvement of pth.
Higher order approximations dn(s1, s2) will also result

in the same pth as the distance is hardly altered by in-
creasing n. To take a typical example, for p = 0.01,
s1 = (0, 0, 0), s2 = (1,−1, 0) we obtain d0 = 6.91 (6
paths), d1 = 6.86 (30 paths) and d2 = 6.85 (390 paths).
The exponential increase of the number of paths is well
balanced by the exponential decrease of the probability
of these paths.

The balanced error model is a better model of all quan-
tum gates failing with equal probability than the stan-
dard error model, and appropriate modification of the
polynomials using p2 = p, pI = 4p/5 and pM = 8p/15
leads to pth = 1.2%. The ion trap error model, with p2 =
p, pI = p/1000 and pM = p/100 leads to pth = 1.4%.
Arbitrary stochastic error models are straightforward to
analyze using our formalism.

To conclude, by performing a detailed study of the
probability of different pairs of syndrome changes and
feeding the simplest approximation of this information
into the minimum weight perfect matching algorithm,
we have been able to raise the geometrically constrained
threshold error rate to 1.1–1.4%, depending on the exact
error model, while maintaining computational efficiency.
This is the first time a geometrically constrained thresh-
old error rate has been observed over the 1% level. There
is the potential for still further improvement by taking
into account correlations between X and Z errors, which

shall be pursued in further work.
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