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OUTPERFORMING THE MARKET PORTFOLIO WITH A GIVEN
PROBABILITY

ERHAN BAYRAKTAR, YU-JUI HUANG, AND QINGSHUO SONG

Abstract. Our goal is to resolve a problem proposed by Karatzas and Fernholz (2008):

Characterizing the minimum amount of initial capital that would guarantee the investor to

beat the market portfolio with a certain probability as a function of the market configuration

and time to maturity. We show that this value function is the largest subsolution of a non-

linear PDE. As in Karatzas and Fernholz (2008), we do not assume the existence of an

equivalent local martingale measure but merely the existence of a local martingale deflator.

1. Introduction

In this paper we consider the quantile hedging problem when the underlying market does

not have an equivalent martingale measure. Instead, we assume that there exists a local

martingale deflator (a strict local martingale which when multiplied with the asset prices

yields a positive local martingale). We characterize the value function as the largest non-

negative subsolution of a fully non-linear partial differential equation. This resolves the open

problem proposed in the final section of [9]; also see page 37 of [31].

Our framework falls under the umbrella of the stochastic portfolio theory of Fernholz

and Karatzas, see e.g. [12], [14], [13]; and the benchmark approach of Platen [29]. In this

framework, the linear partial differential equation that the superhedging price satisfies does

not have a unique solution; see e.g. [9], [13], [10], and [30]. Similar phenomenon occurs

when the asset prices have bubbles : an equivalent local martingale measure exists, but the

asset prices under this measure are strict local martingales; see e.g. [6], [18], [22], [21], [7],

and [4]. In a related series of papers [1], [32], [27], [19], [26], [8], and [3] addressed the issue

of bubbles in the context of stochastic volatility models. In particular, [3] gave necessary

and sufficient conditions for linear partial differential equations appearing in the context of

stochastic volatility models to have a unique solution.

Key words and phrases. Strict local martingale deflators, optimal arbitrage, quantile hedging, nonunique-

ness of solutions of non-linear PDEs.
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In contrast, we show that the quantile hedging problem, which is equivalent to an optimal

control problem, solves a fully non-linear PDE. As in the linear case, these PDEs may not

have a unique solution, and, therefore, an alternative characterization for the value function

needs to be provided. Recently, [24], [2], and [11] also considered stochastic control problems

in this framework. The first reference solves the classical utility maximization problem,

the second one solves the optimal stopping problem, whereas the third one determines

the optimal arbitrage under model uncertainty, which is equivalent to solving a zero-sum

stochastic game.

The structure of the paper is simple: In Section 2, we formulate the problem. In this

section we also discuss the implications of assuming the existence of a local martingale

deflator. In Section 3, we generalize the results of [15] on quantile hedging, in particular

the Neyman-Pearson Lemma. We also prove other properties of the value function such as

convexity. Section 4 is where we give the PDE characterization of the value function.

2. The model

We consider a financial market with a bond B(·) = 1 and d stocks X = (X1, · · · , Xd)

which satisfy

dXi(t) = Xi(t)
(
bi(X(t))dt+

∑d
k=1 sik(X(t))dWk(t)

)
, i = 1; · · · d, X(0) = x = (x1, · · · , xd).

(2.1)

Following the set up in [9, Section 8], we make the following assumption.

Assumption 2.1. Let bi : (0,∞)d → R and sik : (0,∞)d → R be continuous functions and

b(·) = (b1(·), · · · , bd(·))
′ and s(·) = (sij(·))1≤i,j≤d, which we assume to be invertible for all

x ∈ (0,∞)d. We also assume that (2.1) has a weak solution that is unique in distribution

for every initial value. Another assumption we will impose is that

d∑

i=1

∫ T

0

(
|bi(X(t))|+ aii(X(t)) + θ2i (X(t))

)
<∞, (2.2)

where θ(·) := s−1(·)b(·), aij(·) :=
∑d

k=1 sik(·)sjk(·).

We will denote by F the augmentation of the natural filtration of X(·). Thanks to As-

sumption 2.1, every local martingale of F has the martingale representation property with

respect to W (·) (which is adapted with respect to F), the solution of (2.1) takes values in

the positive orthant, and the exponential local martingale

Z(t) := exp

{
−

∫ t

0

θ(X(s))′dW (s)−
1

2

∫ t

0

|θ(X(s))|2ds

}
, 0 ≤ t <∞, (2.3)
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the so-called deflator is well defined. We do not exclude the possibility that Z(·) is a strict

local martingale.

Let H be the set of F-progressively measurable processes π : [0, T ) × Ω → R
d, which

satisfies ∫ T

0

(|π′(t)µ(X(t))|+ π′(t)α(X(t))π(t)) dt <∞, a.s.,

in which µ = (µ1, · · · , µd) and σ = (σij)1≤i,j≤d with µi(x) = bi(x)xi, σik(x) = sik(x)xi, and

α(x) = σ(x)σ′(x).

At time t, investor invests πi(t) proportion of his wealth in the ith stock. The proportion

1 −
∑d

i=1 πi(t) gets invested in the bond. For each π ∈ H and initial wealth y ≥ 0 the

associated wealth process will be denoted by Y y,π(·). This process solves

dY y,π(t) = Y y,π(t)

d∑

i=1

πi(t)
dXi(t)

Xi(t)
, Y y,π(0) = y.

It can be easily seen that Z(·)Y y,π(·) is a positive local martingale for any π ∈ H. Let

g : (0,∞)d → R+ be a measurable function satisfying

E[Z(T )g(X(T ))] <∞, (2.4)

and define

V (T, x, 1) := inf{y > 0 : ∃ π(·) ∈ H s.t. Y y,π(T ) ≥ g(X(T ))}.

Thanks to Assumption 2.1, we have that V (t, x, 1) = E[Z(T )g(X(T ))]. Note that if g has

linear growth, then (2.4) is satisfied since the process ZX is a positive supermartingale.

2.1. A Digression: What does the existence of a local martingale deflator en-

tail? Although, we do not assume the existence of equivalent local martingale measures,

we assume the existence of a local martingale deflator. This is equivalent to the No-

Unbounded-Profit-with-Bounded-Risk (NUPBR) condition; see [24, Theorem 4.12]. NUPBR

is defined as follows: A sequence (πn) of admissible portfolios is said to generate a UPBR if

limm→∞ supn P[Y
1,πn

T > m] > 0. If no such sequence exists, then we say that NUPBR holds;

see [24, Proposition 4.2]. In fact, the the so-called No-Free-Lunch-with-Vanishing-Risk is

equivalent to NUPBR plus the classical no-arbitrage assumption. So, in our setting (since we

assumed the existence of local martingale deflators), although arbitrages exist they remain

on the level of “cheap thrills”, which was coined by [28]. (Note that the results of Karatzas

and Kardaras also imply that one does not need NFLVR for the portfolio optimization prob-

lem of an individual to be well-defined. One merely needs the NUPBR condition to hold.)

The failure of no-arbitrage means that the money market is not an optimal investment and is

dominated by other investments. So a short position in the money market and long position
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in the dominating assets leads one to arbitrage. However, one can not scale the arbitrage and

make an arbitrary profit because of the admissibility constraint, which requires the wealth

to be positive. This is what is contained in NUPBR, which holds in our setting. Also, see

[25], where these issues are further discussed.

3. On quantile hedging

In this section, we will try to determine

V (T, x, p) = inf{y > 0| ∃ π ∈ H s.t. P{Y y,π(T ) ≥ g(X(T ))} ≥ p}, (3.1)

for p ∈ [0, 1]. Observe that

Ṽ (T, x, p) =
V (T, x, p)

g(x)
= inf{r > 0| ∃ π ∈ H s.t. P{Y rg(x),π(T ) ≥ g(X(T ))} ≥ p}.

When g(x) =
∑d

i=1 xi, observe that Ṽ (T, x, 1) is equal to equation (6.1) of [9], the smallest

relative amount to beat the market capitalization
∑d

i=1Xi(T ).

Remark 3.1. Clearly,

0 = V (T, x, 0) ≤ V (T, x, p) ր V (T, x, 1) ≤ g(x), as p→ 1. (3.2)

Analogous to [15], we will present a probabilistic characterization of V (T, x, p). First, we

will generalize the Neyman-Pearson lemma (see e.g. [16, Theorem A.28]) in the next result.

Lemma 3.1. Suppose that Assumption 2.1 holds and g satisfies (2.4). Let A ∈ FT satisfy

P(A) ≥ p. (3.3)

Then

V (T, x, p) ≤ E[Z(T )g(X(T ))1A] (3.4)

Furthermore, if A ∈ FT satisfies (3.3) with equality and

ess supA{Z(T )g(X(T ))} ≤ ess infAc{Z(T )g(X(T ))}, (3.5)

then A satisfies (3.4) with equality.

Proof. Assumption 2.1 implies that the market is complete. As a result, g(X(T ))1A ∈ FT is

replicable with initial capital E[Z(T )g(X(T ))1A]; see e.g. Section 10.1 of [13]. If P(A) ≥ p,

it follows from (3.1) that V (T, x, p) ≤ E[Z(T )g(X(T ))1A].

Now, take an arbitrary pair (y0, π0) of initial capital and admissible portfolio that repli-

cates g(X(T )) with probability greater than or equal to p, i.e.

P{B} ≥ p, where B , {Y y0,π0(T ) ≥ g(X(T ))}.
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Let A ∈ FT satisfy (3.3) with equality and (3.5). To prove equality in (3.4), it’s enough to

show that

y0 ≥ E[Z(T )g(X(T ))1A]

Observing that P(Ac ∩ B) = P(A ∪ B) − P(A) ≥ P(A ∪ B)− P(B) = P(Bc ∩ A) and using

(3.5), we obtain that

y0 ≥ E[Z(T )Y y0,π0(T )] = E[Z(T )Y y0,π0(T )1B] + E[Z(T )Y y0,π0(T )1Bc ]

≥ E[Z(T )g(X(T ))1B] = E[Z(T )g(X(T ))1A∩B] + E[Z(T )g(X(T ))1Ac∩B]

≥ E[Z(T )g(X(T ))1A∩B] + P(Ac ∩B) ess infAc∩B{Z(T )g(X(T ))}

≥ E[Z(T )g(X(T ))1A∩B] + P(A ∩ Bc) ess supA∩Bc{Z(T )g(X(T ))}

≥ E[Z(T )g(X(T ))1A∩B] + E[Z(T )g(X(T ))1A∩Bc]

= E[Z(T )g(X(T ))1A].

�

Let F (·) be the cumulative distribution function of Z(T )g(X(T )) and for any a ∈ R+

define

Aa := {ω : Z(T )g(X(T )) < a}, ∂Aa := {ω : Z(T )g(X(T )) = a},

and let Āa denote Aa ∪ ∂Aa. Taking A = Āa in Lemma 3.1, it follows that

V (T, x, F (a)) = E[Z(T )g(X(T ))1Āa
]. (3.6)

On the other hand, taking A = Aa, we obtain that

V (T, x, F (a−)) = E[Z(T )g(X(T ))1Aa
]. (3.7)

The last two equalities imply the following relationship

V (T, x, F (a)) = V (t, x, F (a−)) + aP{∂Aa}

= V (t, x, F (a−)) + a(F (a)− F (a−)).
(3.8)

Next, we will determine V (T, x, p) for p ∈ (F (a−), F (a)) when F (a−) < F (a).

Proposition 3.1. Suppose Assumption 2.1 holds. Fix an (x, p) ∈ (0,∞)d × [0, 1].

(1) There exists A ∈ FT satisfying (3.3) with equality and (3.5). As a result, (3.4) holds

with equality.

(2) If F−1(p) := {s ∈ R+ : F (s) = p} = ∅, then letting a := inf{s ∈ R+ : F (s) > p} we

have

V (T, x, p) = V (T, x, F (a−)) + a(p− F (a−)).

= V (T, x, F (a))− a(F (a)− p)
(3.9)
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Proof. (1) If there exists an a such that either F (a) = p or F (a−) = p, A = Aa or A = Āa,

thanks to (3.6) and (3.7). In the rest of the proof we will assume that F−1(p) = ∅.

Let W̃ be a Brownian motion with respect to F and define Bb = {ω : W̃ (T )√
T

< b}. Let

us define f(·) by f(b) = P{∂Aa ∩ Bb}. The function f satisfies limb→−∞ f(b) = 0 and

limb→∞ f(b) = P(∂Aa). Moreover, the function f(·) is continuous and nondecreasing. Right

continuity can be shown as follows: For ε > 0

0 ≤ f(b+ ε)− f(b) = P(∂Aa ∩ Bb+ε)− P(∂Aa ∩ Bb) ≤ P(Bb+ε ∩B
c
b).

The right continuity follows from observing that the last expression goes to zero as ε → 0.

One can show left continuity of f(·) in a similar fashion.

Since 0 < p− P(Aa) < P(∂Aa), thanks to the above properties of f there exists a b∗ ∈ R

satisfying f(b∗) = p− P(Aa).

Define A := Aa ∪ (∂Aa ∩ Bb∗). Observe that P(A) = P(Aa) + P(∂Aa ∩ Bb∗) = p. A also

satisfies (3.5).

(2) This follows immediately from (1):

V (T, x, p) = E[Z(T )g(X(T ))1A]

= E[Z(T )g(X(T ))1Aa
] + E[Z(T )g(X(T ))1∂Aa∩Bb∗

]

= V (T, x, F (a−)) + aP(∂Aa ∩ Bb∗)

= V (t, x, F (a−)) + a(p− F (a−)).

�

Remark 3.2. Note that when Z is a martingale, using Neyman-Pearson Lemma, [15] showed

that

V (T, x, p) = inf
ϕ∈M

E[Z(T )g(X(T ))ϕ] = E[Z(T )g(X(T ))ϕ∗], (3.10)

where

M =

{
ϕ : Ω → [0, 1]

∣∣∣∣FT measurable,E[ϕ] ≥ p

}
. (3.11)

The randomized test function ϕ∗ is not necessarily an indicator function. Using Lemma 3.1

and the fine structure of the filtration FT , in Proposition 3.1, we provide another optimizer

of (3.10) that is an indicator function.

Proposition 3.2. Suppose Assumption 2.1 holds. Then, V (T, x, ·) is convex, and thus

continuously increasing from V (T, x, 0) = 0 to V (T, x, 1). Hence, V (T, x, p) ≤ pV (T, x, 1) ≤

pg(x) for all p ∈ (0, 1).

Proof. It is enough to show,

V (T, x, p1) + V (T, x, p2)

2
≥ V

(
T, x,

p1 + p2

2

)
, for all 0 ≤ p1 < p2 ≤ 1. (3.12)
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Denote p̃ ,
p1+p2

2
. It follows from Proposition 3.1 that there exist A1 ⊂ Ã ⊂ A2 with

P(A1) = p1 < P(Ã) = p̃ < P(A2) = p2 satisfying (3.5),

V (T, x, pi) = E[Z(T )g(X(T ))1Ai
], i = 1, 2,

and

V (T, x, p̃) = E[Z(T )g(X(T ))1Ã].

By (3.5),

ess inf{Z(T )g(X(T ))1A2∩Ãc} ≥ ess sup{Z(T )g(X(T ))1Ã}

≥ ess sup{Z(T )g(X(T ))1Ã∩Ac
1
},

which implies that

E[Z(T )g(X(T ))1A2∩Ãc ] ≥ E[Z(T )g(X(T ))1Ã∩Ac
1
].

As a result,

E[Z(T )g(X(T ))1A2
]− E[Z(T )g(X(T ))1Ã] ≥ E[Z(T )g(X(T ))1Ã]− E[Z(T )g(X(T ))1A1

],

which is equivalent to (3.12). �

Example 3.1. Consider a market with a single stock, whose dynamics follow a three-

dimensional Bessel process, i.e.

dX(t) =
1

X(t)
dt+ dW (t) X0 = x > 0,

and let g(x) = x. In this case

Z(t) =
x

X(t)
,

which is the classical example for a strict local martingale; see [23]. On the other hand,

Z(t)X(t) = x is a martingale. Thanks to Proposition 3.1 there exits a set A ∈ FT with

P(A) = p such that

V (T, x, p) = E[Z(T )X(T )1A] = px.

In [15], the following result was proved when Z is a martingale. Here, we generalize this

result to the case where Z is only a local martingale.

Proposition 3.3. Under Assumption 2.1

V (T, x, p) = inf
ϕ∈M

E[Z(T )g(X(T ))ϕ]. (3.13)
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Proof. Thanks to Proposition 3.1 there exists a set A ∈ FT such that V (T, x, p) = E[Z(T )g(X(T ))1A].

Since 1A ∈ M, clearly

V (T, x, p) ≥ inf
ϕ∈M

E[Z(T )g(X(T ))ϕ].

For the other direction, we will show that for any ϕ ∈ M and a given set A ∈ FT with

P(A) = p satisfying (3.5)

E[Z(T )g(X(T ))1A] ≤ E[Z(T )g(X(T ))ϕ].

Letting M = ess supA{Z(T )g(X(T ))}, we can write

E[Z(T )g(X(T ))ϕ]− E[Z(T )g(X(T ))1A]

= E[Z(T )g(X(T ))ϕ1A] + E[Z(T )g(X(T ))ϕ1Ac]− E[Z(T )g(X(T ))1A]

= E[Z(T )g(X(T ))ϕ1Ac]− E[Z(T )g(X(T ))1A(1− ϕ)]

≥ ME[ϕ1Ac ]−ME[1A(1− ϕ)] (by (3.5))

≥ 0.

�

3.1. A Digression: Representation of V as a Stochastic Control Problem. Let us

denote by P p
α(·) the solution of

dP (t) = P (t)(1− P (t))α′(t)dW (t), P (0) = p ∈ [0, 1], (3.14)

where α(·) is an F−progressively measurable R
d-valued process such that

∫ T

0
|α(s)|2ds <∞

P-a.s. We will denote the class of such processes by A. The next result obtains an alternative

representation for V in terms of P .

Proposition 3.4. Under Assumption 2.1,

V (T, x, p) = inf
α∈A

E[Z(T )g(X(T ))P p
α(T )] <∞. (3.15)

Proof. The finiteness follows from (2.4). It can be shown using Proposition 3.3 that

V (T, x, p) = inf
ϕ∈M̃

E[Z(T )g(X(T ))ϕ],

where

M̃ =

{
ϕ : Ω → [0, 1]

∣∣∣∣FT measurable,E[ϕ] = p

}
.

Therefore, it’s enough to show that M̃ satisfies,

M̃ =
{
P p
α(T )

∣∣α ∈ A
}
.

The inclusion

M̃ ⊃
{
P p
α(T )

∣∣α ∈ A
}
,
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is clear. To show the other inclusion we will use the Martingale representation theorem: For

any ϕ ∈ FT there exists an F−progressively measurable R
d-valued process ψ(·) satisfying

ϕ = p +

∫ T

0

ψ′(t)dW (t).

Then we see that E[ϕ|Ft] solves (3.14) with α(·)

α(t) = 1{E[ϕ|Ft]∈(0,1)} ·
ψ(t)

E[ϕ|Ft](1− E[ϕ|Ft])
.

�

4. The pde characterization

4.1. Notation. We denote by X t,x(·) the solution of (2.1) starting from x at time t and by

Zt,x,z(·) the solution of

dZ(s) = −Z(s)θ(X t,x(s))′dW (s), Z(t) = z. (4.1)

We then introduce the value function

U(t, x, p) := inf
ϕ∈M

E[Zt,x,1(T )g(X t,x(T ))ϕ], (4.2)

where M is defined in (3.11). Note that the original value function V can be written in

terms of U as

V (T, x, p) = U(0, x, p).

We also consider the Legendre-Fenchel dual of U with respect to the p variable

w(t, x, q) := sup
p∈[0,1]

{pq − U(t, x, p)}, (4.3)

and the function

w̃(t, x, q) := E[Zt,x,1(T )(Qt,x,q(T )− g(X t,x(T )))+] = E[(q − Zt,x,1(T )g(X t,x(T )))+], (4.4)

where the process Q(·) satisfies the dynamics

dQ(s)

Q(s)
= |θ(X t,x(s))|2ds+ θ(X t,x(s))′dW (s), Qt,x,q(t) = q.

Finally, for any (t, x) ∈ [0, T ] × (0,∞)d, we denote by F (·) the cumulative distribution

function of Zt,x,1(T )g(X t,x(T )).
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4.2. Associated partial differential equation. We will first present some properties of

w̃ , and then relate w to w̃ to obtain a partial differential equation the value function U

satisfies.

Assumption 4.1. We assume that θi and σij are, for all i, j ∈ {1, · · · , d}, locally Lipschitz.

Assumption 4.2. We also make the following ellipticity assumption: For every compact

subset K ⊂ (0,∞)d, there exists a positive constant CK such that

d∑

i=1

d∑

j=1

aij(x)ξiξj ≥ CK‖ξ‖
2,

for all ξ ∈ R
d and x ∈ K.

We have the following result from [30, Theorem 2], which generalizes the results of [7] to

several dimensions. A similar result when a is assumed to have linear growth appears in

[20]. However, as in [30], we are interested in relaxing the linear growth assumption so that

we can consider cases in which multiple solutions to (4.5) may exist.

Lemma 4.1. Under Assumptions 2.1, 4.1, and 4.2, we have that w̃ is a classical solution

to

− vt −
1

2
Trace(σσ′D2

xv)−
1

2
|θ|2q2D2

qv − qTrace(σθDxqv) = 0, (4.5)

(t, x, q) ∈ [0, T )× (0,∞)d × (0,∞), with the boundary condition

v(T, x, q) = (q − g(x))+. (4.6)

¿From the smoothness of w̃, we can deduce the differentiability of F as follows.

Proposition 4.1. Assume that Assumptions 2.1, 4.1 and 4.2 hold. Then the cumulative

distribution function F is differentiable.

Proof. By Lemma 4.1, w̃ is twice differentiable in q. Thus, to prove that F is differentiable,

it’s enough to show that

Dqw̃(t, x, q) = P[Zt,x,1(T )g(X t,x(T )) ≤ q] = F (q). (4.7)
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For any ε > 0 and q ∈ (0,∞), let E := {ω : q < Zt,x,1(T )g(X t,x(T )) ≤ q + ε}. Then Āq

and E are disjoint, and Āq+ε = Āq ∪ E. It follows that

1

ε
[w̃(t, x, q + ε)− w̃(t, x, q)]

=
1

ε

{
E[
(
q + ε− Zt,x,1(T )g(X t,x(T ))

)
1Āq+ε

]− E[
(
q − Zt,x,1(T )g(X t,x(T ))

)
1Āq

]
}

=
1

ε

{
E[
(
q + ε− Zt,x,1(T )g(X t,x(T ))

)
1Āq

] + E[
(
q + ε− Zt,x,1(T )g(X t,x(T ))

)
1E]

}

−
1

ε
E[
(
q − Zt,x,1(T )g(X t,x(T ))1Āq

)
]

= P[Āq] +
1

ε
E[
(
q + ε− Zt,x,1(T )g(X t,x(T ))

)
1E ].

By the definition of E,

0 ≤
1

ε
E[
(
q + ε− Zt,x,1(T )g(X t,x(T ))

)
1E ] ≤

1

ε
E[ε1E]

= P[q < Zt,x,1(T )g(X t,x(T )) ≤ q + ε)] → 0, as ε ↓ 0.

Thus, we get the right derivative of w̃ with respect to q as

lim
ε↓0

1

ε
[w̃(t, x, q + ε)− w̃(t, x, q)] = P[Zt,x,1(T )g(X t,x(T )) ≤ q]. (4.8)

We can derive the left derivative of w̃ with respect to q in the same manner and thus have

(4.7) proved. �

¿From the definition of w̃, it’s obvious that w̃ is convex in the q variable. To further show

its strict convexity, we make the following assumption.

Assumption 4.3. For any (t, x) ∈ [0, T ]× (0,∞)d, F (·) is strictly increasing.

Proposition 4.2. Under Assumptions 2.1, 4.1, 4.2 and 4.3, w̃ is strictly convex in the q

variable.

Proof. By Lemma 4.1, w̃ is smooth. Then by direct computation

Dqw̃(t, x, q) = P[Zt,x,1(T )g(X t,x(T )) ≤ q] = F (q).

Since F (·) is assumed to be strictly increasing, we see that w̃ is strictly convex in q. �

Now we want to relate w to w̃. We first present another representation for w̃ in the

following result.

Lemma 4.2. For any (t, x, q) ∈ [0, T ]× (0,∞)d × (0,∞), we have

max
a≥0

E[(q − Zt,x,1(T )g(X t,x(T )))1Āa
] = w̃(t, x, q).
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Proof. First consider the case when a < q. On the set {ω : Zt,x,1(T )g(X t,x(T )) ≤ a}, we

have

(q − Zt,x,1(T )g(X t,x(T )))1Āa
= (q − Zt,x,1(T )g(X t,x(T )))1Āq

.

On the other hand, on {ω : a < Zt,x,1(T )g(X t,x(T )) ≤ q}, we have

(q − Zt,x,1(T )g(X t,x(T )))1Āa
= 0 ≤ (q − Zt,x,1(T )g(X t,x(T )))1Āq

.

Finally, on {ω : Zt,x,1(T )g(X t,x(T )) > q}, it holds that

(q − Zt,x,1(T )g(X t,x(T )))1Āa
= 0 = (q − Zt,x,1(T )g(X t,x(T )))1Āq

.

Thus, we conclude that when a < q

E[(q − Zt,x,1(T )g(X t,x(T )))1Āa
] ≤ E[(q − Zt,x,1(T )g(X t,x(T )))1Āq

] = w̃(t, x, q). (4.9)

Next, consider the case when a > q. On the set {ω : Zt,x,1(T )g(X t,x(T )) ≤ q}, we have

(q − Zt,x,1(T )g(X t,x(T )))1Āa
= (q − Zt,x,1(T )g(X t,x(T )))1Āq

.

On the other hand, on {ω : q < Zt,x,1(T )g(X t,x(T )) ≤ a}, it holds that

(q − Zt,x,1(T )g(X t,x(T )))1Āa
= q − Zt,x,1(T )g(X t,x(T )) < 0 = (q − Zt,x,1(T )g(X t,x(T )))1Āq

.

Finally, on {ω : Zt,x,1(T )g(X t,x(T )) > a},

(q − Zt,x,1(T )g(X t,x(T )))1Āa
= 0 = (q − Zt,x,1(T )g(X t,x(T )))1Āq

.

Thus, we conclude that as a > q

E[(q − Zt,x,1(T )g(X t,x(T )))1Āa
] ≤ E[(q − Zt,x,1(T )g(X t,x(T )))1Āq

] = w̃(t, x, q). (4.10)

Now, the claim follows combining (4.9) and (4.10). �

Next, we will argue that w and w̃ are equal.

Proposition 4.3. Under Assumptions 2.1, 4.1, 4.2, w(t, x, q) = w̃(t, x, q).

Proof. The continuity of F implies

w(t, x, q) = sup
p∈[0,1]

{pq − U(t, x, p)} = sup
a≥0

{F (a)q − U(t, x, F (a))}. (4.11)

It follows from (3.6) that

F (a)q − U(t, x, F (a)) = F (a)q − E[Zt,x,1(T )g(X t,x(T ))1Āa
]

= E[(q − Zt,x,1(T )g(X t,x(T )))1Āa
]. (4.12)

Now, using (4.11), (4.12), and Lemma 4.2, we obtain

w(t, x, q) = max
a≥0

E[(q − Zt,x,1(T )g(X t,x(T )))1Āa
] = w̃(t, x, q).
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�

Thanks to Proposition 4.3, we can conclude from Lemma 4.1 and Proposition 4.2 that w

is a classical solution to the PDE (4.5) with the boundary condition (4.6), and that it is

strictly convex in q.

Now we are ready to present one of the main results in this section.

Proposition 4.4. Under Assumptions 2.1, 4.1, 4.2, and 4.3, the function U satisfies

0 = −∂tU −
1

2
Trace[σσ′D2

xU ]− inf
a∈Rd

(
(DxpU)

′σa +
1

2
|a|2D2

pU − θ′aDpU

)
(4.13)

in classical sense, with the boundary condition

U(T, x, p) = pg(x). (4.14)

Moreover, U is strictly convex in p.

Proof. Since w is smooth and strictly convex in q, its Legendre-Fenchel dual U is also smooth

and strictly convex in p. We can therefore express U as

U(t, x, p) = sup
q∈(0,∞)

{pq − w(t, x, q)} = pH(t, x, p)− w(t, x,H(t, x, p)),

where p 7→ H(·, p) is the inverse function of q 7→ Dqw(·, q). Then by direct calculations,

DpU(t, x, p) = H(t, x, p),

D2
pU(t, x, p) = DpH(t, x, p) =

1

D2
qw(t, x,H(t, x, p))

,

DxU(t, x, p) = −Dxw(t, x,H(t, x, p)),

D2
xU(t, x, p) = −D2

xw(t, x,H(t, x, p)) +
1

D2
pU(t, x, p)

(DpxU)(DpxU)
′,

DpxU(t, x, p) = −Dpxw(t, x,H(t, x, p))DpU(t, x, p),

∂tU(t, x, p) = −∂tw(t, x,H(t, x, p)).

It follows that for (t, x, p) ∈ [0, T )× (0,∞)d × [0, 1], by setting q := H(t, x, p), we have

0 = −∂tw −
1

2
Trace[σσ′D2

xw]−
1

2
|θ|2q2D2

qw − qTrace[σθDxqw]

= ∂tU +
1

2
Trace[σσ′D2

xU ]−
1

2
Trace[σσ′(DpxU)(DpxU)

′]−
1

2
|θ|2

(DpU)
2

D2
pU

+
DpU

D2
pU

Trace[σθDpxU ]

= ∂tU +
1

2
Trace[σσ′D2

xU ] +

(
(DxpU)

′σa∗ +
1

2
|a∗|2D2

pU − θ′a∗DpU

)

= ∂tU +
1

2
Trace[σσ′D2

xU ] + inf
a∈Rd

(
(DxpU)

′σa+
1

2
|a|2D2

pU − θ′aDpU

)
,
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where

a∗(t, x, p) :=
DpU(t, x, p)

D2
pU(t, x, p)

θ(x)−
1

D2
pU(t, x, p)

σ′(x)DpxU(t, x, p).

Finally, observe that for any p ∈ [0, 1], the maximum of pq − (q − g(x))+ is attained at

q = g(x). Therefore, by (4.6)

U(T, x, p) = sup
q∈R+

{pq−w(t, x, p)} = sup
q∈R+

{pq− w̃(t, x, p)} = sup
q∈R+

{pq− (q− g(x))+} = pg(x).

�

A few remarks are in order:

Remark 4.1. Results similar to Proposition 4.4, but in viscosity sense, were proved by [5],

with stronger assumptions (such as the existence of an equivalent martingale measure and

the existence of a unique strong solution to (2.1)), using the stochastic target formulation.

Here, we use the observation that the dual function of U is equal to w̃ and that w̃ is a

classical solution to a linear PDE that is strictly convex in q, to obtain a nonlinear PDE

that U satisfies in classical sense. Under our assumptions this solution may not be unique

as pointed out in the next remark.

Remark 4.2. (i) Let us consider the PDE satisfied by the superhedging price U(t, x, 1):

0 = vt +
1

2
Trace(σσ′D2

xv), on (0, T )× (0,∞)d, (4.15)

v(T−, x) = g(x), on (0,∞)d. (4.16)

Unless additional boundary conditions are specified, this PDE may have multiple so-

lutions, see e.g. the volatility stabilized model of [9]. Even when additional boundary

conditions are specified, the growth of σ might lead to the loss of uniqueness. In the

one-dimensional case one can determine an explicit condition which is sufficient and

necessary for uniqueness (non-uniqueness); see [4].

(ii) Let ∆U(t, x, 1) be the difference of two solutions of (4.15)-(4.16). Then both U(t, x, p)

and U(t, x, p) + ∆U(t, x, 1) are solutions of (4.13) (along with its boundary condi-

tions). As a result when (4.15) and (4.16) has multiple solutions so does the PDE

for the function U .

Remark 4.3. Instead of relying on the Legendre-Fenchel duality we could directly apply the

dynamic programming principle of [17] for weak solutions to the formulation in Section 3.1.

The problem with this approach is the growth assumptions on the coefficients of (2.1), which

would force us to rule out the cases that are of interest to us.
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4.3. Characterizing the value function.

Proposition 4.5. Assume that Assumptions 2.1, 4.1, 4.2 hold. Suppose u is a nonnegative

classical subsolution to the PDE (4.13) which satisfies (4.14), and is strictly convex in p.

Then u ≤ U .

Proof. Define the Legendre-Fenchel dual of u with respect to p

wu(t, x, q) := sup
p∈[0,1]

{pq − u(t, x, p)}.

By the definition of wu and (4.14), it’s easy to see that wu satisfies (4.6). Also, since u is

strictly convex in p, we can redo the calculation in the proof of Proposition 4.4 (but going

backward) and obtain that wu is a classical supersolution to (4.5). Now define the process

N(·) by

N(s) = Zt,x,1(s)wu(s,X t,x(s), Qt,x,q(s)). (4.17)

Using Itô’s rule and the supersolution property of wu, it can be seen that N(·) is a super-

martingale. Then by the supermartingale property and (4.6), we have

wu(t, x, q) = N(t) ≥ E[N(T )] = E[Zt,x,1(T )wu(T,X t,x(T ), Qt,x,q(T ))]

= E[Zt,x,1(T )(Qt,x,q(T )− g(X t,x(T )))+] = w̃(t, x, q)

Now by Proposition 4.3, we conclude that wu(t, x, p) ≥ w(t, x, p) and thus u(t, x, q) ≤

U(t, x, q). �
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