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Abstract. The gauge theory of arbitrage was introduced by Ilinski in [1] and applied to fast money flows
in [2,3]. The theory of fast money flow dynamics attempts to model the evolution of currency exchange
rates and stock prices on short, e.g. intra-day, time scales. It has been used to explain some of the heuristic
trading rules, known as technical analysis, that are used by professional traders in the equity and foreign
exchange markets. A critique of some of the underlying assumptions of the gauge theory of arbitrage was
presented by Sornette in [4]. In this paper, we present a critique of the theory of fast money flow dynamics,
which was not examined by Sornette. We demonstrate that the choice of the input parameters used in [3]
results in sinusoidal oscillations of the exchange rate, in conflict with the results presented in [3]. We also
find that the dynamics predicted by the theory are generally unstable in most realistic situations, with the
exchange rate tending to zero or infinity exponentially.

PACS. 11.15.Ha Lattice gauge theory – 11.10.Ef Lagrangian and Hamiltonian approach – 89.65.-s Social
and economic systems – 89.65.Gh Economics; econophysics, financial markets, business and management
– 89.75.-k Complex systems

1 Introduction

Fast money flows are analyzed in [2,3] in terms of the lat-
tice gauge theory of arbitrage developed in [1]. The main
idea of the theory is that the dynamics should only depend
on gauge invariant quantities rather than the exchange
rates themselves. Changing the units in which stocks of
currency are denominated obviously changes the nominal
exchange rate. However, it is obvious that such changes of
scale, i.e. gauge transformations, should have no effect on
its dynamics. Some assumptions of the theory have been
criticized in [4]; for example, the lack of justification for
the exponential form of the weight of a given market con-
figuration. However, the results of the theory reported in
[2,3] seem impressive, reproducing in particular some of
the phenomenological rules of technical trading employed
by professional traders. Hence the theory appears to be a
promising tool for analyzing the markets.

In this note, we present our analysis of the theory of
fast money flow dynamics and re-examine the results pre-
sented in [2,3]. In Sect. 2, we present the derivation of
the dynamical equations of the theory. In Sect. 3, we ex-
amine the dynamics predicted by the theory for various
initial conditions. We highlight certain inconsistencies in
the theory, the unstable dynamics for most realistic values
of the parameters and initial conditions, and the resulting
problems in applying the theory to technical trading. In
Sect. 4, we revisit the action and demonstrate that the

expression used in [2,3] is inconsistent with the evolution
operator resulting from the lattice formulation.

2 Lattice gauge theory and fast money flow

dynamics

In analogy with quantum electrodynamics, Ilinski iden-
tified the exchange rate S between two currencies with
the field and the trading agents with matter. In general,
the exchange rate dynamics depends on the interest rates
of the underlying currencies. However, since we are inter-
ested in intra-day dynamics only, we consider the special
case of zero interest rates. Ilinski tacitly assumed that the
interest rates of the two currencies are identical, i.e r1 =
r2. In this paper we set r1 = r2 = 0 and assume that
transaction costs are zero.

The part of the action s1 that describes the dynamics
of the field on its own is formulated by identifying arbi-
trage on the lattice with the curvature, which gives

s1 = −
1

2σ2

∫ T

0

dt

(

dy

dt

)2

. (1)

In Eq. (1), T is the investment horizon and σ2 is the
volatility (presumed to be constant in the interval 0 ≤
t ≤ T ). This expression is equivalent to a Gaussian ran-
dom walk in y = lnS.
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Fig. 1. Re-creation of Ilinski’s solution of Eqs. (9–11) given
on page 169 of [3] for α1 = 1.5, α2 = 10, C0 = 0, and the
initial conditions: η(0) = 0.2, υ(0) = 0, ρ(0) = 0.5. The factor
α1 in Eq. (10) is replaced with unity to match Ilinski’s Euler-
Lagrange equations. The displayed quantities are as follows:
ρ− 1/2 (solid), υ + η (dashed), η (dot-dashed), υ (dotted).

The effect of the field y on “matter”, i.e. the trading
agents, is described by the Hamiltonian

H(ψ̂1, ψ̂
+
1 , ψ̂2, ψ̂

+
2 ) = H21ψ̂

+
1 ψ̂2 +H12ψ̂

+
2 ψ̂1, (2)

where ψ̂+
k and ψ̂k are creation and annihilation operators

for agents in currency k (k = 1, 2), and the coefficientsH21

and H12 depend on y. According to Ilinski, H21 = heβy

andH12 = he−βy, where h and β are constants (we discuss
the motivation behind these formulas in Sect. 4). Follow-
ing the standard treatment of a quantum harmonic os-
cillator (see, e.g. [5]), Ilinski [3] derived a path-integral
expression for the evolution operator in terms of the co-
herent states ψ1 and ψ2, which are the eigenstates of the

annihilation operators ψ̂1 and ψ̂2 respectively. From the
evolution operator one can obtain the expression for the
part of the action s2 that represents the field’s effect on
matter:

s2 =

∫ T

0

dt

[

ψ1
dψ̄1

dt
+ ψ2

dψ̄2

dt
+H(ψ1, ψ̄1, ψ2, ψ̄2)

]

, (3)

where the overbar denotes complex conjugation.
Finally, departing from the electrodynamics analogy,

Ilinski introduced Farmer’s term F to describe the effect
of matter on the field. As a result, the action s1 is replaced
by

s1F = −
1

2σ2

∫ T

0

dt

[

d(y + F )

dt

]2

, (4)
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Fig. 2. The solution of Eqs. (9–11) for the same parameters
and initial conditions as in Fig. 1. The factor α1 in Eq. (10) is
restored.

where

F =
f

M
(ψ̄1ψ1 − ψ̄2ψ2), (5)

M is the total number of agents, and f is a constant
([3] uses α in place of f).

The total action is given by

s = s1F + s2. (6)

Following Ilinski, we introduce new variables η = βy and
τ = ht, and replace complex-valued ψk with φk and ρk,
defined by ψk = (Mρk)

1/2e−iφk (k = 1, 2) and ρ1+ρ2 = 1.
Ilinski identifies Mρk with the number of agents in cur-
rency k; the total number of agents is conserved. The ac-
tion can be written as

s =M

∫ hT

0

dτ L, (7)

where the Lagrangian L is given by

L = −(2α2)
−1 (η′ + α1ρ

′)
2
+ ρυ′ + φ′2+

+ 2[ρ(1− ρ)]1/2 cosh(υ + η), (8)

with α1 = 2βf , α2 = Mβ2σ2/h, ρ = ρ1, υ = φ1 − φ2.
A prime denotes a derivative with respect to τ . Due to
the unique structure of the Lagrangian (8), the resulting
Euler-Lagrange equations can be simplified to the follow-
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ing first order differential equations:

η′ = α2(1/2− ρ)−

− 2α1[ρ(1− ρ)]1/2 sinh(υ + η) + C0,
(9)

υ′ = 2ρ− 1)[ρ(1 − ρ)]−1/2 cosh(υ + η)+

+ 2α1[ρ(1− ρ)]1/2 sinh(υ + η),
(10)

ρ′ = 2[ρ(1− ρ)]1/2 sinh(υ + η). (11)

However, some of the second-order nature of the Euler-
Lagrange equations is retained in the constant C0 = η′(0)+
α1ρ

′(0) + α2[ρ(0) − 1/2], whose value depends explicitly
on the derivatives ρ′(0) and η′(0). The equation for φ2 is
trivial and we omit it. To solve Eqs. (9–11), one needs to
specify the initial conditions η(0), υ(0), ρ(0), and η′(0),
which uniquely determine C0 (note that ρ′(0) is given by
Eq. (11)). Alternatively, one can set η(0), υ(0), ρ(0), and
C0, which uniquely determine η′(0).

3 Analysis of the Euler-Lagrange equations

3.1 Missing coefficient

By introducing new variables, ρ̃ = ρ− 1/2 and η̃ = υ+ η,
and linearizing (|ρ̃| ≪ 1, |η̃| ≪ 1), we obtain η̃ = ρ̃′ and

ρ̃′′ + (α2 − 4)ρ̃ = C0. (12)

For α2 > 4, the general solution is

ρ̃ = A sin(2πνt+ θ) + C0(α2 − 4)−1, (13)

η̃ = 2πνA cos(2πνt+ θ), (14)

with ν = (α2−4)1/2/2π (A and θ are found from the initial
conditions). This is inconsistent with the solutions pre-
sented in [2,3], which exhibit oscillations decaying slowly

with time. The origin of this inconsistency can be traced to
a simple algebraic mistake in the derivation of the equa-
tions of motion given in [2,3]. On page 168 of [3], the
second term on the right-hand side of the equation for υ′

is missing a factor α1. The same coefficient is also missing
in the equations given in [2]. This is essentially equivalent
to replacing α1 in our Eq. (10) with unity, while keeping
α1 in our Eq. (9) intact.

We verify the above by numerically solving Eqs. (9–
11) in their incorrect form (with α1 missing from one of
the equations as in [2,3]) and in their correct form derived
in this paper. We are able to perfectly reproduce1 the
plots presented on page 169 of [3] by solving the incorrect
equations (see Fig. 1). Note that we have α1 = 1.5 and
α2 = 10 for the parameters used in [3]. Ilinski claimed to
set η′(0) = 0 (dy(0)/dt = 0 in his notation), but this is ob-
viously incorrect; the solutions he presented are obtained
for C0 = 0, which gives η′(0) ≈ −0.3020. As anticipated

1 In the caption of figure 7.2 in [3], it is claimed that one
of the quantities displayed is η (y in Ilinski’s notation), but
actually η + υ is plotted.

0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 3. The solution of Eqs. (9–11) for the same parameters
and initial conditions as in Fig. 2, except α1 = 0.

by the linearized analysis, the correct nonlinear equations
of motion do not show any decay in the oscillation ampli-
tude (see Fig. 2).

Furthermore, we do not observe any enhancement of
oscillations for smaller values of α1, as Farmer’s term be-
comes less important. In fact, the solutions for α1 = 0
plotted in Fig. 3 are only slightly different from those for
α1 = 1.5 (cf. the plots given on page 171 of [3]). After
some exploration, we conclude that Farmer’s term does
not have any critical effect on the dynamics of the sys-
tem; it only affects the amplitude of oscillations of η and
υ, and their phase shift from ρ.

3.2 Unstable solutions

In Sect. 3.1, we explored the dynamics of η̃ = η+ υ in the
case C0 = 0. However, there is no a priori reason why the
initial conditions should conspire to give C0 = 0. In this
section, we briefly examine the dynamics of η = β lnS in
the more general case C0 6= 0.

Linearizing Eqs. (9) and (10) gives

η′ = −α2ρ̃− α1η̃ + C0, (15)

υ′ = 4ρ̃+ α1η̃. (16)

We find that the solutions for η and υ are also harmonic
oscillations plus an extra term linear in time. The average
value of η changes linearly with time at a rate −4C0(α2−
4)−1, while the average of υ changes at the same rate but
with the opposite sign. This behaviour is illustrated in
Figs. 4 and 5 (note that ρ̃ and η̃ remain small, so the lin-
earization assumption is not broken). Thus, for C0 > 0,



4 Andrey Sokolov et al.: A note on the theory of fast money flow dynamics

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

Fig. 4. The solution of Eqs. (9–11) for the same parameters
and initial conditions as in Fig. 2, except with C0 = 0.1 instead
of C0 = 0. The curves are coded as in Figs. 1 and 2.
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Fig. 5. As for Fig. 4, with C0 = −0.1.

the exchange rate S decays exponentially to zero, whereas
for C0 < 0, it grows exponentially. In both cases the ex-
ponential time-scale is given by τc = 0.25(α2 − 4)|C0|

−1.

3.3 Technical trading

Ilinski justified certain rules employed in technical trading
(see [2] and pages 170–173 of [3]), e.g., the use of positive
and negative volume indices (PVI and NVI respectively),
by appealing to the solutions of the equations of motion.
The relevant figures are presented in [3] on pages 170 (fig-
ure 7.3) and 172 (figure 7.7). We identify the trading vol-
ume V with |ρ′| and the return R with η′/β = S′/S. In
[3], the derivative of η̃ = υ + η is used incorrectly in-
stead of η to compute the return (see also footnote 1). For
comparison, we plot the volume and the return curves in
Fig. 6, computed using the correct equations of motion
and C0 = 0. The quantities plotted in figure 7.7 of [3]
are not specified, nor are the parameters and initial con-
ditions, so we do not comment on that figure’s validity.
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Fig. 6. The trading volume V (bold solid curve) and the return
R (bold dot-dashed curve) for the same parameters as in Fig. 2.
For comparison, we also display ρ− 1/2 (thin solid curve) and
η (thin dot-dashed curve).

Ilinski used the trading volume and the return curves
to construct continuous2 versions of PVI and NVI. The
details of the construction are left unspecified. However,
the PVI and NVI are usually computed from daily returns,
not from continuous intra-day variables. In any event, the
resulting construction must depend strongly on the time-
scale that is chosen, since the indices are defined recur-
sively. Examining figure 7.7 in [3], one observes that, for
instance, the continuous PVI is constant if the trading
volume V is decreasing with time and changes linearly if

2 In technical trading, these quantities are discrete and de-
fined by recursive formulas.
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V is increasing, with a slope of +1 where the return curve
R is positive and −1 where R is negative. However, this
simple trend is inconsistent with the recursive definitions
of the PVI and NVI employed in technical trading.

Moreover, the constant-amplitude solutions we employ-
ed in this section only exist for C0 = 0. In all other cases,
the exchange rate converges to zero or diverges to infinity
exponentially on a short time scale. The condition C0 = 0
requires precise alignment between the initial values ρ(0),
v(0), η(0), and η′(0). There is no reason to expect that
such a precise alignment will be observed at any time in
the real market. Therefore, the lattice gauge model pre-
dicts unrealistic behaviour (e.g., exponential divergence if
C0 < 0) of the exchange rate under most circumstances.
Given the issues raised in this section, it is premature to
conclude that the technical trading schemes employed by
market participants can be justified by the lattice gauge
model.

4 Revisiting the action

We conclude by re-examining the derivation of the action
s given by Eq. 6. Consider two currencies, referred to as
currency 1 and currency 2, linked by an exchange rate
S(t) that depends on time t, such that the amount C2

of currency 2 at time t corresponds to the amount C1 =
S(t)C2 of currency 1. We assume that the currencies can
only be exchanged at the discrete times tn = n∆t (n =
0, . . . , N) and define Sn = S(tn). At any given time tn, an
agent can decide to either exchange his stock of currency
for the counterpart currency or keep his position, in which
case his stock of currency remains unchanged (recall that
we neglect interest rates completely since we are interested
in the intra-day dynamics). We display these possibilities
in Fig. 7, showing part of the lattice from time tn to time
tn+1.

-
Sn

�S−1
n

-
Sn+1

�S
−1

n+1

6

?

6

?

Currency 2 Currency 1

tn

tn+1

Fig. 7. Lattice diagram for the intra-day foreign exchange
trading in two currencies. Interest rates are ignored.

The returns on arbitrage along the closed loops of
the elementary plaquette shown in Fig. 7 are given by
S−1
n Sn+1 − 1 for the clockwise loop and SnS

−1
n+1 − 1 for

the counter-clockwise loop. The total return SnS
−1
n+1 +

S−1
n Sn+1 − 2 is identified in [1] with the curvature on the

lattice and, therefore, the corresponding discrete action is

given by

A1 =

N
∑

n=0

an(SnS
−1
n+1 + S−1

n Sn+1 − 2). (17)

Assuming that for any n we have an∆t → 1/2σ2 in the
limit ∆t → 0, we obtain the continuous action s1 given
by (1). No justification is given in [1,3] for why the limit
of an∆t must be finite. The expression for Farmer’s term
was derived in [3], but we omit it because its inclusion has
no critical effect on the dynamics (see Sect. 3.1).

In order to derive the Hamiltonian given by Eq. (2)
and the expressions for the coefficients H12 and H21, Ilin-
ski considered the case of a single trader first and then
generalized to multiple traders by using creation and an-
nihilation operators. In the case of a single trader, Ilinski
postulated that the probability of a given path Q through
the lattice from t0 to tN is exponentially weighted with re-
spect to s(Q) = ln(U1U2 . . . UJ), where {Uj} are the par-
allel transport coefficients on the lattice (note that J > N
for most paths). Thus, for a given path Q, the probability
is given by

P (Q) ∼ eβs(Q). (18)

Depending on the path, a given Uj can be Sn, S
−1
n , or

unity (note that Ilinski introduces a new gauge, under
which the exchange rates remain unchanged, except at t0
and tN where they equal unity; see pages 131–132 of [3]
for more details). The state of the trader is characterized
by the probabilities p1 and p2 of being in currency 1 and
currency 2 respectively. The evolution of the state vector
( p1

p2
) can be described by the transition matrix

P (tn; tn−1) =

(

1 Sβ
n

S−β
n 1

)

, (19)

which Ilinski essentially identifies3 with the discrete ver-
sion of the continuous evolution operator U(t, t′) that sat-
isfies

∂U

∂t
= HU, (20)

where H is the Hamiltonian and U(0, 0) is the identity
matrix. Ilinski claim that the expression for the transition
matrix (19) and the formula (20) result in

H =
1

∆t

(

0 Sβ

S−β 0

)

. (21)

Finally, identifying the parameter h with 1/∆t, we obtain
the expressions for H12 and H21, the Hamiltonian H given
by (2), and the action s2.

In deriving the action Ilinski considered a more general
case of non-zero interest rates, but this does not nullify the
two issues pointed out below. Firstly, we note that the
Hamiltonian given by (21) becomes infinite in the limit

3 In the case of non-zero interest rates, P (tn; tn−1) is related
to U(tn; tn−1) by a simple matrix transform (see page 132 of
[3]); however, P (tn; tn−1) = U(tn; tn−1) if r1 = r2 = 0 and the
transaction costs are zero.
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∆t→ 0. It is stated in [3] that ∆t in the continuous-time
calculations “stands for the smallest time-scale of the the-
ory, the time cut-off” (see page 133). However, if ∆t is
retained in the finite form in the Hamiltonian and, there-
fore, the action s2, it must also appear in the finite form
in the expression for the action s1 for consistency. Sec-
ondly, we observe that the transition matrix P (tn; tn−1)
is degenerate; its determinant is zero. Therefore, it can-
not possibly be identified with the evolution operator. We
conclude that the justification provided for the Hamilto-
nian (2) in [3] is insufficient.

5 Conclusions

We have examined the theory of fast money flow dynamics
developed in [2,3] and uncovered errors in 1) the derivation
and the analysis of the equations of motion based on the
theory, and 2) the justification of the action based on the
lattice gauge formalism.

The equations of motion presented in [2,3] are miss-
ing the coefficient α1 in one term, crucially modifying
the dynamics of the system. We also find that most of
the solutions of the equations of motion, in their correct
form derived in this paper, are unstable with respect to
the initial conditions, resulting in unrealistic behaviour of
the exchange rate. We show that the justification of the
technical trading given in [3] is based on an erroneous in-
terpretation of the variables related to the exchange rate
and on the stability predicted by the incorrect equations
of motion.

The theory of fast money flows relies on a particular
form of the Hamiltonian that describes the effect of the ex-
change rate on the actions of the agents. We demonstrate
that this form is not consistent with the lattice gauge for-
mulation and diverges in the continuum limit.
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