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We study the nature of the energy transfer process within a pair of coupled two-level systems
(donor and acceptor) subject to interactions with the surrounding environment. Going beyond a
standard weak-coupling approach, we derive a master equation within the polaron representation
that allows for investigation of both weak and strong system-bath couplings, as well as reliable inter-
polation between these two limits. With this theory, we are then able to explore both coherent and
incoherent regimes of energy transfer within the donor-acceptor pair. We elucidate how the degree
of correlation in the donor and acceptor fluctuations, the donor-acceptor energy mismatch, and the
range of the environment frequency distribution impact upon the energy transfer dynamics. In the
resonant case (no energy mismatch) we describe in detail how a crossover from coherent to incoher-
ent transfer dynamics occurs with increasing temperature [Phys. Rev. Lett. 103, 146404 (2009)],
and we also explore how fluctuation correlations are able to protect coherence in the energy transfer
process. We show that a strict crossover criterion is harder to define when off-resonance, though
we find qualitatively similar population dynamics to the resonant case with increasing temperature,
while the amplitude of coherent population oscillations also becomes suppressed with growing site
energy mismatch.

I. INTRODUCTION

A fascinating series of recent experiments demonstrat-
ing signatures of quantum coherence in the energy trans-
fer dynamics of a variety of systems1–9 has sparked re-
newed interest in modeling excitation energy transfer
beyond standard methods.10–19 This process, which oc-
curs when energy absorbed at one site (the donor) is
transferred to another nearby site (the acceptor) via a
virtual photon,20 is often considered to be incoherent;
the result of weak donor-acceptor interactions, treated
perturbatively using Fermi’s golden rule.21,22 However,
though this approach has proved to be immensely suc-
cessful when applied in many situations,23,24 accounting
for quantum coherence within the energy transfer dynam-
ics requires an analysis beyond straightforward perturba-
tion theory in the donor-acceptor interaction.
An alternative starting point for investigations into co-

herent energy transfer is to treat the system-environment
interaction as a perturbation instead. Such weak-
coupling theories, often referred to as being of Redfield
or Lindblad type depending upon the approximations
made in their derivation,25 have been successfully ap-
plied to elucidate a number of effects that could be at
play in multi-site donor-acceptor complexes. Examples
include studying the interplay of coherent dynamics and
dephasing in promoting efficient energy transfer in quan-
tum aggregates,26–32 exploring the role of environmen-
tal correlations in tuning the energy transfer process,33

and extensions to assess the potential importance of non-
Markovian effects.34,35

Nevertheless, in order to properly understand the tran-
sition from coherent to incoherent energy transfer which
occurs as the system-environment coupling or tempera-

ture is increased,11,36–38 it is necessary to be able to de-
scribe the system dynamics beyond either of these limit-
ing cases.24,39,40 Building on earlier work,36,41–43 a num-
ber of methods have been put forward to accomplish
this. For example, modifications to both Redfield44–47

and Förster48–50 theory have extended the range of valid-
ity of both approaches. Moreover, it is possible to define a
new perturbation term through the small polaron trans-
formation,51 which under certain conditions allows in-
terpolation between the Redfield and Förster limits.11–13

For particular forms of system-environment interaction,
this can also be achieved through the hierarchical equa-
tions of motion technique.16,52 Numerically exact calcula-
tions, based, for example, on path integral,15,53 numerical
renormalisation group54 and density matrix renormalisa-
tion group14 methods, have also been applied to study
energy transfer beyond perturbative approaches.

In this work, we investigate the conditions under which
coherent or incoherent motion is expected to dominate
the energy transfer dynamics of a model donor-acceptor
pair. Following Ref. 11, we employ a Markovian mas-
ter equation derived within the polaron representation
for this purpose, since it allows for a consistent analysis
of the dynamics from weak to strong system-bath cou-
pling (or, equivalently, low to high temperatures).51,55

In addition to presenting a full derivation of the theory,
we also extend it to explore in detail the important ef-
fects of donor-acceptor energy mismatch, deriving ana-
lytical forms for the dissipative dynamics valid over a
large range of parameter space. Furthermore, we move
beyond the scaling limit studied in Ref. 11 to consider
an environment frequency distribution of finite extent,
characterised by a high-frequency cut-off in the bath
spectral density. In the resonant case (no energy mis-
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match) we define a strict crossover temperature above
which the energy transfer dynamics ceases to be coher-
ent.11 Of particular practical interest is the role played
by correlations between the donor and acceptor environ-
mental fluctuations, suggested as a mechanism by which
quantum coherence may survive in the energy transfer
process under otherwise adverse conditions.1,4,9,11,53,56–60

These correlations are also easily treated within our for-
malism, through position-dependent couplings between
the system and the common environment. As the donor
and acceptor are brought closer together, there comes
a point at which their separation becomes comparable
to, or smaller than, the wavelength of relevant modes in
the bath. As this happens, fluctuations at each site be-
come ever more correlated, and dephasing effects are sup-
pressed. We shall show, consequently, that as the level of
correlation increases, so too does the crossover tempera-
ture to the incoherent regime. Hence, strong correlations
lead to the survival of coherence at high temperatures.

Off-resonance, we find that it is less straightforward to
define a crossover temperature. In contrast to the res-
onant case, for sufficient energy mismatch between the
donor and acceptor, increasing the temperature causes
the amplitude of the coherent contribution to decrease,
though not to disappear altogether. In principle, it then
becomes possible for a coherent component to exist in
the dynamics at all but infinite temperatures. Although
we are then unable to define a crossover in quite the same
way, we still find that bath correlations have a qualita-
tively similar effect to the resonant case, protecting co-
herence in the transfer process.

The paper is organised as follows. In Section II we
introduce our model, and derive a master equation de-
scribing the donor-acceptor dynamics within the polaron
representation. Section III considers the resonant case
and the coherent-incoherent crossover. In Section IV we
investigate off-resonant energy transfer and obtain ana-
lytic expressions for the dynamics in a number of limits.
Finally, in Section V we summarise our results.

II. POLARON TRANSFORM MASTER
EQUATION

A. The system and polaron transformation

We consider a donor-acceptor pair (j = 1, 2), each site
of which is modeled as a two-level system with ground
state |G〉j , excited state |X〉j , and energy splitting ǫj.
The pair interact via Coulombic energy transfer with
strength V , which is responsible for the transfer of exci-
tation from one site to the other. The environment sur-
rounding the donor-acceptor pair is modelled as a com-
mon bath of harmonic oscillators, coupled linearly to the
excited state of each site. The total system-bath Hamil-

tonian is therefore written (where ~ = 1)

H =

2
∑

j=1

ǫj |X〉j〈X |+ V (|XG〉〈GX |+ |GX〉〈XG|)

+

2
∑

j=1

|X〉j〈X |
∑

k

(g
(j)
k
b†
k
+ g

(j)∗
k

bk) +
∑

k

ωkb
†
k
bk,

(1)

where the bath is described by creation (annihilation)

operators b†
k
(bk) with corresponding angular frequency

ωk, and wavevector k. The system-bath couplings are

given by g
(j)
k

. As in Ref. 11, we shall consider the case in
which each site is coupled to the bosonic bath with the
same magnitude |gk|, but make the separation between
the sites explicit through position-dependent phases in

the coupling constants of the form g
(j)
k

= |gk|eik·rj , with
rj being the position of site j. As we shall see, this form
of coupling gives rise to correlations between the bath
influences experienced at each site, allowing the range
of totally correlated, partially correlated, and completely
uncorrelated fluctuations to be explored.11,53

Inspection of Eq. (1) reveals that it generates dy-
namics in three decoupled subspaces, spanned by
{|GG〉 , {|GX〉 , |XG〉}, |XX〉}. We are interested here
in excitation energy transfer and therefore focus on the
single-excitation subspace, {|GX〉 , |XG〉}, in which this
occurs. Relabelling |XG〉 → |0〉 and |GX〉 → |1〉, the
Hamiltonian of the single-excitation subspace may be
written

HSUB = ǫ1 |0〉〈0|+ ǫ2 |1〉〈1|+ V (|0〉〈1|+ |1〉〈0|)
+ |0〉〈0|B(1)

z + |1〉〈1|B(2)
z +

∑

k

ωkb
†
k
bk,

(2)

where we have defined the bath operators B
(j)
z =

∑

k
(g

(j)
k
b†
k
+ g

(j)∗
k

bk). A standard weak-coupling ap-
proach to the system dynamics would now be to derive a
master equation for the evolution of the reduced system
density operator under the assumption that the system-
bath interaction terms, as written in Eq. (2), can be
treated as weak perturbations.25,61 In this work, we shall
instead derive a master equation describing the donor-
acceptor energy transfer dynamics in the polaron repre-
sentation,11–13,43,51,55 whereby we displace the bath os-
cillators depending on the system state. We may then
identify alternative perturbation terms, which can be
small over a much larger range of parameter space than
those in the original representation. In particular, the
polaron framework allows us to reliably explore from
weak (single-phonon) to strong (multiphonon) coupling
regimes between the system and the bath, provided that
the energy transfer interaction V does not become the
largest energy scale in the problem (in which case the
full polaron displacement is no longer appropriate74),
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and that there is no infra-red divergence in its bath-
renormalised value VR (see Eq. (8) below).62 In contrast,
with a weak system-bath coupling treatment we would
only be able to probe single-phonon bath-induced pro-
cesses, and hence not be able to properly explore the
crossover from coherent to incoherent dynamics in which
we are primarily interested.
To proceed, we thus apply a unitary transformation

which displaces the bath oscillators according to the lo-
cation of the excitation. Defining HP = eSHSUBe

−S ,
where

S = |0〉〈0|P (g(1)
k
/ωk) + |1〉〈1|P (g(2)

k
/ωk), (3)

with bath operators P (αk) =
∑

k
(αkb

†
k
−α∗

k
bk), results in

the polaron transformed spin-boson Hamiltonian51 HP =
H0 +HI , with

H0 =
ǫ

2
σz + VRσx +

∑

k

ωkb
†
k
bk, (4)

and

HI = V (Bxσx +Byσy). (5)

Here, the bias ǫ = ǫ1 − ǫ2, gives the energy difference
between the donor and acceptor, while the Pauli opera-
tors are defined in a basis in which σz = |0〉〈0|− |1〉〈1| =
|XG〉〈XG| − |GX〉〈GX |. The bath operators appearing
in Eq. (4) are constructed as Bx = (1/2)(B++B−− 2B)
and By = (i/2)(B+ −B−), where

B± =
∏

k

D

(

± (g
(1)
k

− g
(2)
k

)

ωk

)

, (6)

with displacement operators D(±αk) = exp[±(αkb
†
k
−

α∗
k
bk)]. Note that the interaction terms in Eq. (5) there-

fore depend upon the difference in donor and acceptor

system-bath couplings g
(1)
k

and g
(2)
k

, respectively. Im-
portantly, the term driving coherent energy transfer in
Eq. (4) will not be treated perturbatively, but it does now
have a bath-renormalised strength, VR = BV , where

B = exp

[

−
∑

k

|gk|2
ω2
k

(1 − cos(k · d)) coth(βωk/2)

]

(7)

is the expectation value of the bath operators with re-
spect to the free Hamiltonian: B = 〈B±〉H0

. The donor-
acceptor separation is given by d = r1 − r2.
In order to calculate the renormalisation factor, we

take the continuum limit to convert the summation in
Eq. (7) into an integral. Defining the bath spectral den-
sity J(ω) =

∑

k
|gk|2δ(ω − ωk), which contains infor-

mation regarding both the density of oscillators in the
bath with a given frequency, and also how strongly those
oscillators interact with the donor-acceptor pair, and as-
suming a linear, isotropic dispersion relation, we find

B = exp

[

−
∫ ∞

0

J(ω)

ω2
(1 − FD(ω, d)) coth(βω/2)

]

. (8)

Here, β = 1/kBT , while the function FD(ω, d) captures
the degree of spatial correlation in the bath fluctuations
seen at each site, and is dependent upon the dimensional-
ity of the system-bath interaction (D = 1, 2, 3).33,53,63 In
one dimension F1(ω, d) = cos(ωd/c), with c the bosonic
excitation speed, in two dimensions F2(ω, d) = J0(ωd/c),
where J0(x) is a Bessel function of the first kind, and
in three dimensions F3(ω, d) = sinc(ωd/c). In all cases
FD(ω, d) → 1 as d → 0, i.e. when the donor and accep-
tor are at the same position, bath fluctuations are per-
fectly correlated, and the energy transfer strength is not
renormalised (VR → V ). In fact, in this limit dissipative

process are entirely suppressed (provided |g(1)
k

| = |g(2)
k

|)
and energy transfer remains coherent for all times and in
all parameter regimes in our model (the single-excitation
subspace is then decoherence-free.64,65) In two and three
dimensions, as d → ∞, FD(ω, d) → 0, and the renor-
malisation takes on the value that would be obtained
by considering separate, completely uncorrelated baths
surrounding the donor and acceptor. In the following,
we shall characterise the degree of correlation in terms
of the dimensionless parameter µ = c/dω0, where ω0 is
a typical bath frequency scale (see Eq. (32) below). We
therefore have µ = 0 in the absence of correlations, µ < 1
for weak correlations, and µ > 1 for strong correlations.

B. Markovian master equation

Having identified a new perturbation term by trans-
forming our Hamiltonian to the polaron representation,
we can now construct a master equation describing the
evolution of the donor-acceptor pair reduced density op-
erator ρ up to second order in HI . We employ a standard
Born-Markov approach, which yields a polaron frame, in-
teraction picture master equation of the form25

∂ρ̃(t)

∂t
= −

∫ ∞

0

dτ trB
[

[H̃I(t), [H̃I(t−τ), ρ̃(t)⊗ρB]
]

, (9)

where tildes indicate operators in the interaction picture,
Õ(t) = eiH0tOe−iH0t, and trB denotes a trace over the
bath degrees of freedom. In deriving Eq. (9) we have
assumed: (i) factorising initial conditions for the joint
system-bath density operator within the polaron frame,
χ(0) = ρ(0) ⊗ ρB, with ρB = e−βHB/trB(e

−βHB ) be-
ing a thermal equilibrium state of the bath; (ii) that
by construction the interaction is weak in the polaron
frame so that we may factorise the joint density operator
as χ̃(t) = ρ̃(t)ρB at all times; (iii) that the timescale
on which the donor-acceptor system evolves apprecia-
bly in both the Schrödinger and interaction pictures is
large compared to the bath memory time τB. Since, for
the spectral density we shall consider below, τB ∼ 1/ωc,
where ωc is a high-frequency cutoff (see Eq. (32)), this
is not too restrictive, as we must keep V < ωc any-
way in order for the polaron theory to work well. We
note that interesting non-Markovian and non-equilibrium
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bath effects have been explored in the polaron formalism
in Refs. 12 and 13.
Inserting Eq. (5) into Eq. (9), and moving back into the

Schrödinger picture, we arrive at our Markovian master
equation describing the energy transfer dynamics within
the single-excitation subspace, and written in the polaron
frame as

∂ρ(t)

∂t
=− i[(ǫ/2)σz + VRσx, ρ(t)]

− V 2

∫ ∞

0

dτ
(

[σx, σ̃x(−τ)ρ(t)]Λxx(τ)

+ [σy, σ̃y(−τ)ρ(t)]Λyy(τ) + H.c.
)

,

(10)

where H.c. denotes Hermitian conjugation. The effect
of the bath is now contained within the correlation func-
tions Λll(τ) = 〈Bl(τ)Bl(0)〉H0

, which are given explicitly
by

Λxx(τ) = (B2/2)(eφ(τ) + e−φ(τ) − 2), (11)

Λyy(τ) = (B2/2)(eφ(τ) − e−φ(τ)), (12)

where

φ(τ) = 2

∫ ∞

0

dω

[

J(ω)

ω2
(1 − FD(ω, d))

× (cosωτ coth(βω/2)− i sinωτ)

]

.

(13)

Notice that the phonon propagator, φ(τ), is correlation-
dependent due to the factor (1 − FD(ω, d)), and so
clearly the dissipative effect of the bath will be depen-
dent upon the degree of correlation too. For example, as
d→ 0, FD(ω, d) → 1, and the dissipative contribution to
Eq. (10) vanishes, as anticipated earlier.

C. Evolution of the Bloch vector

We solve our master equation in terms of the Bloch vec-
tor, defined as α = (αx, αy, αz)

T = (〈σx〉, 〈σy〉, 〈σz〉)T .
As we are working exclusively in the single-excitation
subspace, αx and αy describe the coherences between the
states |0〉 ≡ |XG〉 and |1〉 ≡ |GX〉, while αz captures the
donor-acceptor population transfer dynamics generated
by the coupling V .
Though Eq. (10) is written in the Schödinger pic-

ture, it is still in the polaron frame, and so we must
determine how expectation values in the polaron frame
are related to those in the original, or “lab” frame.
We can see this by writing α̇i = trS+B(σiχ̇L(t)) =
trS+B(σie

−Sχ̇(t)eS) = trS+B(e
Sσie

−S ρ̇(t)ρB), where
χL(t) = e−Sχ(t)eS is the lab frame total density op-
erator, and we have made use of the Born approxima-
tion in the polaron frame to write χ(t) = ρ(t)ρB . Since
eSσxe

−S = |1〉〈0|B++|0〉〈1|B−, e
Sσye

−S = i(|1〉〈0|B+−
|0〉〈1|B−), and eSσze

−S = σz , this implies that the lab

Bloch vector elements are α̇i = Bα̇iP , for i = x, y, and
α̇z = α̇zP , where αiP is an expectation value in the po-
laron frame: α̇iP = TrS(σiρ̇(t)). Alternatively, we can
define a matrix L which maps the polaron frame Bloch
vector (αP ) to its lab frame counterpart (α): α = L·αP ,
where L = diag(B,B, 1).
Working in terms of the Bloch vector, we arrive at an

equation of motion of the form

α̇(t) =M ·α(t) + b. (14)

In the following, we shall often be interested in deter-
mining whether the energy transfer dynamics is predom-
inantly coherent or incoherent. It is then helpful to write
Eq. (14) as

α̇
′(t) =M · α(t)′, (15)

with α
′(t) = α(t) − α(∞), where α(∞) = −M−1 · b is

the steady state. This makes clear that the nature of the
energy transfer process lies solely in the matrix M , while
the inhomogeneous term b is needed only in determining
the steady state.
Equipped with the eigensystem of M , we may deter-

mine the corresponding time evolution as follows: an
eigenvector of M , say mi, has equation of motion ṁi =
qimi, where qi is the corresponding eigenvalue. Its sub-
sequent evolution then has the simple exponential form
mi(t) = mie

qit. More generally, we can say that any
initial state α

′(0) will have subsequent evolution

α
′(t) =

3
∑

i=1

aimie
qit, (16)

where the coefficients ai are determined by the initial
conditions (i.e. the solutions of α′(0) =

∑

i aimi). The
solution to the full inhomogeneous equation is then found
simply by addition of the steady state: α(t) = α

′(t) +
α(∞).

III. RESONANT ENERGY TRANSFER

We start by considering the important special case of
resonant energy transfer, in which the interplay of co-
herent and incoherent effects is particularly pronounced.
As we shall see, in this situation it is relatively straight-
forward to derive a strict criterion governing when we
expect the energy transfer dynamics to be able to dis-
play signatures of coherence.11,51 Hence, resonant con-
ditions provide a natural situation in which to begin to
understand, for example, the role of bath spatial correla-
tions9,11,33,53,56–60 or the range of the bath frequency dis-
tribution in determining the nature of the energy transfer
process.
Setting the donor-acceptor energy mismatch to zero,

ǫ = 0, we find from Eq. (10) dynamics generated by an
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expression of the form α̇ =MR · α+ bR, with

MR =





−(Γz − Γy) 0 0
0 −Γy −2BVR
0 B−1(2VR + λ3) −Γz



 ,

(17)
and bR = (−Bκx, 0, 0)T , where

Γy = 2V 2γxx(0), (18)

Γz = V 2(γyy(2VR) + γyy(−2VR)) + 2V 2γxx(0), (19)

λ3 = 2V 2(Syy(2VR)− Syy(−2VR)), (20)

κx = V 2(γyy(2VR)− γyy(−2VR)). (21)

The rates and energy shifts are related to the response
functions

Kii(ω) =

∫ ∞

0

dτeiωτΛii(τ)=
1

2
γii(ω) + iSii(ω), (22)

such that

γii(ω) = 2Re[Kii(ω)] =

∫ +∞

−∞

dτeiωτΛii(τ), (23)

and Sii(ω) = Im[Kii(ω)].
The resonant steady-state is straightforwardly found

to be

αx(∞) = −B tanh(βVR), (24)

while αy(∞) = αz(∞) = 0. Notice that while this is
of the same form as the steady-state that would be ob-
tained from a weak system-bath coupling treatment,25,66

αx(∞) is determined here by VR, rather than the orig-
inal coupling V , and there is also an extra factor of B
suppressing its magnitude.
The procedure described in Section II C to determine

the time evolution of α is somewhat unnecessary here,
since the equation of motion for αx is decoupled from
that for αy and αz. However, with some foresight we
calculate the eigenvectors of MR in any case, finding

m1 =
{

1, 0, 0
}T

, (25)

m2 = m
∗
3 =

{

0,
B(Γz − Γy − iξR)

2(2VR + λ3)
, 1
}T

, (26)

with corresponding eigenvalues q1 = Γy − Γz, and q2 =
q∗3 = −(1/2)(Γy +Γz + iξR). Thus, referring to Eq. (16),
we see that

ξR =
√

8VR(2VR + λ3)− (Γz − Γy)2 (27)

determines whether any coherence exists within the en-
ergy transfer dynamics. Considering the initial state
α(0) = (0, 0, 1)T , corresponding to excitation of the
donor, ρ(0) = |0〉〈0| = |XG〉〈XG|, we find analytical
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FIG. 1: Population difference as a function of scaled time
ω0t for temperatures of kBT/ω0 = 1 (blue dashed curve),
kBT/ω0 = 5 (green dotted curve), kBT/ω0 = 12 (orange solid
curve) and kBT/ω0 = 20 (red dot-dashed curve). Parameters:
α = 0.05, V/ω0 = 0.5, ωc/ω0 = 4, ǫ = 0 and µ = c/dω0 = 0.5.

forms for the evolution of the Bloch vector components:

αx(t) = −B tanh(βVR)(1 − e−(Γy−Γz)t), (28)

αy(t) = −2BVR
ξR

e−(Γy+Γz)t/2 sin
(ξRt

2

)

, (29)

αz(t) = e−(Γy+Γz)t/2
[

cos
(ξRt

2

)

+
Γy − Γz

ξR
sin
(ξRt

2

)]

.

(30)

Inspection of Eqs. (27) and (30) allows us to identify a
crossover from coherent to incoherent motion in the en-
ergy transfer dynamics as the point at which oscillations
in the population difference vanish:11

(Γz − Γy)
2 = 8VR(2VR + λ3). (31)

For (Γz −Γy)
2 < 8VR(2VR +λ3), ξR is real and both the

population difference and coherence αy describe damped
oscillations, while for (Γz − Γy)

2 ≥ 8VR(2VR + λ3), ξR
is either zero or imaginary, with the resulting dynamics
then being entirely incoherent.
To further analyse the behaviour of αz(t), and the con-

ditions for which the boundary defined by Eq. (31) is
crossed, we now take a specific form for the system-bath
spectral density. For a large enough bath we may approx-
imate J(ω) =

∑

k
|gk|2δ(ωk−ω) as a smooth function of

ω. In this work we consider a spectral density of the form

J(ω) = α
ω3

ω2
0

e−ω/ωc , (32)

where α is a dimensionless quantity capturing the
strength of the system-bath interaction, and ω0 is a typi-
cal frequency of bosons in the bath, which sets an overall
energy scale. The cubic frequency dependence in Eq. (32)
is typical, for example, in describing dephasing in quan-
tum dots due to coupling to acoustic phonons,67 but can
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FIG. 2: Population difference as a function of scaled time
ω0t for temperatures of kBT/ω0 = 5 (blue dashed curves)
and kBT/ω0 = 10 (red dotted curves), and for separations
corresponding to no correlation, µ = c/dω0 = 0 (top), weak
correlations, µ = 0.5 (middle), and strong correlations µ = 2
(bottom). The insets show the evolution of the correspond-
ing coherence αy . Parameters: α = 0.05, V/ω0 = 0.5, and
ωc/ω0 = 4.

also be used to elucidate the behaviour in which we are
interested in general.53 The cut-off frequency ωc is needed
to ensure that vacuum contributions remain finite, and
is related to parameters specific to the particular phys-
ical system one wishes to model. To take our quantum
dot example once more, in that system ωc is essentially
set by the localisation length of carriers within the dot
region.67 The inverse cut-off frequency also sets a typical
relaxation timescale for the bath.25

To illustrate the dynamics and crossover behaviour in
the resonant case, in Fig. 1 we plot the population differ-

ence (αz) as a function of the scaled time ω0t for a range
of temperatures, showing the transition from coherent
to incoherent transfer as the temperature is increased.
In this plot, and all the following, we consider three-
dimensional coupling, F3(ω, d) = sinc(ωd/c). The role of
bath spatial correlations in protecting coherence can be
seen in Fig. 2, where we again plot the evolution of the
population difference (the insets show the correspond-
ing coherence αy), this time for representative interme-
diate and high-temperature cases. The different plots in
Fig. 2 correspond to zero correlations, characterised by
µ = c/dω0 = 0 (d→ ∞, top), weak correlations, µ = 0.5
(middle), and strong correlations µ = 2 (botttom).75 Pro-
gressing from the uppermost plot to the lowest, we clearly
see that an increase in correlation strength prolongs the
timescale over which oscillations in both the population
difference and coherence persist. Moreover, by looking
at the curves corresponding to the higher temperature,
we can see that as the degree of correlation is increased
from zero, the dynamics moves from a regime showing
purely incoherent relaxation, to a regime which displays
coherent oscillations at the same temperature. The in-
crease in correlations is thus able to extend the region of
parameter space which permits coherence,11 as we shall
now explore in greater detail.

A. Coherent to incoherent transition

We now return our attention to the crossover from
coherent to incoherent transfer, defined by Eq. (31).
Intuitively, we might expect the dynamics in the low-
temperature (or weak-coupling) regime to be coherent;
for example, in Fig. 1 incoherent relaxation only occurs
in the high-temperature limit. If we therefore assume
that the crossover itself occurs in the high-temperature
regime, it is possible to derive an analytic expression gov-
erning the crossover temperature by approximating the
rates Γy and Γz. Details of this approximation, and its
range of validity, can be found in the Appendix. Gener-
ally, for high enough temperatures and/or strong enough
system-bath coupling (such that βVR ≪ 1) we can ap-
proximate γxx(η) ≈ γyy(η) ≈ γyy(0) in Γy and Γz, where

γyy(0) ≈
βB2eφ0C0(x,y)

2
√

πC2(x, y)φ0
, (33)

with φ0 = 2π2α/ω2
0β

2, x = πd/cβ and y = ωcβ. The
functions C0(x, y) and C2(x, y) are given by Eqs. (A7)
and (A8), and the renormalisation factor B by the prod-
uct of Eqs. (A14) and (A15). If we further assume
that the energy shift λ3 vanishes in the high-temperature
limit, Eq. (31) reduces to

(Γz − Γy) = 4VR, (34)

and we arrive at the expression
(

kBT

ω0

)2

=
V

ω0

Beφ0C0(x,y)

4
√

2π3αC2(x, y)
, (35)
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FIG. 3: Crossover temperature separating the coherent and
incoherent regimes against cut-off frequency, for levels of cor-
relation given by µ = c/dω0 = 0, µ = 0.5 and µ = 1, in-
creasing as shown. The solid blue curves have been calcu-
lated from Eq. (31) (using the full rates), while the dashed
red curves are solutions to the high-temperature approxima-
tion, Eq. (35). The inset shows the dependence on the level of
correlation (1/µ = d/(ω0c)) for different cutoffs, ωc/ω0 = 2,
ωc/ω0 = 3, and ωc/ω0 = 4, again increasing as shown. Pa-
rameters: α = 0.05 and V/ω0 = 0.5.

with solution, Tc, giving the crossover temperature sep-
arating the coherent and incoherent regimes.

The dependence of Tc on the various parameters in-
volved in the problem is not straightforward, owing to the
temperature dependence in the renormalisation factor B,
in the functions C0 and C2, and in φ0. In fact, there are
three distinct and important temperature scales: T0 =
ω0/(

√
2απkB), which depends upon the system-bath cou-

pling strength; Tx = c/dπkB, which arises due to the
fluctuation correlations and becomes unimportant in the
uncorrelated case (Tx → 0 as d → ∞); and Ty = ωc/kB,
dependent upon the cut-off frequency, and irrelevant in
the scaling limit (y → ∞). Hence, changes in any of α,
d, or ωc can have an effect on the crossover temperature.
For example, the main part of Fig. 3 shows the solution to
Eq. (35), i.e. the crosover temperature Tc, as a function
of the dimensionless cut-off frequency ωc/ω0. A calcula-
tion using Eq. (31) with the full rates, and including λ3,
is also shown for comparison. The three pairs of curves
correspond to increasing levels of correlation, ordered as
indicated. We see that, except for small ωc/ω0 in the case
µ = 0, where λ3 becomes important, solutions to Eq. (35)
give an excellent approximation to the crossover temper-
ature calculated using the full rates. This confirms that
the coherent-incoherent crossover does indeed occur in
the high-temperature (multiphonon) regime, and conse-
quently could not be captured by a weak system-bath
coupling treatment.

As the cut-off frequency is increased from its minimum
value, the crossover temperature begins to decrease. This
behaviour can be understood qualitatively by examining
Eq. (34), and considering the competition this condition
captures between the rate Γz−Γy and the coherent inter-

action VR in defining the nature of the dynamics. Larger
values of the cut-off frequency correspond to smaller val-
ues of the renormalised interaction strength VR (see e.g.
Eq. (A14)), while the rates Γy and Γz vary less strongly
with ωc in this regime. Thus, increasing ωc from its mini-
mum value decreases VR, and therefore reduces the range
of temperatures for which 4VR > Γz − Γy and coherent
transfer can take place. Thus, the crossover temperature
falls. Physically, this can be understood by noting that
as the cut-off frequency is increased, so too is the effec-
tive frequency range and peak magnitude of the system-
bath interaction, characterised by the spectral density
[Eq. (32)]. Hence, increasing from small ωc/ω0, the en-
vironment begins to exert an enhanced influence on the
system behaviour, and so coherent dynamics no longer
survives to such high temperatures. As ωc continues to
increase, however, we see the crossover temperature then
begins to rise. The renormalisation factor B tends to
zero with increasing ωc and here becomes the dominat-
ing quantity, thus causing the rate Γz − Γy ∼ O(B2) to
vanish faster than the renormalised donor-acceptor cou-
pling VR = BV .
The interplay between the size of ωc and the level of

spatial correlation is best understood by considering the
inset of Fig. 3. For all curves shown the crossover tem-
perature increases as the distance d is reduced, since the
level of correlation µ increases correspondingly. As we
have seen previously in Fig. 2, stronger correlations al-
low coherent dynamics to be observed at higher temper-
atures; since environmental effects are suppressed, so the
crossover temperature Tc must rise. This behaviour can
be attributed to an increase in the renormalised interac-
tion strength, VR, in relation to the rate Γz−Γy, this time
with variations in the correlation level µ. Interestingly,
as the cut-off frequency is increased up to ωc/ω0 = 4
(lowest curve), we see that not only does the crossover
temperature decrease, but also that the degree of corre-
lation necessary to show a marked rise in Tc increases.
As can be seen by comparing the separation between the
different curves in the main part of the figure, increas-
ing the cut-off frequency tends to suppress the extent to
which correlations are able to protect coherence in the
system. This tallies with the dynamics shown in Fig. 2,
for which ωc/ω0 = 4, and correlations as high as µ = 2
were needed before a significant change in behaviour was
seen. Finally, since the renormalisation factor B tends
to a constant non-zero value as the correlations vanish at
large d (as opposed to B → 0 as ωc → ∞), the depen-
dence of the crossover temperature on µ is monotonic, in
contrast to its dependence on ωc.

IV. OFF RESONANCE

It is often the case in practice that the donor and ac-
ceptor will have different excited state energies, ǫ1− ǫ2 =
ǫ 6= 0, and so we now turn our attention to energy transfer
dynamics under off-resonant conditions. Regarding the
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FIG. 4: Population difference for (a) small energy mismatch
(ǫ/ω0 = 0.1) and (b) larger energy mismatch (ǫ/ω0 = 1) as
a function of scaled time ω0t. Temperatures kBT/ω0 = 1
(blue dashed curve), kBT/ω0 = 5 (green dotted curve),
kBT/ω0 = 12 (orange solid curve) and kBT/ω0 = 20 (red dot-
dashed curve) are shown. Parameters: α = 0.05, V/ω0 = 0.5,
ωc/ω0 = 4, and µ = 0.5.

coherent to incoherent transition, in the resonant case we
were able to identify this point with a pair of conjugate
eigenvalues converging on the real axis, thus changing
oscillatory terms into relaxation. We might hope that
in the off-resonant case we are able to establish a simi-
lar crossover criterion, and again use this to investigate
the effects of bath correlations and the cut-off frequency.
However, we shall see that such an identification is less
straightforward in the off-resonant regime.

We first present the full Bloch equations describing the
evolution of our donor-acceptor pair for arbitrary energy
mismatch. As in the resonant case, we have an equation
of motion of the form α̇ =M ·α+b, but now the matrix
M is given by

M =





−Γx −(ǫ+ λ1) 0
(ǫ + λ2) −Γy −2BVR
B−1ζ B−1(2VR + λ3) −Γz



 , (36)

with b = (−Bκx,−Bκy,−κz)T , and the more compli-

cated expressions

Γx = V 2(γyy(η) + γyy(−η)), (37)

Γy = 2V 2

(

4V 2
R

η2
γxx(0) +

ǫ2

2η2
(γxx(η) + γxx(−η))

)

,

(38)

Γz = Γx + Γy, (39)

λ1 =
2V 2ǫ

η
(Syy(η)− Syy(−η)), (40)

λ2 =
2V 2ǫ

η
(Sxx(η) − Sxx(−η)), (41)

λ3 =
4V 2VR
η

(Syy(η)− Syy(−η)), (42)

ζ =
4V 2VRǫ

η2

(

γxx(0)−
1

2
(γxx(η) + γxx(−η))

)

, (43)

κx =
2V 2VR
η

(γyy(η)− γyy(−η)), (44)

κy =
8V 2VRǫ

η2

(

Sxx(0)−
1

2
(Sxx(η) + Sxx(−η))

)

, (45)

κz =
V 2ǫ

η
((γxx(η)− γxx(−η)) + (γyy(η)− γyy(−η))) .

(46)

Here, η =
√

ǫ2 + 4V 2
R is the system Hamiltonian eigen-

state splitting in the polaron frame.
To exemplify the dynamics generated by the full Bloch

equations, in Fig. 4 we plot the evolution of the popula-
tion difference in the case of (a) a small donor-acceptor
energy mismatch, ǫ = 0.2V , and (b) a more substantial
mismatch, ǫ = 2V . By comparison of Fig. 1 (plotted in
the resonant case) and Fig. 4(a), we see that the intro-
duction of a small energy mismatch has only a marginal
effect on the dynamics, and most importantly the coher-
ent or incoherent nature of the energy transfer process
seems unaffected. In contrast, in Fig. 4(b) the presence of
a larger energy mismatch causes the low-temperature os-
cillations to increase in frequency but decrease markedly
in amplitude, such that for kBT/ω0 = 5 oscillations are
now almost imperceptible. We also see that the popu-
lation difference tends to a non-zero steady-state at low
temperatures, as we might expect from simple thermo-
dynamic arguments, since the states αz = 1 and αz = −1
now have different energies. As the temperature is raised,
however, the dynamics still looks to be approaching that
shown in the resonant case of Fig. 1.
Finding the eigensystem of the off-resonant M

[Eq. (36)] is not straightforward and analytical solutions
to the full Bloch equations are consequently lengthy, and
therefore of little direct use in gaining an understand-
ing of the behaviour seen in Fig. 4. A large part of this
section is thus devoted to deriving simplified expressions
for the energy transfer dynamics in a number of limits.
These expressions not only provide insight into the off-
resonant behaviour of the system, but also serve to high-
light the difficultly in now defining a simple crossover
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criterion, as was possible in the resonant case.

A. Near Resonance

We have seen that when only a small donor-acceptor
energy mismatch was introduced, we observed very lit-
tle difference to the resonant dynamics. This is to be
expected, as the interaction V still dominates over ǫ in
this regime, i.e. ǫ/V ≪ 1. To show this analytically, we
note that provided we are sufficiently within this limit,
the dynamics generated by ǫ is also much slower than
the dissipative processes we wish to capture, and we can
simply add a term

E =





0 −ǫ 0
ǫ 0 0
0 0 0



 (47)

to MR of Eq. (17), reducing our problem to solving
α̇

′ = (MR + E) · α′. Hence, the arguments presented
in Section II C tell us that the characteristics of the en-
ergy transfer process can be found simply by analysing
the eigenspectrum of MR + E. On resonance (ǫ = 0)
the eigenvectors and eigenvalues of MR are given by
Eqs. (25), (26) and (27), together with the accompanying
text. By diagonalisation ofMR+E for small energy mis-
match, we find that to first order in ǫ these eigenvalues
are unchanged. To second order in ǫ the eigenvalues have
corrections

∆q1 = − 4ǫ2Γy

(3Γy − Γz)2 + ξ2R
, (48)

∆q2 = − iǫ
2

ξR

(

(Γy − Γz)(3Γy − Γz) + 2iξRΓy + ξ2R
(3Γy − Γz)2 + ξ2R

)

,

(49)

and ∆q3 = ∆q∗2 . The change ∆q1 is always real since the
rates Γz and Γy are real by construction and ξR can be
either purely real or purely imaginary. Inspection of the
expression for ∆q2 reveals that is has real and imaginary
components when ξR is real (in which case q2 also has
both real and imaginary parts), and is entirely real if ξR
is imaginary (in which case q2 is also real). Put another
way, the second order (in ǫ) correction to the eigenvalues
q2 and q3 does not change whether they lie on the real
axis or otherwise. Recalling that a complex q2 and q3 (or
real ξR) corresponds to coherent dynamics, we confirm
that the introduction of a small energy difference between
the two sites does not affect whether the energy transfer
process is of a coherent or an incoherent nature.

B. Weak-coupling limit

Let us now move beyond the small ǫ approximation
and look instead at the weak system-bath coupling limit,
which we obtain by expanding all relevant quantities to

first order in J(ω). With reference to our expressions
for the correlation functions [Eqs. (11) and (12)], we see
that within this approximation Λxx(τ) → 0 while Λyy(τ)
remains finite. We may then set to zero all rates and en-
ergy shifts which are functions of Λxx(τ) only in Eq. (36).
This results in the far simpler form

MW =





−ΓW −(ǫ+ λ1) 0
ǫ 0 −2BVR
0 B−1(2VR + λ3) −ΓW



 , (50)

where the weak-coupling rate is given by68

ΓW = 4π

(

VR
η

)2

J(η)(1 − F (η, d)) coth(βη/2), (51)

and the two energy shifts may be written λ1 = (ǫ/η)Λ
and λ3 = (2VR/η)Λ, with

Λ = 2V 2(Syy(η)− Syy(−η)). (52)

The inhomogeneous term becomes bW =
{−Bκx, 0,−(ǫ/2VR)κx}T in the same limit, which
leads to the weak-coupling steady state

αx(∞) = −2BVR
η

tanh(βη/2), (53)

αy(∞) = 0, (54)

αz(∞) = − ǫ

η
tanh(βη/2). (55)

As in the resonant case (in which there was no weak-
coupling approximation), this steady-state has precisely
the form as that expected from a standard weak-coupling
approach, though with the replacement V → VR, and the
extra factor of B suppressing the coherence αx(∞). As
the energy mismatch increases in relation to V , the weak-
coupling steady state therefore becomes increasingly lo-
calised in the lower energy state |1〉 ≡ |GX〉. Inter-
estingly, this contrasts with the qualitatively incorrect
form (at low temperatures at least) given by the Non-
Interacting Blip Approximation (NIBA), αNIBA

z (∞) =
− tanh (βǫ/2),66,69 which predicts complete localisation
in the lower energy state at zero temperature, regard-
less of the size of ǫ/V . We should thus expect the
present theory to fair far better than the NIBA for low-
temperatures (or weak-coupling) in the off-resonant case,
ǫ 6= 0. The rate ΓW given in Eq. (51) is also of the
form expected from a weak-coupling treatment, though
once more with the renormalisation V → VR. In fact,
such a replacement is sometimes made by hand in weak-
coupling theories to provide agreement with numerics
over a larger range of parameters,68 though it arises nat-
urally in the polaron formalism here. We can therefore
conclude that, in addition to allowing for the exploration
of multiphonon effects,11,12,51,55 the polaron master equa-
tion also provides a rigorous way to explore the (single-
phonon) weak-coupling regime for spectral densities of
the type in Eq. (32).51
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As before, to find the time evolution of α we evaluate
the eigensystem of MW . For ǫ 6= 0, we find eigenvectors

m1 =
{2BVR

ǫ
, 0, 1

}T

, (56)

m2 = m
∗
3 =

{B

ǫ

(

2VR − η2

2VR

)

,
B(ΓW − iξW)

2(2VR + λ3)
, 1
}T

,

(57)

with corresponding eigenvalues q1 = −ΓW , q2 = q∗3 =
−(1/2)(ΓW + iξW), and weak-coupling oscillation fre-
quency

ξW =
√

4η(η + Λ)− Γ2
W , (58)

which we should expect to be real to be consistent with
our original expansion. We immediately see that, in gen-
eral, the off-resonant dynamics in the weak-coupling limit
should have a different form to the resonant dynamics.
In fact, Eqs. (56) and (57) show that, in contrast to the
resonant case, the population evolution should have two
distinct contributions. This can be made explicit by con-
sidering the initial state α(0) = {0, 0, 1}T , for which we
obtain

αz(t) =
ǫ

η

(

ǫ

η
e−ΓW t −

(

1− e−ΓW t
)

tanh(βη/2)

)

+
4V 2

R

η2
e−

ΓW t

2

(

cos
(ξWt

2

)

− ΓW

ξW
sin
(ξWt

2

)

)

.

(59)

Here, the first term, proportional to (ǫ/η) and present
nowhere in the resonant case, describes incoherent relax-
ation towards the steady state value given by Eq. (55).
The second term, proportional to (VR/η)

2 and hav-
ing a similar form to the resonant dynamics, describes
damped oscillations with frequency ξW . Importantly,
these oscillations have a temporal maximum amplitude
of 4V 2

R/η
2 ≤ 1, compared to 1 in the resonant case. The

effect of the energy mismatch in this limit is thus to sup-
press the amplitude of any oscillations in the population
difference, while increasing their frequency due to the
dependence of ξW on η in Eq. (58), exactly as seen in
Fig. 4(b).

C. High temperature (or far from resonance) limit

By taking appropriate limits, we have now been able
to explain the behaviour seen at small ǫ and at low tem-
peratures in Fig. 4. However, at higher temperatures, we
find something quite different; the population dynamics
appears to be relatively insensitive to the size of the en-
ergy mismatch. In order to investigate this effect in more
detail, we shall now make a high-temperature (or strong
system-bath coupling) approximation to the full energy
transfer dynamics.

Specifically, we consider the regime VR/ǫ ≪ 1. This
limit can in fact be achieved in two possible ways. Firstly,
recalling that VR = BV , we see that VR can be made
small by increasing the system-bath coupling strength
or temperature, such that B ≪ 1. Alternatively, if the
donor-acceptor pair are far from resonance, the ratio V/ǫ
will be small, and hence VR/ǫ smaller still. Observing
that the correlation functions given by Eqs. (11) and (12)
are both proportional to B2, we can see that all dissipa-
tive terms in the equation of motion, α̇ = M · α + b,
are at least of order V 2

R. We proceed by keeping only
terms up to order (VR/ǫ)

2 in the full off-resonantM and
b. This allows us to set λ3, ζ, κx and κy to zero, while
the remaining quantities reduce to

Γy = V 2(γxx(η) + γxx(−η)), (60)

Γz = V 2
(

γxx(η) + γxx(−η) + γyy(η) + γyy(−η)
)

, (61)

λ1 = 2V 2(Syy(η)− Syy(−η)), (62)

λ2 = 2V 2(Sxx(η)− Sxx(−η)), (63)

κz = V 2
(

γxx(η)− γxx(−η) + γyy(η)− γyy(−η)
)

. (64)

Hence, in the high-temperature limit, Eq. (36) takes on
the simpler form

MHT =





−(Γz − Γy) −(ǫ+ λ1) 0
(ǫ+ λ2) −Γy −2BVR

0 2B−1VR −Γz



 , (65)

while the inhomogeneous term reduces to bHT =
{0, 0,−κz}T . We then find the approximate steady-state

αx(∞) = −2BVR
ǫ

tanh(βη/2), (66)

αy(∞) = 0, (67)

αz(∞) = −
(

1 +
4V 2

R

ǫ2

(

Γy

Γz
− 1

))

tanh(βη/2), (68)

valid up to second order in VR/ǫ. For VR ≪ ǫ, the
steady-state is strongly localised in the low energy state
(αz(∞) ≈ −1) if ǫ≫ kBT , though for ǫ≪ kBT thermal
effects dominate and αz(∞) ≈ 0 as in the resonant case.
Again, this behaviour tallies with Fig. 4.
To obtain the corresponding population dynamics, we

note in reference to Eq. (16) that the coefficients ai, the
eigenvectorsmi, and the eigenvalues qi will contain pow-
ers of our expansion parameter VR/ǫ. Expanding both qi
and the products aimi to second order, we find

αz(t) = e−Γzt

(

1− 4V 2
R

ǫ2

)

+
4V 2

R

ǫ2
e−Γzt/2 cos(ǭt)

−(1− e−Γzt) tanh

(

βη

2

)[

1 +
4V 2

R

ǫ2

(

Γy

Γz
− 1

)]

(69)

where the shifted oscillation frequency is

ǭ = ǫ + (1/2)(λ1 + λ2) + 2ǫ(VR/ǫ)
2. (70)
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FIG. 5: Coherence (αy) as a function of scaled time ω0t for
resonant (ǫ = 0, solid curve) and off-resonant (ǫ/ω0 = 0.2,
dashed curve) cases. The temperature, kBT/ω0 = 13, is cho-
sen to be above the relevant crossover Tc in the resonant case,
such that the resonant dynamics is guaranteed to be incoher-
ent. Parameters: α = 0.05, V/ω0 = 0.5, ωc/ω0 = 4, and
µ = 0.5. The inset shows the corresponding population dy-
namics.

As in the weak-coupling case [Eq. (59)] the evolution of
the donor-acceptor population difference consists of two
contributions; incoherent relaxation towards the steady-
state, and an oscillatory component with vanishing am-
plitude as VR/ǫ→ 0. The energy mismatch again serves
to suppress oscillations in the population difference.
The most striking feature, however, of the Eq. (69)

is that there is an oscillatory component at frequency
ǭ at all. In the high-temperature limit, we might ex-
pect that this frequency would reach a point where it
becomes imaginary and αz(t) displays purely incoher-
ent relaxation, as in the equivalent resonant case. How-
ever, we can see that this is clearly not the case since ǭ
is always real by definition. Furthermore, at very high
temperatures ǭ → ǫ, and it therefore also remains fi-
nite. Eq. (69) thus highlights an important difference
between the energy transfer dynamics in resonant and
off-resonant situations. In the resonant case, as temper-
ature is increased, the energy transfer process becomes
less coherent through a reduction in oscillation frequency
(i.e. VR becomes small in comparison to Γz−Γy), eventu-
ally reaching a point at which population relaxes incoher-
ently towards the steady state. In the off-resonant case,
the transfer process becomes less coherent predominately
through a reduction in oscillation amplitude. For high
temperatures, an oscillatory component is still (in the-
ory) present in the system, although it becomes ever more
dominated by incoherent relaxation towards the steady-
state population distribution, which depends upon the
ratio ǫ/kBT . These features are clearly seen in Fig. 4.
Only to first order in VR/ǫ do our expressions predict

purely incoherent off-resonant population transfer:

αz(t) = e−Γzt − (1 − e−Γzt) tanh(βη/2). (71)

Let us also consider the evolution of αx and αy in the
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FIG. 6: Coherence (αy) as a function of scaled time ω0t for
temperatures of kBT/ω0 = 1 (blue dashed curve), kBT/ω0 =
5 (green dotted curve), kBT/ω0 = 12 (orange solid curve) and
kBT/ω0 = 20 (red dot-dashed curve). Parameters: α = 0.05,
V/ω0 = 0.5, ωc/ω0 = 4, ǫ/ω0 = 2 and µ = 0.5. The inset
shows the corresponding population dynamics.

same limit:

αx(t) =
2BVR
ǫ

(

e−Γzt − (1− e−Γzt) tanh(βη/2)

−e−(1/2)Γzt cos(ǭt)

)

, (72)

αy(t) = −2BVR
ǫ

e−(1/2)Γzt sin(ǭt). (73)

Hence, although the donor-acceptor population itself
evolves entirely incoherently in this limit, the coherences
may still perform oscillations due to the energy mis-
match. To illustrate the difference in the transition to
incoherent population transfer on- and off-resonance, in
the main part of Fig. 5 we plot the evolution of the co-
herence αy(t) in both cases. The parameters have been
chosen such that the resonant dynamics is in the incoher-
ent regime (T > Tc), hence the resonant αy displays no
oscillations [see Eq. (29)]. In accordance with Eq. (73),
however, the introduction of an energy mismatch induces
oscillations in the donor-acceptor coherence. While these
oscillations have an almost negligible amplitude, this be-
haviour serves to illustrate the subtlety in defining a strict
crossover from coherent to incoherent dynamics in the off-
resonant case. In particular, despite the different forms
of coherence behaviour, the corresponding (essentially
incoherent) population dynamics shown in the inset is
almost indistinguishable in the two cases, even though
there should still be a strongly suppressed coherent con-
tribution in the off-resonant curve.
An alternative way to obtain coherence oscillations in

a regime of predominantly incoherent population trans-
fer is to introduce a large energy mismatch (i.e. make
V/ǫ small) at low temperature, as shown in Fig. 6. Here,
for the lowest temperature considered the population re-
laxes towards its steady state value with little sign of os-
cillation, while the coherence performs oscillations with a
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FIG. 7: Population difference as a function of scaled time
ω0t for temperatures of kBT/ω0 = 5 (blue dashed curve) and
kBT/ω0 = 10 (red dotted curve), and for separations corre-
sponding to no fluctuation correlations, µ = c/dω0 = 0 (top),
weak correlations, µ = 0.5 (middle) and strong correlations
µ = 2 (botttom). The insets show the evolution of the corre-
sponding coherence αy. Parameters: α = 0.05, V/ω0 = 0.5,
ǫ/ω0 = 0.5, and ωc/ω0 = 4.

significant amplitude and considerable lifetime. This be-
haviour is strongly suppressed, however, as temperature
increases, such that kBT > ǫ.

D. Correlated fluctuations

We have seen in the previous sections that for off-
resonant energy transfer the distinction between coherent
and incoherent dynamics is less easily defined than in the
resonant case. However, we should still expect changes

in the level of correlation in the donor and acceptor fluc-
tuations to have a similar effect on the transfer process.
To illustrate that this is indeed the case, in Fig. 7

we plot the donor-acceptor population dynamics in off-
resonant conditions for three different levels of fluctua-
tion correlation (increasing from top to bottom). Just
as we found in the resonant case of Fig. 2, an increase
in correlations enhances the lifetime of coherence present
in the energy transfer process. In addition, in the off-
resonant case stronger correlations also serve to amplify
the coherent contribution to the full energy transfer dy-
namics, since the renormalised interaction strength VR
increases in relation to the energy mismatch ǫ.

V. SUMMARY

Motivated by recent experiments which suggest that
quantum coherence can survive in energy transfer pro-
cesses even under potentially adverse environmental con-
ditions,1–9 we have investigated various factors that de-
termine the nature of the energy transfer dynamics in
a model donor-acceptor pair. To do so, we used a po-
laron transform, Markovian master equation technique.11

This formalism is attractive as it allows for exploration of
both the low-temperature (or weak-coupling) and high-
temperature (or strong-coupling) regimes, as well as re-
liable interpolation between these two limits, provided
V/ωc does not become large.13,51,55 We are also able
to consistenly describe off-resonant effects, unlike in the
NIBA,66,69 and the influence of bath correlations.
In the resonant case we identified a crossover temper-

ature separating coherent and incoherent energy trans-
fer. We found a non-trivial dependence of this tempera-
ture on both the degree of spatial correlation within the
bath-induced fluctuations, and also on the cut-off fre-
quency of the bath spectral density. Smaller cut-off fre-
quencies were also found to enhance the extent to which
bath spatial correlations are able to protect coherence in
the system. The crossover generally occurs in a high-
temperature limit where multiphonon effects dominate,
and so could not be captured by a standard perturbative
treatment of the system-bath interaction.
In the off-resonant case we found that coherent and

incoherent regimes are less easily defined. In particu-
lar, for a sufficiently large energy mismatch between the
donor and acceptor, coherence can in theory be present
at all but infinite temperatures, albeit with an ever de-
creasing amplitude. However, using analytic expressions
derived in various limits, we were able to characterise the
off-resonant energy transfer process over much of the pa-
rameter space, illustrating the suppression of coherence
in the population dynamics with increasing temperature
or energy mismatch. We also showed that strong corre-
lations have a qualitatively similar effect to the resonant
case, protecting coherence in the transfer process.
While we have concentrated in this work on elucidat-

ing general features of donor-acceptor energy transfer dy-
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namics using a simple model system, the insight we have
gained could be relevant to a variety of systems. In addi-
tion to those already mentioned,1–9 closely-spaced pairs
of semiconductor quantum dots could provide a solid-
state implementation of the model studied here.70 In par-
ticular, our polaron master equation theory provides a
bridge between the weak68 and strong71 system-bath cou-
pling approximations already explored in this context. It
would also be interesting to analyse the energy transfer
dynamics of larger donor-acceptor complexes within the
polaron formalism,72 to see if further understanding of
the interplay between coherent and incoherent processes
in such systems could be obtained. Finally, it would
be desirable to perform a thorough investigation of the
regime of validity of the polaron approach by comparison
to numerically exact techniques.73
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Appendix A: High temperature rates

Here we show how to obtain analytic approximations
for the decoherence rates at high temperatures by use of
a saddle point integration. Within our formalism there
are two rates which need to be evaluated:

γxx(η) =
B2

2

∫ +∞

−∞

dτeiτη(eφ(τ) + e−φ(τ) − 2), (A1)

γyy(η) =
B2

2

∫ +∞

−∞

dτeiτη(eφ(τ) − e−φ(τ)), (A2)

where φ(τ) is given by Eq. (13). With the appropriate
manipulations51 it is possible to show that

γxx(η) =
B2

2
eβη/2

∫ +∞

−∞

dτeiτη(eφ̃(τ) + e−φ̃(τ) − 2),

(A3)

γyy(η) =
B2

2
eβη/2

∫ +∞

−∞

dτeiτη(eφ̃(τ) − e−φ̃(τ)), (A4)

where now φ̃(τ) = φ̃(−τ) = φ(τ − iβ/2), and is given
explicitly in integral form by

φ̃(τ) = 2

∫ ∞

0

dω
J(ω)

ω2
(1− F (ω, d))

cos(ωτ)

sinh(βω/2)
. (A5)

Using a super-Ohmic form of spectral density, J(ω) =
αω3ω−2

0 e−ω/ωc , and assuming system-bath coupling in
three dimensions such that F (ω, d) = sinc(ωd/c), al-

lows φ̃(τ) to be found analytically. We find φ̃(τ) =

φ0C(x, y, τ
′), where

C(x, y, τ ′) =
−i
2πx

[

ψ

(

1

2
+

1

y
− i

π
(τ ′ + x)

)

−ψ
(

1

2
+

1

y
− i

π
(τ ′ − x)

)

+ψ

(

1

2
+

1

y
+
i

π
(τ ′ − x)

)

−ψ
(

1

2
+

1

y
+
i

π
(τ ′ + x)

)]

+
1

π2

[

ψ′

(

1

2
+

1

y
− i

π
τ ′
)

−ψ′

(

1

2
+

1

y
+
i

π
τ ′
)]

.

Here, φ0 = 2π2α/(ω2
0β

2), x = πd/cβ, y = ωcβ, τ
′ =

πτ/β, ψ(z) is the the digamma function, and ψ′(z) its
first derivative.
To proceed, we assume a high-temperature or strong-

coupling regime, such that the dominant contributions
to the integrals in Eqs. (A3) and (A4) will come from

the peak in φ̃(τ) at τ = 0. More specifically, inspec-
tion of C(x, y, τ ′) reveals that for y ≫ 1 (the scaling
limit of large ωc), we require φ0 ≫ 1 for large x (weak
correlations), or φ0x

2 ≫ 1 for small x (strong correla-

tions), in order for an expansion of φ̃(τ) around τ = 0 to
be valid. These definitions of the high-temperature (or
strong-coupling) regime tally with the expansion param-
eters identified in Ref. 11. In the opposite limit, y ≪ 1,
we generally need φ0x

2y3/π4 ≫ 1, except in the limit of
very large separations (vanishing correlations), x → ∞,
where φ0y ≫ 1 is the relevant condition.
With these conditions in mind, we therefore expand

φ̃(τ) to second order in τ ′ = πτ/β, which gives

φ̃(τ) ≈ φ0(C0(x, y)− τ ′2C2(x, y)), (A6)

where

C0(x, y) =
i

πx

[

ψ
(1

2
+

1

y
+
ix

π

)

− ψ
(1

2
+

1

y
− ix

π

)]

+
2

π2
ψ′
(1

2
+

1

y

)

,

(A7)

and

C2(x, y) =
i

2π3x

[

ψ′′
(1

2
+

1

y
+
ix

π

)

− ψ′′
(1

2
+

1

y
− ix

π

)]

+
1

π4
ψ′′′
(1

2
+

1

y

)

.

(A8)

Additionally, contributions to Eqs. (A3) and (A4) from

terms containing a factor of exp[−φ̃(τ)] will vanish, since
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they tend to zero in the high-temperature limit, allowing
us to write

γll(η) ≈
B2eβη/2β

2π
eφ0C0

∫ +∞

−∞

dτ ′eiτ
′ηβ/π(e−τ ′2φ0C2 − 1).

(A9)
We note that the second term in the integrand does not
contribute since the saddle point integration does not
necessarily require that the integration limits be infinite.
The remaining integral is Gaussian and we arrive at the
result

γll(η) =
βB2eφ0C0(x,y)

2
√

πC2(x, y)φ0
eβη/2e−β2η2/(4π2C2(x,y)φ0),

(A10)
which reduces to

γll(η) ≈ γll(0) =
βB2eφ0C0(x,y)

2
√

πC2(x, y)φ0
, (A11)

if the temperature is high enough such that 1/ηβ ≫ 1.
It remains now to determine the bath renormalisation

factor B, given by Eq. (8). To do so it is helpful to
separate vacuum and thermal contributions. We write
B = B0Bth, where

B0 = exp

[

−
∫ ∞

0

dω
J(ω)

ω2
(1− FD(ω, d))

]

, (A12)

and

Bth = exp

[

−
∫ ∞

0

dω
J(ω)

ω2
(1−FD(ω, d))(coth(βω/2)−1)

]

.

(A13)
Inserting the spectral density, and again assuming
system-bath coupling in three dimensions, we find

B0 = exp

[

− α
ω2
c

ω2
0

(

(dωc/c)
2

1 + (dωc/c)2

)]

, (A14)

and

Bth = exp

[

φ0
2π2

(

iπ

x

(

H(y−1 − ix/π)−H(y−1 + ix/π)
)

− 2ψ′(1 + y−1)

)]

,

(A15)

where H(m) =
∑m

i=1(1/i) is the mth harmonic number.
We note that in the infinite separation (uncorrelated)
limit, one finds B0(d→ ∞) = exp[−α(ω2

c/ω
2
0)], and

Bth = exp[α(ω2
c/ω

2
0)(1− y−2(ζ(2, 1+ y−1) + ζ(2, y−1)))],

(A16)
where ζ(s, a) is the generalised Riemann zeta function.
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