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Abstract The problem of valuation of a European option issidered as a problem of
choice, with price being a decision. A version mdifference valuation relation is proposed
that includes statistical regularities of nonst@titarandomness. Expressions for bid and ask
prices are obtained as well. Classical relatiomsw@rd contract value and Black-Scholes
formula) are obtained as particular cases. We ghaivin the general case of nonstochastic
randomness the minimal expected profit of uncovdtadopean option position is always

negative. A version of delta hedge is proposed.
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1. Introduction

Traditionally, beginning from von Neumann and Sayatgcision theory has provided the
language of discourse to many topics in mathemaécanomics (see, for instance, Mas-
Collel et al (1995)) as well as in mathematicahfine (see, for instance, Markowitz (1952)).
With the time being, the synthesis of decision thieand economics, with its focus on
uncertainty, produced many alternative decision theories (d¢achina (2004)). These
decision theories, relying on economic applicati@ml in order to correctly represent
preferences on actions of economic agents, reqexitience of set functions (measures) that
were difficult to interpret from traditional stdiisal standpoint (see, for instance, Shmeidler
(1989)). On the other hand, the synthesis of datigieory and mathematical finance, with its
focus onarbitrage and probabilistic modelingoroved to be of somewhat another nature
(Harrison and Kreps (1979), Back and Pliska (19€@&ymona (2008). Namely, relying on the
well developed theory of stochastic processes, enadfical finance has almost become an
application of this sophisticated mathematical igigte, hard to explain to a non practitioner.
A bridge between these two branches of applicaifamecision theory does not seem to have

been made yet.

! Disclaimer: the ideas expressed and the results a@hed in this article reflect the views of the autbr and
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The present article explores one of the ways inclwhihe decision theory presented in
lvanenko (2010) can be applied to some problenmeathematical finance. In particular, this
version of decision theory allows one to interghet price of a derivative contract as a matter
of choice, or a decision. In its own turn, thiseimiretation allows one to consider the absence
of arbitrage opportunity as a particular case efitiore general phenomenon of uncertainty
precisely defined and provided with existence tBpoin the abovementioned book. In this
optics, the absence of arbitrage opportunities fm@somore a matter, or a criterion of choice
than anything else.

To consider price (of a financial contract, of asurance contract, etc.) as an object of
choice, or a decision, seems a very natural aetitWle learn about this attitude once, for
example, we start working on a trading floor. A ilinprice is a decision of the market
participant - a buyer or a seller. A choice of phiee can have a huge impact on profit and loss
in case of important swap transactions. Interetdsrdave been traditionally regarded as
decisions.

In financial markets, exposure to a financial cactris only possible through a mutual
agreement of two market participants, a buyer asdller - two decision makers. Once they
agree upon the price, the transaction is doneprilse thereupon is known (it may be published
on a computer screen, newspaper page, etc). Théhtddhe transaction has happened may be
interpreted in the following way: we say that tlwaieterparties have agreed to make the same
decision, to choose the same price. This phenomeiibbe described in the present article as

a problem of choice.

One of the consequences of this description willthe reference to the so called
statistical regularities of nonstochastic randomses new mathematical formalism that was
developed in order to describe statistically unstabndom phenomena, and systematically
presented for the first time in the abovementiobedk as well. That it is important to
distinguish between stochastic and nonstochastitlomness was stressed already by
Kolmogorov (1986). Perhaps, this formalism, sinteoperates withfamilies of finitely-
additive probability measuregould be profitable both to decision theory anathematical

finance researchers.

Indeed, the abovementioned extension of the defmibf arbitrage may lead one to
the necessity to accept the families of finitelyghitide probability measures, a step which is
necessary to take in order to deal with the wetivkim paradoxes of the fundamental theorems

of asset pricing. For example, in Back and Plisk@9@) it was shown that countable —



additive measures are insufficient in order to espnt no arbitrage situations when the state
space is infinite. On the other hand, the parthef ihathematical finance literature which is
dedicated to dynamic hedging (see Black and Scl{®®4&3)) and the whole corpus of related
research, which becomes possible only if a modealom evolution of a financial variable
has been specified. Traditionally these models teen represented by stochastic processes.
However, it becomes clear that the constraint o€lgsticity is too restrictive in order to
represent the reality of the markets (see, for @e@mMandelbrot (2006)). Some authors,
recognizing this limitation, relax that constraiahd come very close to nonstochastic
modeling of random evolution of financial variahles in Epstein et al (2000). Another
branch of research on this topic, the indifferepeciing framework, as summarized in
Carmona (2008), takes the road of expected utiigkimization and pursuits the search of
optimal decisions under diverse constraints. Unsitendard indifference pricing framework,
the approach proposed in this article does not tatte ideas ofbptimization Moreover,
unlike usual utility maximization technique, thepapach proposed here does not require the
use of convex utility functions: the convexity resgible for risk or uncertainty aversion is in
the shape of the decision criterion. One can se&lpls of this approach and the arbitrage
pricing theory proposed in Ross (1976, 1977). ednss as well that the approach proposed
here is a natural framework for static replicattwmguments: see Derman and Taleb (2008).

The new terminology, notions and theorems encoedter this article are due to Ivanenko
(2010), which is the main reference of this artieded could be consulted there. In particular,
we refer to Theorems 4.2 and 4.8, concerning exgsteof the statistical regularity of
nonstochastic randomness, to Theorem 5.2 concemgjence of statistical regularity in
decision systems, to Definition 2.4 and Theorem® @nd 2.3 concerning existence of
uncertainty in decision systems.

In what follows we present the theoretical framdw(8ection 2.1-2.2) that essentially is
an adaptation of valuation problematic to decistbaory and vice versa, and then show
(Section 2.3) how some classical results of matlieaidinance (forward contract value and
Black-Scholes formula) are obtained as particuses. In Section 2.4 an expression for the
generalized delta is proposed for statistical ragtigs of general form.



2. Price as decision and nonstochastic randomness

2.1. Indifference as absence of arbitrage opportunitiesone underlying

Let f(8) be a pay-off of a financial contract, dependingtbe value of uncontrolled
(unknown) parameter. For examplef(0) = (8 —0*)*, where 6 is the price of the
underlying financial variable at the maturity date9* is the strike. Let at the moment0 we
observe the transaction of the pay-6f) at a certain pricel. Let the buyer finances the
purchase with a loan, so that by the tifnghe would owe the bank the sue'. Let the seller
places the proceeds of the sale in the bank, $doththe timeT the bank will owe him the
sumu€’. We shall write that by the momefitthe profit and loss of the buyer and the seller

will be, respectively,
L,(6,u) = —ue™ + £(6) )
and
Ly(6,u) = +ue™ — f(6). (2)

Our goal is to interpret the observed pricef the financial contract as a decision of the
buyer and of the seller. Lét = {u: u € R} be the set of decisions, or actions, that in¢hse
are prices. Le® be the set of values of the random paranttélote that the values of the
above profit and loss functiohsrepresent outcomes with the natural preferenegioal on
them: the bigger the profit, the better. We carstbonstruct two setg, = (0,U, L,(.,.))
andZ; = (0, U, Ly(.,.)), called thedecision schemef the buyer and, respectively, of the

seller.

Following the framework ofdecision systemsve admit that the buyer and the seller
belong to theclass/i; of decision makerdhat is those whose preference relation on agf®n

represented by means of the criterignU — R that has the form
5(uw) = max [ L(6,w)p(do), (3)
peEP

whereZ = (0,U, L(.,.)) is thedecision schemé] - is the set of decisions O - is the set of
values of the uncontrolled (random) paraméterL:® x U - R - is a loss function, and
whereP is a so calledstatistical regularityin the form of a closed set @hitely-additive
probability measures o®. Note that the set® and U are arbitrary and the functiorn. is

bounded These circumstances will allow us to extend #teo$ decisions in a way that suits



most the goal of the article. Any statistical riegily P describes a statistically unstable
random phenomenon, calledonstochastically random If L has the meaning of a utility
function, or as in (2.1)-(2.2) of a profit and lo&sction, the criterion (2.3) of maximal

expected losses becomes the criterion of minimpeeted utility
Ly(u) = min [ L(6,u)p(d6). (3"
P

In what follows we shall use the form (3’) of theterion and call it the criterion of minimal

expected profits.

We admit further that the buyer and the seller oxaly belong to the same clagg of
decision makers, but share as well the same viethestatistical regularitl of the behavior
of the uncontrolled random paramet®. In our case this means that the pricef the
transaction is that decisianthat makes the buyer and the seitglifferentbetween the profit
and loss profiled., (6, u) of the buyer and., (6, u) of the seller In other words, we can

interpret the fact of the transaction at the pries equality

7, (W) = Lz (), (4)
or, substituting (3’)
min [ L(8,W)p(d6) = min [ Ls(8,u)p(d6). (5)

Taking into account (1)-(2), and due to boundedoégs (8)p(df), we obtain
_ rT : — rT __
we™ +min [ f(6)p(d6) = ue™ —max [ f(6)p(d6). (6)

Thus the observed pricemay be interpreted as the average of the followype

> Unlike stochastically random phenomena, nonstochastically random phenomena are those random

phenomena that do not possess the property of stability of frequencies. A model of realization of such a
phenomenon is constructed without usual probabilistic assumptions and is called sampling directedness, or
directedness in the space of samples. The theorem that states that any sampling directedness has a statistical
regularity, and any statistical regularity corresponds to a sampling directedness is proved in lvanenko (1990,
2010). Note that the words directedness, net and generalized sequence are synonyms.

® This is achieved by means of the change of sign of the loss function. In this connection see as well De Groot
(1970), Ivanenko (1986), Gilboa (1989) and the Appendix.

* When the buyer and the seller belong to different classes of decision makers and do not share the views on
randomness, the equality of this type would not make sense. What is, probably, more important, the buyer and
the seller may have very different asset-liability and financing constraints, resulting in diversity of the profit and
loss functions L.



min [ f(6)p(d6) + max [ f(6)p(d6)
z :

-rT

(7

u=ys=e

whereP is a statistical regularity o®. The formula (7) means that market negotiates, or
agrees upon, a particular choice of the statistemilarityP. A stochastic analogue of this is

known asgmplied distribution

Remark though that if one requires thigf (u) = 0 and Lz (u) = 0 then one obtains,

respectively, that
wy = e min f £(0)p(d) Q)
pEP
that can be interpreted as thid priceand
us = e max | FO)p(do) 7"
peEP

that can be interpreted as @k price.The indifference price (7) can be interpreted tasis

themid price.

In the case of complete uncertainty, whenis a the set of all finitely-additive
probability measures 08, including all Dirac delta distributions, the fauta (7) becomes

-rT

min f ) + maxf )

- ®

u=ys=e

In the case of stochastic character of the stedistiegularity, that is when the sBt
contains a single stochastic, that is countablytagdprobability measurp, the formula (7)

becomes

u= e [ f(8)p(ds) (9.

Because of the equality (4) the price (7) may basiered as another version of the
indifference priceseeCarmona (2008). In our case, however, a decisidkema indifferent
between the role of the buyer and the role of #ikers Here indifference means that she has
no grounds to prefer one operation to another. \Ae that this inability to prefer, or

indifference, is synonymic to the absence of aabir opportunities. By the same token, a



situation where there is no indifference, or whareference can be established, is synonymic

of arbitrage opportunity.

In statistical literature, for example in De Grq@®70), the criterion of the type (3) is
calledrisk. Therefore our indifference price may be interpdets that decision that makes
equal the risk®f the counterparties. This interpretation leads foarallel with the arbitrage

pricing theory, developed in Ross (1976, 1978).
2.2. Arbitrary portfolio

Since we admit that decision makers belong to dasscof decision makers, it is
reasonable to rewrite the above for the case aiglesdecision maker as well as for the case
of multiple securities. Let us first consider omlige underlying. Let the random paraméter
be the price of the underlying security by the fattime moment, and let® be the set of its
possible values. LeF = {® — R} be a set of all real bounded functions @nthat we
interpret as pay-offs of financial instruments eleging on the random paramefiee 0. Let
q €0Q =1{q:q € R, |q| < oo} represent the sense and the amount of the ope(gtisrd for
purchaseg < 0 for sale,q = 0 for no operation. LeV = {u: u € R, |u|] < o} be the set of
prices. Then leD = F x Q X U be the set of decisions. This means that a decisiaker
chooses three elements: a contract, her role angribe. Supposing that the decision maker
finances her purchases via a bank account andsptheeproceeds of sales there as well, the

profit and loss functiorn.: ® x D — R will be

L(8,d) = q(—ue™™ + (), d=(qu.f())ED, fEF. (10)

In this way one constructs theatrix decision schen#e= (0, D, L(.,.)), an essential element
of decision system. Since the representation (¥pli&l for arbitrary setsD and®, and for
boundedfunction L one can extend the above setting (which is a moflel one period
investment in a singular market) to the case oritrary portfolio. Indeed, let there exist a
collection ofj=1, ..., M underlying securities. Namely |ét= {6, ..., 8),} be their prices by
the time moment, and let® = {0,, ..., 0,,} be the collection of sets of their possible values.

Without loss of generality we can consid®ras the set of the states of Nature. DEP) =

> We consider that in this case transaction does not happen, which is in line with the efficiency market
hypothesis.



Upe D™, D™* =D X D ...x D, whereD is the elementary decision set from (10). Then the
n

profit and loss functiod: ® x D(*) — R has the form

Ng
L©Od) = ) ai(-ue™™ + £(6)), (10
i=1

where d = (dy, ..., dy,) € D, d; = (fi(.),u;,q;)) € D,i=1,..,N;, 6 €O . In this

case the matrix decision scheme takes the form
7= (@,D(‘”),L(.,.)). (11)
Any decision scheme
7' =(0'c0,0' cD™,L(,.)). (11"

is called amarket When for eacld; € d,i = 1,.., N, u; are fixed, we say that we deal with
aninvestment decision problemwhenf; € d are fixed we say that we deal withvaluation
decision problemwhen neither is fixed we may say that we deahvatmarket decision
problem.The set of values of the profit and loss functid@’) comprises the set of outcomes
with the natural preference relation on it: thegeigthe profit, the better. Due to the nature of
financial markets,all the elements introduced above are considered asded:M <

0,Vd Ng < 0,Vj =1,..,M inf®; < o,sup@; < co.

In standard economic framework, the relation betw#e dimension of the s@ of
values of the uncontrolled parameferand of the seb(* of decisions is known to take only
two forms:completeor incompletemarkets. We draw attention of the reader that teerat
on this distinction seems to be somewhat artifieiadl is related, probably, to the fact, that
finitely-additive probability measures were ruledt @f the picture. Indeed, let the decision
maker belong to the clag§;. Then, according to Theorem 1 from Ivanenko (1986)
Theorem 5.2 from Ivanenko (201@hateverthe set of decisio® andwhateverthe se® of
values of the unknown parameter, her preferenedioal on actions is represented by means

of the criterion (3’) that now is written as

Ly(d) = min f L(6, d)p(dh), (12)
peEP



where P is a statistical regularity o® in the form ofa closed set of finitely-additive
probability measures o®. The meaning of this theorem is the following (skails in
Apendix). For any decision schende= (®,D,L(.,.)), and any decision maker from the
class [I; one can  find a  statistical regularity P € P(O) such

thatLy(d) = meilr} [ L(6,d)p(dB), whereP(0) is the set of all statistical regularities @n
p
and vice versa, for ang € P(0) and anyZ, if L;(d) = meilr} [ L(6,d)p(dB) then decision
p

makers belongs to the clals. If for two decisionsi,, d, € D™ the decision maker has

L*Z(d1) = L*Z(dz): (13)

then she has no grounds to prefer one decisiondther, she, in other words, is indifferent
with respect to the choice between them. Agairilita to prefer one decision to another, or
indifference, is synonymic to the absence of aaggropportunities.

That one can consider the notions of indifferencel ghe absence of arbitrage
opportunities as synonyms seems to have deep Hodeed, when we deal with point pay-
offs, that is wher.(0,d,) = ¢(d,),L(8,d,) = ¢(d,),VO € 0, the requirement that(d,) =
¢(d,), is known to be called a no arbitrage conditiorg B® example Ross (1976). At the
same time, the situation when.(0,d,) = L(0,d,),V8 € 0, is known in mathematical
finance asreplication When, on the other hand(0,d,) > L(6,d,),Vv6 € 0, and 30 €
© L(0,d,) > L(6,d,), that is when there exists a dominating decisitentthe classical
arbitrage portfolio can be formed. Thus these twwernmmena, of no arbitrage and
indifference, are closely related to the more galnphenomenon calledncertainty,which
takes place when the preference relation on outsaraa be projected onto more than one
preference relations on decisions (see IvanenkbO2Chapter 2. Moreover, due to Theorems
2.2-2.3 and Theorem 5.2 from that book, conditib2) ©f indifference can be considered as a
sufficient condition of existence of uncertaintytire decision systerf8=(Z,P). Therefore we
say that indifference price (7) is the choice ti@bgs uncertainty into, or rules out arbitrage
opportunities from, decision syste8r(Z,P) Note that this extension of the definition of
arbitrage leads one to the necessity to accepfamdies of finitely-additive probability
measures, a step which is necessary to take im twrdkeal with the well known paradoxes of
the fundamental theorems of asset pricing (seenstance Back and Pliska (1991)). As far as

the author of this article knows, the above paiail@ve not been considered systematically.
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Remark though, that wheh € D!,q = 1, that is for the buyer, one can, requiring
L5(d;) = 0, conclude that

w= e min [ £Op(o) (14)

and interpret it as thieid price. Respectively whap= —1, that is for the seller,

u= e’ man f(@)p(db). (14”’)

pEP
and interpret it as thaskprice.

In what follows we consider valuation decisigmoblems forM=1. Now the question is
what statistical regularitf? will the decision makers use? We show in the nektisn how
the argument of indifference leads to the analagfueerisk neutral measure, but in the case of

nonstochastic randomness. In what follows relat{@9s(5) and (10)-(13) are our basic tool.
2.3. European options, forward contract and put-call paity: conditions on P.

The pay-off of a European call optionfiéd) = (6 — 6*)*, whered — is the underlying stock

price at the maturity dafg, 6* - is the strike,. Hence, using (2.7) we have

min [ (0 — 0*)*p(df) + max [ (6 —6*)*p(do)
—rT DEP pEP

u. = e 3 (15)
The pay-off of the corresponding European pui(&) = (6* — 0)*. Hence
min [ (0* —0)*p(df) + max [ (6* —6)*p(do)

u,= e’ pep pep . (16)

2

For the corresponding forward contract on the uyaohey stock f(6) = 8 — 6" . Hence

in [ (6 —6%)p(do) + 6 — 0")p(do
i glelpf( )p(dh) rgggf ( )p( ):
2

min [ 9p(d6) + max [ p(d6)

= e T 5 - 0. (17)

What meaning could we attribute to the first termthe brackets? Let us try to define as

decision the forward pricég for the stock supposing that its current spoteis®d,. On one
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hand,fr must be such as to guarantee indifference betweefohg and the short forward

positions, i.e. when, respectively,
Ll(g, HF) == _HoerT + HF’
LS(Q, QF) = +00€rT - HF

then one must have

mip f Li(6,6,)p(d6) = min j Ly(6,6,)p(d6). (18)

SinceL,; (6, 6r) andL,(6, 6;) are point pay-offs (they do not dependé@nthen
9F = eoerT, (19)

which is the classical forward price for a stockosé current price I8, (see Hull (2005)). On
the other hand, in the case of non-deliverable dodwthe indifference between long and

short positions, the pay-offs of which in this case, respectively,
Ll(e, HF) = _HF + 9
Ls(0,0rp) = +6p — 0,

implies
min f Li(8,65)p(d) = min f Ly(6, 8:)p(d6), (20)
peP pEP

where agaird is the stock price at the dakeandéris the decision with respect to the forward

price. Whence

min [ 9p(d6) + max [ p(d6)

0F= 2

(21)

That is the average of the type (21), whereis the stock price at the future time momeént
O - is the set of its possible valyesdP - is a statistical regularity a®, has the meaning of

the forward price as well. At the same time, frdf)( we must have

min [ 6p(df) + rgg;f 6p(do)

> (22)

90 — e—TT
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Provided the pricé, is known, equation (22) becomes a condition on“the” statistical

regularityP on@.

Note that we would obtain (22) considering as el following decision problem. Let
today’s stock pricé, be a decision in the situation where a decisionanakooses between
long and short stock positions held to a certametihorizon and financed with a bank
account. Namely, let the profit and loss functioh tbe long and short positions be

respectively

L;(6,0,) = 6 — G,e""
and

Ly(6,6,) = 0,e"T — 6.

Being indifferent in this case means

min f (6 = 6oe™Ip(d9) = min j Goe™ — 6)p(d6) @23)

or

min [ 6p(df) + rgg;f 6p(do)
- .

90 — e—TT

(24)

One can thus conclude that the choice of the s &, becomes a condition dhsimilar to
(22).

Substituting (22), or (24), in (17) one obtains
ur= e T (6pe"" —0") =06,—6%""", (25)

where 8, — is the current stock price ad - the strike. This quantity is usually calldte
value of the forward contracsee, for instance, Hull (2005). In other worde problem of

choice of the forward contact value is equivalertie problem of choice of the spot price.

Now it is easy to retrieve the classical put-calfity relation. Consider the following
decision scheme. On one hand, a decision makebwgrthe call at the price. (15), and

simultaneously sell the put for the prigg (16). On the other hand, the decision maker can
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take a forward position, the value of which is (ZB)e profit and loss from holding long call-

short put position is
Lep(6,—ue +up) = (—uc+uy)e™™ + (0 — 09 — (0" —0)* =
= (—uc+uy)e™m + (0 —6%). (26)
And the profit and loss from holding a long forwanakition is
Li(6,uf) = —use™™ + (6 — 6%). 27)

According to (12) and (13), being indifferent beemghese payoffs means

?JPJLCP(H' —u, + up)p(dé?) = rglei}r)lf Lf(H,uf)p(dH), (28)

or, taking into account (26) and (27),
U — Up = Uy (29)
Substituting (15, 16, 25) in (29) we have:

min [ (6 —67)p(d6) + max [ (6 - 67)*p(d6)

2
: * + * +
_r;ggf (67— 6)*p(dd) + max [ (6"~ 6)"p(d6) _
2
= o™ — 6" (30)

Provided the choice of the current stock priigenas been made by the market participants,
this condition on statistical regulariB(®) is the nonstochastic analogue of the no-arbitrage
condition on the pricing measure of the usual sistth case. Indeed, in stochastic case we

would have from (30), as well as from (22) and (24)

f 0p(d6) = B,e' 31)

a condition that locks in the expectation of thecktprice and yields the Black-Scholes

pricing formula for a log-normap () with a volatility parametes.
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2.4.Generalized delta

In the general case of statistical regulaftythe minimal expected profits (3’) of the
uncovered European option position with pay#f) are equal for the buyer and the seller,

and are always negative. Substituting (7) back (Bjene has
5,0 = L, ) = mig [ L,(0w)p(dor) = mi [ F@p(ao) - w e =
s DEP pEP

min [ f(8)p(d6) + max [ £(6)p(d6)

— mip [ @0 - 2 _ _

B min [ f(©)p(d6) — max | f(®)p(ad)
B 2

<o. (32)

When statistical regularitl is stochastic, the minimal expected pay-off of eineovered
option position is zero. Relation (32) shows tha tise of stochastic probability measures
may be the reason why the markets systematicalenastimate the risks of financial

transactions.

It is important to note that it is not yet cleatinfthe case of statistical regularities of the
general form thelynamic hedgindramework is theoretically possible. First of alle simply
do not know yet how to describe the time evolutidrstatistical regularity. Second, from the
valuation view point, the delta hedge construci®not necessary in order to determine the
price of the call option: the price is given by YInd (24). Third, from risk management
perspective the knowledge of the delta is importhnt even having obtained the pricing
relations, the derivation of the option price stvisy to the change of the underlying price is

not trivial.

Nevertheless we can definestatic hedge, or, as one may call it,ganeralizeddelta.
Indeed let us compose a portfolio of a Europeaipg@nd of a position in the underlying and
require that its minimal expected pay-off (12) wei@ negative. Represent this portfolio
construction as a problem of choice (11). Met= 1,0 = 0,,d = (d;,d,) ED XD = D? €
D™, d, = (f(),1,u"),d, = (9(.),5,0,), where f(0) is as aboveg(6) =6 in order to
represent a position on the underlying itselfjs chosen as (7§, is chosen as (22) and
6 € Q. Then, according to (10),

L(8,d) = Y2 qi(—we™™ +£;(0)) = —u e + £(0) + 5(—6pe™" + ), (33)
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and the decision scheme is giverZas (0, D?,L(,)). The criterion (12) now is
3(d) = min j L (6, d)p(do) =

_ rgleig((ff(e)p(dé?)— . rT)+5< Boe’™ + fep(d9)>>
> rglei}r)l( f F(O)p(do) — u* rT)+5mlg( e 4 j 9p(d9) -

= rgleigff(e)p(de) —u*el +5< B’ + I;nnfep(de)>

_ min [ f(6)p(d6) —max [ f(6)p(d6) ~ min [Op(d6) — max [ Op(dd)

+ 6
2 2

Requiring the last sum be equal zero, one obtains

max [ f()p(d6) —min [ f(6)p(d6)

0= max [ 0p(d6) — min [ Op(d6) G

This quantity of the underlying makes the minimapected pay-off of the portfolio
d = (d;,d,) € D x D € D*® non-negative. Are there conditions that make (4jverge to
the standard Black-Scholes delfa;» 655 ? What does (34) converge to whee: u, Vp €

P, that is when random phenomena isstochastic in the sense of the Definition 4@rfrthe

book Ivanenko (2010)? Wheh= u, doesé = ”Eag’) These questions are important because

statistical regularities of the general form copmsd to statistically unstable random
phenomena, and hence, one is tempted to say, eadihran stochastic processes. This is yet
another argument in order to question the dynaneidgimg framework as it is done in
Derman and Taleb (2008).

3. Discussion

The theoretical elements presented in this ariobean adaptation of the general decision
theory described in Ivanenko (2010) to the problehvaluation of derivative contracts, a
traditional problem of mathematical finance. Inatsence this adaptation is an interpretation
of observed phenomenon, namely of an observed atttos price. However, financial
decision makers may belong to different classedezision makers, not necessarily to the
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class/T;, and thus may use very different criteria for thegtions, if any. They may have as

well very different views on the type of behavidrrandom variables. And transactions may
still take place. The benefit from being a membehs class is obvious: one is prepared, in a
manner of speaking, from the onset to statisticallystable random outcomes. The

representatives of the cla&g, that is those who follow the guidance of theemtpd utility

criterion, are devoid of this benefit.

It seems that considering pricing problem as a Iprmabof choice, or a decision, is a
natural framework for static replication argumeat,presented in Derman and Taleb (2008),
and allows for a coherent introduction of the cqcef nonstochastic randomness in

mathematical finance.

In conclusion we would like to stress that dueuwanknko (1990, 2010) the families of
finitely-additive probabilities, that appear in ¢&on theory (see Ivanenko (1986), Gilboa
(1989)) but that have never been accepted in mattieshfinance, have finally acquired their
statistical meaning: they describe statisticallgtable, or nonstochastic, random phenomena.
Therefore it seems reasonable to suggest thatefuetkploration of statistical regularities of
nonstochastic randomness, besides being a newcbdeaic, may happen to be a road away
from current underestimating of risks of finandiansactions as well as one more argument

in favor of those who disbelieve stochastic chanacft financial variables.

Appendix
On the definition of the clasdTI;

We argue that decision makers belonging to thesscld are those who would
systematically prefer neutral or fully diversifiadvestment strategy to a directional one.
Namely, Condition 3 of the following definition, lezd in lvanenko (1986, 2010) the
guaranteed result principlgeneralized for mass events and reflectingertainty aversiomf
the decision maker, can be interpreted as the dfieation argument, encouraging an
investor to pursue neutral strategies. Below weadyce the axiomatic definition of the class
IT; and itscharacterization theorefrom Ivanenko (1986, 2010)

Definition Al Let Z be the class of all ordered triples of the fafre (O, U, L), where
0, Uare arbitrary nonempty sets abxd x U — R is a real bounded function. The trifldas
called a decision scheme. We denoteZ®) the subclass of all decision schemes of the form
Z =(0,.,.), where the sd is fixed.
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Definition A2 We define ecriterion choice ruleto be any mapping, defined onZ(®)
and associating to every schende= (®,U,L) some real functionly(:), a criterion,
determined ort/. We denote the class of all criterion choice rulegdlg®) and include in the
subclasgl, (®) c I1(®) all criterion choice rules that satisfy the foliogy three conditions:

Cl. IfZ; = (0,U; L) € Z(0),i = 1,2,U; c U,,andL,(8,u) = L,(6,u) Yu € U, V6 €
0, thenly (u) = Lz,(u) Yu € U;.

C2. If Zz=(0,U,L) € Z(O), uy,u, € U,then if L(O,u,) <L(O,u,), VO € 0,then

w(u) <Ly(uy), and if a,b € R,a=>0 and L(6,u;) =aL(6,u,)+b, VO € 0, then
Ly (uy) = aly(u,) + b.

C3. If Z=(0,U,L) € Z(0), u;,u,,us € Uand L(6,u,) + L(6,u,) = 2L(6,u;) VO €
0,then2L’(u3) < Ly (uqy) + Ly (uy).

The next Theorem (which is a simplified versionTédeorem 1 from Ivanenko (1986) or
Theorem 5.2 from Ivanenko (2010) establishes tileBetween the properties Bf(-) and its
structure.

Theorem Criterion L7 (+) possesses the properties C1-C3 if and only ihg the following

structure

(A1) L7 (u) = max fL(H,u)p(dH),
peP

whereP is a statistical regularity o8 in the form of a closed family of finitely-addigv
probability measures.
Note that in the above definition and theorem #tslg, © are arbitrary nonempty sets

and the loss functiob: U X @ —» R is bounded.

If instead of the loss function one considers profit and loss functibr= —L, as we do
in this article, then condition C3 of the above iDgon becomes
C3. If Z=(0,U,L) € Z(0), uy,uyus € UandL(,uy) + L(6,uy) = 2L(0,u3) VO €
0,then2L7(u3) = Ly (uq) + Ly (uy).
The criterion(Al) of maximal expected losses then becomes the iontef minimal
expected utility (see Ivanenko (1986), Gilboa (1989
(A1) Ly(u) = min [ L(9,w)p(do).

Below we demonstrate that if a decision maker gsé=rion (Al’), then Condition 3 can

be interpreted as the diversification argument éseeell lvanenko (2010), page 111).
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Let F = { ® = R} be the set of all bounded real functions@rthat we interpret as pay-

offs of financial instruments, depending on a randuarametef € 6. Let U = {u: u € R}

be the set of prices of the pay-offsLet g € Q = {—1,0,+1} represent the sense of the
operation, -1 for a sale, +1 for a purchase anarOtie absence of operation. Then let
D =F x Q x U be the set of decisions. This means that a decigiaker chooses three
elements: a contract, her role and the price. Ssipgahat the decision maker finances her
purchases via a bank account and places the pooésdles there as well, the profit and loss

function will be

(A2) L(6,d) = q(—ue™™+ f(0)),d = (q,u,f(.)) €D,f €F.

In this way one constructs in the matrix decisionesneZ = (0, D, L(.,.)), an essential

element of decision system.

Let
(43) dy = (+1 /10w, L6, dy) = —we™ + f£1(6),
(44) dy = (+1, /20 0uz),  L(6,dy) = —uze™™ + f,(6),
45) d3=<+1;f1(-):fz(-);u1:uz>’
L6,d,) = _#eﬂ WAQ ;‘fz(e)_
Then it is obvious that
(A6) L(6,dy) + L(6,d,) = 2L(8,d5), V0 € ®.
Provided
(A7) Lz(d) = min [1(6,d)p(do),
show that
(A48) L5 (dy) + Ly (d,) < 2L%(d5).
Indeed,

¢ Generally speaking, the elements of F' are the elements of the Banach space of all real bounded functions on
0.



19

49 L) =iy [10.d)p@0) = —we + min [ £i@)pa0)
(410) Ly(d,) = min fL(H, dy)p(d8) = —uye’” + min ffz(e)p(de),
peEP pEP
(411) L3(ds) = min f L(6, d3)p(d6) =
pEP
__ W -;—uz o™ + Iglei{} ff1(9) ;fZ(Q)p(dH).
Since

@12 mip [ £©@p@0)+ mip [ £Op@) <mip [(AO) + £

we obtain (A8).
This confirms that to use criteriqAl), or (Al’), in order to estimate decisions ex ante
and to prefer in situations of uncertainty neutralully diversified strategies are equivalent.
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