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Abstract.

The problem of an arbitrary truncated Levy fliglesdription using the method of cumulant approach
has been solved. The set of cumulants of the tteddsevy distribution given the assumption of aey
truncation has been found. The influence of truonoahape on the truncated Levy flight propertiethie
Gaussian and the Levy regimes has been investigated
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1. Introduction

A truncated Levy flight belongs to the class ofcdede random walks with independent,
identically distributed increments. The random wialkvidely used as a description of physical
and non-physical stochastic processes [1].

For example, the physical processes of Browniananand diffusion are described by the
Gaussian random walk, which is a stochasticallf+sglilar process with a fractal dimension
equal to 2 [2].

Stochastically self-similar processes with othexcfal dimensions occur every so often in
non-physical systems. These are so-called Levit8i§B3]. They have infinite variance, and their
increments are distributed by tlee - stable Levy lows of indeR < a < 2 (Levy distributions).

The stochastic processes generated by economiddirancial systems are the subject of
investigation of the new interdisciplinary approachlled econophysics [4,5] and exhibit a
number of particular features. The moments of th@rements are finite, but the processes
themselves are non-Gaussian. Their large scalgéufitions are close to Brownian motion,
whereas the small scale fluctuations exhibit soméhe Levy flight characteristics. A model
called a truncated Levy flight has been proposedhe description of such stochastic processes
for the first time in article [6].

The probability distribution of truncated Levy fligincrements is a slightly deformed Levy
distribution. This deformation must change the atace of the resulting distribution from the
infinite to the finite, and consequently, accordiagthe generalized central limit theorem, the
resulting distribution belongs to the Gaussian asiattraction. The chosen deformation must
suppress the “tails” of the Levy distribution arahnot deform the central part. In the pioneering
article [6], the abrupt truncation of the Levy distition tails was used for this purpose.

A number of articles [7-11] where other types afntation are suggested have appeared
after [6], and truncated Levy flights based on theswe been developed. Actually, there are a
great number of deformation shapes that are sdlvede posed problem. Therefore, a whole
class of distributions that can be called “arbitrmuncated Levy distributions” exists.
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Notwithstanding the fact that truncated Levy fligtave received wide acceptance for the
description of stochastic processes of a differetire (see, for example, [12-14]), the special
research on the influence of the deformation slmapthe stochastic process characteristics has
been absent until now.

The aim of this article is to investigate the defation shape influence on the arbitrary
truncated Levy flight characteristics by the metlbdumulant approach.

2. Cumulant approach of random walk

The discrete random waflg,} ,

, =Z X (1)

with independent, identically distributed increnefiX;} , belongs to the class of non-stationary

processes without statistical relationships betweenements, and it is non-Gaussian in the
general case. This stochastic process is completesgribed [15] by the one-dimensional
probability distribution function (pdfyW(x n), wheren is a step number. It should be noted that

W(x1) = P( X is the pdf of increment§ X;}. The one-dimensional characteristic function
6(a,n),

6(a, n)=TW( x 1) & dy (2)

which is a Fourier transform of the one-dimensiompalf W(x n [16], is the second

comprehensive description of the stochastic progBss

The method of cumulant approach is successfullyl usestatistical radio-physics [15] for
studying non-Gaussian random processes, which dacthe case under consideration. The
random process (1), in the framework of the cumtulapproach, is unambiguously and

exhaustively described by the infinite set of cuamfunctionsk; (n) j=1,2,3.., where

6(q.n) = ex gkjj—(!n)(iq)'} . 3

The set of cumulant functions is a fundamental [l&}d consequently the cumulant
approach is one of the most simple and the mosegdalvmethods for studying non-Gaussian
stochastic processes. Indeed, by virtue of the raesef statistical relationships between
increments, in the frame of the cumulant appro#iwh stochastic process (1) is described [15] by
the cumulant functions with linear dependence enstep number:

£; (n) = nik;, (4)
wherek, =&, (1) is the set of cumulants, which determine the fdficrementsP () .

As mentioned above, cumulant functions exhaustigaly unambiguously describe a random
process and contain all characteristics of the gg®ander investigation. For example, for the

second cumulant functio, (n) = D(n), which is the variance of process, one obtainsatblé
known diffusive low [2] from expression (4):
D(n)=9h ()
where the diffusive consta® = «, = ¢” is the variance of increments.
The shape of the one-dimensional pdf is definechbycumulants as well, or, more precisely,
by the dimensionless cumulant coefficients (stagided cumulants) [15§; = «; /ai . A normal

distribution is characterized by two cumulantsha first order (the mean and the variance). The
third and the fourth cumulant coefficients, A, are the skewness coefficient and the kurtosis
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coefficient, respectively. The higher order cumulaoefficients describe more complicated
differences between this distribution and the ndmfsribution.
The shape of the stochastic processh step one-dimensional ptl¥(x n) is described by

the high cumulant coefficientd, (n) = &, (n)/&}*(n), which can be obtained from expression
(4):

- A
A (n) =7, )

where A, is the j-th order cumulant coefficient of the increment .p@ihe faster the high

cumulant coefficientsij (n) tend to zero, the high their orders. When the remalh steps tends

to infinity, the high order cumulants vanish, ahd bne-dimensional pd#/(x n) is described by

the first two cumulants only or becomes Gaussiaxpr&ssion (6) is none other than the
cumulant approach of the central limit theorem.

Hence, it is clear that the random walk process$ widependent identically distributed
increments (1) is described by the cumulant fumsti¢4) and completely determined by the
increment cumulants.

3. Cumulantsof arbitrary truncated L evy flight

It is necessary to find the cumulants of a trundtdtevy distribution, which is the increment
distribution of the stochastic process for the stigation of deformation shape influence on
Levy flight properties. Only the symmetrical casdl e studied here. Let us assume an
arbitrary truncated Levy distribution as a prodofctwo functions:

P(x)=CR(X d 3, (7)
where P_(x) is the symmetrical not driftedr - stable Levy distribution [17,18]g(x) is the

symmetrical deformation function, ar@ is a normalizing constant. Let us assume that the
deformation function equals a unit at the origjrﬁo) =1, and it tends to zero simultaneously

with all of their derivatives faster than every movof 1/|Y when the argument tends to the
infinity |x| - o, Let us also assume that the characteristic $pst@e | of deformation

function g(x) is many times greater than the characteristiciapstale )y of the initial Levy
distribution:
| > y. (8)
To find of the set of distribution cumulants , let us use the cumulant expression as a
function of momentsn; [19]:

K, = j!gZ(%T.._(mﬂ j ()" (o1t o)

p! ...
where the second summation is taken over all pesiti and o, which obey the conditions:
PIT+ PIT,* .+ QT = (10)
and
L+, +... 7T = p. (11)

The odd cumulants equal zero due to the symmetrthefdistribution (7), and the lower
cumulants are

Ky =m,
K,=m,—3mn (12)
Ks =M, —15m,m + 301



The moments of distribution (7), in turn, can beirfd from the value of characteristic
function 8(q) derivatives at the origin [16]:

m; =(i)’ {%](q)} (13)

where 8(q) is the Fourier transform of the pdf (7).

Because the truncated Levy distribution (7) is egped as a product of two functions, based
on the properties of Fourier transforms [20], tharacteristic functiorﬁ(q) is the convolution
of their Fourier transforms:

_ C +o0
H(Q)-ED_LHL(q—T)EG(T) . (14)
whereG(q) is a Fourier transform of the deformation functigfix) and

6_(a) = exp(—V’ Iql”) , (15)
iIs a characteristic function of the symmetric nbifted o -stable Levy distribution (see, for
example [16-18]), where is the index of stability angt is the spatial scale.
Based on the properties of the characteristic fancf16], namely, 9(0) =1 and

6(-q)=6"(q), where the sigfiimeans the complex conjugate value, and the symroéthe
distribution, one obtains from expressions (7)){%):

I 4’ q
m, =( : (16)

j 8, (
Furthermore, one can use the presence of a srrrzaitnpaaers:(y/l)” <<1, namely, the

ratio of the spatial scales of the Levy distribatiand the deformation function, and find the
moments of the truncated Levy distribution simitaran asymptotic expansion of the small
parametere .

Let us use the Laplace method (see for example.[Zh Fourier transfornG(q) of the
deformation function is concentrated in the smalghborhood of the origin in the form of sharp

maxima and vanishes away from this region. The p&rathis maxima is, the smaller the
parametere . On the other hand, the value of the characterstiction of the Levy distribution

HL(q) undergoes small changes in this neighborhood. Assalt, the exact value of function

HL(q) can be replaced by an asymptotic expansion iméighborhood of the origin, and the

solution must be found as a power of the smallrpater ¢ .
Let us enter dimensionless coordinates |4, &=x/I and expand the characteristic

function (c) with the asymptotic series of powers of the spatametere to find

2a
HL(C)=exp(—£|C|a)= 1—£|C|a+£2%—... (17)

One changes the variables in expression (16) temsionless ones and replaces the exact value
of the characteristic function by an approximate ¢h7). Retaining terms of order up &0
inclusive, one rewrites expression (16) for the rents of the truncated Levy distribution as

m =—(i) Vet (a-1)...(a- | +1)Io|c|"'jG(c)dc. (18)



Taking into account that the inverse Fourier trammsf$ ™ of a power function [21] is

g1 A :—1 i @ G

77|l | —sin T (B+ Dl (19)
where I'(x) is the Gamma function, and converting from thejfiency domain to the time
domain expression (18), the result is

. 1 r j-l-a
m, = |15%sin% [ o(£) o&. (20)

The expression (20) is true for all moments of dnti@ry truncated Levy distribution. It
should be noted that orders of the truncated Lestyibution moment magnitudes ang, ~ le.

Therefore, retaining terms of order upabt one obtains from the expressions (9)-(11)

Ky =m =17y Ala) iy (a), (21)
where
_ 2 /i
A(a) —I—TF (a+1) sin—> (22)
and
py(a)=[&7g(&)dé, (23)

0
where the functiony, (a) describes the truncation shape influence on theutants. It should

be noted that function thg, (@) is the Mellin transform of the deformation functig (&) [20].

The expressions (21)-(23) are simplified if the maé stability is a =1 (truncated Cauchy
distribution). In this case, the values of influerfanction y;, (1) coincide with the deformation

function moments of corresponding ordguﬁ(l) =M,_,, and one obtains the simple expression

for cumulants:

- 2M.
Kj =| l—ly—l‘2. (24)
m

As mentioned above, the high cumulant coefficiaigscribe the differences between this
distribution and the normal distribution. Based expressions (21)-(23), one obtains the high
cumulant coefficients of truncated Levy distributio

(LY my(a)
A== BT (25)
y Ala) ' (a)

Given the results obtained, the distinguishing deatof an arbitrary truncated Levy
distribution, from the cumulant approach point eéw, is the specified orders of cumulant
coefficients magnitudesi, ~ £7//?, (for example, ~£™, A, ~ £ etc.). This dependence is a
“visiting card” of a truncated distribution, andyaprobability distribution belongs to the class of
truncated Levy distributions if their cumulant coeénts fulfill these requirements.

It follows from the results derived that the cunmitaof the truncated Levy flight (21) are
directly dependent on the spatial scalef the deformation function as well as on theoratf

spatial scaleg =(y/1)", namely,, ~1'e. It should be noted that by virtue of the smatesdf

this ratio (y/1)" <<1 the cumulant dependence, (a)~(y/I)" upon the initial Levy

distribution stability indexa is strong, whereas expression (22) describes #ak Wependence
upon the stability indexax . The cumulant dependence upon the deformationtibmshape is
described by expression (23).



4. Examples of truncated L evy distributions

Let us consider several examples of deformatiorctfans as an illustration of the results
obtained above.

1. Mantegna — Stanley truncatiohhe truncated Levy flight was proposed in arti@¢ for
the first time, and the abrupt truncation of dkaition “tails” was used. The deformation
function corresponding to the truncation used,

[ Jé=1
gms(f)—{o, A1 (26)
generates the influence functiops(a)
()= @n
J ] -a

All cumulants of the given truncated distributicaincbe obtained from the expressions (21)-
(23), and, for example, the variance is

o? :IZ’”y”A(a)ElL. (28)

This result coincides with the result for the vada derived in article [6]. However, it should be
noted that the variance was obtained in [6] for lineted domain of the stability index
1< a <2, whereas now it is obtained for the whole domdistability index0<a < 2.

In addition, the kurtosis coefficient is a suffiotl important characteristic of a truncated
Levy distribution, and the fourth cumulant coeféict for the Mantegna-Stanley truncation is

A, = ('—j 1 (2-a) (29)

v) Aa) (4-a)

2. Exponential truncationAnother significant example is exponential suppi@s, and the
appropriate deformation function is

0. (£) =exp(-1¢]) (30)
which generates the influence function

#(a)=r(j-a). (31)
Correspondingly, in the case of exponential truocathe variance is

0% =177y A(a) T (2-a), (32)
and the fourth cumulant coefficient is

A =(|‘ja ) (33

y) Ala) T(2-a)

3. Power-exponential truncationA deformation function with power-exponential
suppression can be proposed

0. (€)= exp(-Je[") (34)

possessing the parameter which changes the shape of the truncation andéuth@unt of Levy
distribution “tail” suppression from the total suppsion whenh - o to the total absence of
suppression wheh =0. The corresponding influence function is

u; () :%F(j_—haj. (35)

It should be noted that i — « the influence function of power-exponential truthma tends to
the one of the Mantegna-Stanley truncation.



The variance of power-exponential truncated distrdn is
N(2-a)/h
o2 :|2—ayaA(a)M, (36)
and the fourth cumulant coefficient is

(1Y h r((a-a)n)
& (yj A(@) T ((2=a)/n)’ N

5. Behaviorsof truncated L evy flight

It is known [4-6] that behaviors of truncated Leflight fluctuations depend on their scale
N . When the large-scale fluctuations of a process lhe nature of Brownian motion, it is
called the Gaussian regimef truncated Levy flight [4,6]. The small-scalaidtuations have
some properties of Levy flight fluctuations, andsitalledthe Levy regime

Gaussian regime. From the cumulant approach point of view the Gaumssegime occurs
when the high cumulant coefficients of the trundatevy flight one-dimensional probability
distribution W(x n) can be neglected. The process in the Gaussiameegi described by the
diffusion low (5), though the diffusion coefficierg the variance of the increment distribution.
The variance of the truncated Levy distributionjakhis the increment distribution of truncated
Levy flight, is evaluated with expression (21) andthe particular cases by expressions (28),
(32), (36).

As follows from (6), the Gaussian regime comes winencharacteristic spatial scai, of
the fluctuations exceeds the fourth cumulant coieffit (kurtosis coefficient) of the increment
distribution N; > A,, and for the truncated Levy flight one obtaiNg > A, ~ (I/y)a or, more

precisely,

(1Y #(a)
Ne> A, =|— | —/——57—, 38
= a(y) e 0

From the cumulant approach point of view the Gaussegime is completely described by
the second and the fourth cumulants (the variandetl@ kurtosis) of the increment distribution.
On the other hand, these cumulants depend on the distribution shape of truncation (21) —
(23), and the shape of truncation influences bath diffusion coefficient and the Gaussian
regime condition (38).

For example, for the stochastic process of trumc&auchy flight (the stability indeg =1)
and the Mantegna-Stanley truncation (26) one obttie diffusion coefficient® =2ly/m and
the Gaussian regime conditidyy, > 71/6y .

For the exponential truncation (30) one obtainsstmae diffusion coefficien) = 2|/ but
another Gaussian regime condition. The Gaussiammesgondition for the exponential
truncation differs from the one for the Mantegnastity truncation by a factor of six--
Ng > 7/y.

For the power-exponential truncation (34) and thkie of parameteh =1/2, the diffusion
coefficient is greater than the one for the Mang&gtanley truncation by a factor of two--
9P =4l y/m--and the Gaussian regime conduction increase80yithes --N, > 307/y .

Lewy regime. In case of truncated Levy flight small-scale flmtions, when the
characteristic spatial scale of fluctuations obngsconditionN < (I/y)a, the high cumulants of

the pdf cannot be neglected. In this case, ondrabthe truncated Levy flight one-dimensional
characteristic function from the expressions (88), and (21), taking into account the condition

(8):



= N Ala)u (a
8(a,ny)=exp i j(l ) (a)
j=1 :
Due to the fact that the dependence-~ | =77 is typical for the truncated Levy distribution
cumulants, one can obtain the following equalipnirexpression (39):
6(a,n,y) = 6’( q,l,yD'V") . (40)
The physical meaning of equality (40) is the folioge The n-th step one-dimensional

probability distribution of Levy flight coincidesith the distribution that can be obtained from
the initial truncated Levy distribution by changin§its spatial scale from the valye to the

value y,, = ym’” with keeping the spatial scale of the deformafiorction | . This statement is
correct under the condition

Vg =Ny < | (41)
when the cumulants of truncated Levy flight witle tepatial scalg/,, obey expressions (21)-

(23).

The known properties of the truncated Levy fliglgturns [4-6], namely, the return
dependence on the step number, simply follows fegomlity (40). Actually, one finds from (40)
that

(ia)’ | (39)

w(0,ny)= W[o,l,ymn1 j (42)

Under condition (41), the influence of the deforimatfunction on the return is the second order
of the smallness value, and the return equalsrikeoban undisturbed Levy flight:

r(Ya)

myn’®

W(0,ny)=R(0y0i")= (43)

6. Conclusion

The problem of an arbitrary truncated Levy fligleisdription by the method of cumulant
approach was solved. The set of cumulants of thacated Levy distribution given the
assumption of arbitrary truncation was found. Isvghown that a particular dependence of the
order of high cumulant coefficient magnitude updre tcumulant order exists, and this
dependence is the criterion of belonging to thesslaf truncated Levy distributions. It was
shown that characteristics of truncated Levy flighthe Gaussian regime completely depend
upon two increment distribution cumulants, namétg variance and the kurtosis. The variance
and the kurtosis dependences upon the truncatemesiere investigated. It was shown that the
truncated Levy flight in the Levy regime is desedby the complete set of cumulant functions.
In addition, the particular property of the trurezhtLevy flight in the Levy regime one-
dimensional probability distribution was found. Nelgy the Levy flight n-th step one-
dimensional probability distribution coincides witle distribution, which can be obtained from
the initial truncated Levy distribution by changintg spatial scale fromy to the value

V. =y’ and keeping the spatial scale of truncation, wherés the stability index of the
Levy distribution.
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