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We present a general criterion for entanglement of N indistinguishable particles decomposed into
arbitrary s subsystems based on the unambiguous measurability of correlation. Our argument pro-
vides a unified viewpoint on the entanglement of indistinguishable particles, which is still unsettled
despite various proposals made so far primarily for the s = 2 case. Even though entanglement is
defined only with reference to the measurement setup, we find that the so-called i.i.d. states form a
special class of bosonic states which are universally separable.

Since its first recognition in the seminal EPR and
Schrödinger’s papers [1, 2], quantum entanglement has
long been seen as the most distinctive trait of quan-
tum theory. Notably, it underlies nonlocal correlation
in composite physical systems, invoking various concep-
tual questions on the foundation of physics and, at the
same time, offers a key resource for quantum informa-
tion sciences. In view of this, we find it rather puzzling
that the very notion of entanglement still eludes a for-
mal, let alone intuitive, understanding, especially when
the system admits no apparent decomposition into sub-
systems. This occurs typically in systems of indistin-
guishable particles (i.e., fermions or bosons) with which
actual realizations of entanglement – via photons, elec-
trons or composite particles such as hydrogen atoms –
have been implemented mostly today.
To see the nontrivial nature of entanglement, take, for

example, the familiar N = 2 particle Bell states,

|Ψ〉 = 1√
2
(|0〉1 |1〉2 ± |1〉1 |0〉2), (1)

with |0〉k and |1〉k being the orthonormal qubit states
of particle k = 1, 2. These are prototypical entangled
states for distinguishable particles, but if the particles
are indistinguishable, the labels k are no longer usable for
classifying the measurement outcomes to define the cor-
relation. Consideration of remotely separated particles
by introducing the spatial degrees of freedoms directly
for Eq.(1) does not yield any nontrivial correlation – a
property known as the cluster separability [3]. Clearly, a
physically motivated and mathematically solid definition
of entanglement is needed for general composite systems
including those of indistinguishable particles.
Recently, Ghirardi et al. [4, 5] gave a possible defi-

nition of separability (non-entanglement) for N particle
systems based on the criterion that, if one can deduce a
complete set of physical properties (CSP) pertaining to a
subsystem, then the state is separable with respect to the
subsystem and the rest. This criterion derives from the
demand that, in a separable state, all physical quantities
in the subsystem have elements of reality in the EPR

sense [1]. Independently, Zanardi et al. [6] presented a
criterion for uncovering a tensor product structure (TPS)
in the Hilbert space upon which entanglement can be de-
fined. The criterion demands the existence of subalgebras
representing the observables of the subsystems which are
measurable, independent and complete to form the entire
set of observables in the system (see also [7]). Yet another
criterion has been proposed by Schliemann et al. [8] and
others [9] particularly for indistinguishable particles us-
ing the (Schmidt or Slater) rank of state decomposition,
which is related to the standard measures of entangle-
ment such as the von Neumann entropy.

These criteria for (non)entanglement are rather differ-
ent from each other and, not surprisingly, do not com-
pletely agree on deciding which states are separable, with
an example being the N = 2 bosonic ‘independently
and identically distributed’ (i.i.d.) state |φ〉1 |φ〉2 (for an
attempt of reconciliation, see [10]). More recently, the
present authors furnished a criterion for the decomposi-
tion of anN fermionic system into s arbitrary subsystems
[11], where we find that the orthogonal structure intro-
duced to distinguish the subsystems in [4] corresponds
precisely to the choice of observables with which corre-
lation is defined. In other words, entanglement can be
defined only relative to the measurement setup and it is
highly non-unique [6]. Under these circumstances, one
is naturally led to ask if there is any coherent picture of
entanglement prevalent among these criteria.

The purpose of this Letter is to provide a positive an-
swer to this. Namely, we show that all these criteria can
be put into a larger perspective consisting of two descrip-
tions of the system, one for the measurement outcomes
and the other for the provisional states of the system.
The gap between the two descriptions, which lies at the
root of the apparent disagreement, can be filled by an
isomorphism between the two, providing a unified view-
point of entanglement for indistinguishable particles. Un-
like the previous analyses, entanglement can be treated
equally for the fermionic and bosonic cases here. We also
find that the i.i.d. states for general N form a special
class of bosonic states which are universally separable
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irrespective of the choice of measurement setup.
To define entanglement as an attribute to gener-

ate nontrivial correlation among subsystems, we first
need an appropriate set of physical observables associ-
ated with the subsystems for which the correlation in
their measurement outcomes can be evaluated unambigu-
ously. To discuss the situation explicitly, we consider the
case where the total system breaks into s subsystems
Γ1, . . . ,Γs and assume that to each Γi we have a com-
plete set of commuting observables Ci which are all im-
plementable in the measurement to determine the state
of the subsystem. Let Li be the set of observables (self-
adjoint operators) containing the set Ci. The collection
of states of the subsystem Γi describing the measure-
ment outcomes form a Hilbert space Hmes(Γi) in which
Li is represented irreducibly. Assuming further that the
measurements of the observables Li can be performed in-
dependently for all i = 1, . . . , s, we find that the set L
of observables in the total system is given by L = ⊗iLi.
Accordingly, the state space of the system describing the
measurement outcomes is given by the tensor product,

Hmes =

s⊗

i=1

Hmes(Γi). (2)

The TPS of the space Hmes in Eq.(2) allows us to define
the entanglement by the conventional way, that is, if the
measured state |Ψ〉 ∈ Hmes admits the product form

|Ψ〉 =
s⊗

i=1

|ψi〉Γi
, |ψi〉Γi

∈ Hmes(Γi), (3)

then it is separable; if not, it is entangled. Evidently,
since the separable state Eq.(3) yields definite outcomes
for the measurement of observables in a properly chosen
set Ci in |ψi〉Γi

for all i, it possesses a CSP [4].
Meanwhile, in the total spaceHmes the observableOi ∈

Li is expressed by

Ôi =

i−1⊗

j=1

1j ⊗Oi ⊗
s⊗

j=i+1

1j (4)

where 1j is the identity operator in Hmes(Γj). The afore-
mentioned independence is then assured trivially by

[Ôi, Ôj ] = 0 for i 6= j. (5)

The observable Ô ∈ L corresponding to the simultaneous
measurement for the subsystems is then given by

Ô =

s∏

i=1

Ôi =

s⊗

i=1

Oi. (6)

Denoting the set of such operators by T mes ⊂ L, we see
that any Ô ∈ T mes has a factorized expectation value for
the separable state |Ψ〉 in Eq.(3):

〈Ψ| Ô |Ψ〉 =
s∏

i=1

〈Ψ| Ôi |Ψ〉 . (7)

The properties Eqs.(5) and (6), together with the imple-
mentability assumption, constitute the formal conditions
to realize a TPS in [6]. Note that, in our measurement-
based description, the TPS appears as a direct conse-
quence of the construction.

The entanglement in the measurement-based descrip-
tion is related with the measurement outcomes directly,
but the conventional treatment of indistinguishable par-
ticles employ the framework of the provisional Hilbert
space of distinguishable particles for the description of
states with appropriate restriction required by the statis-
tics of the particles. Here, the description is not directly
related to the measurement outcomes, and the restricted
space of states does not admit a TPS in any obvious man-
ner. In physical terms, the measurement outcomes of ob-
servables, such as spin, cannot be attributed to those of
a particular particle due to the indistinguishability, and
the formal structure of the state fails to signify the corre-
lation as exemplified by Eq.(1). To fill the gap, we need
a prescription to bridge the two descriptions.

For definiteness, let us label the N particles by the
integer set N = {1, 2, · · · , N}. Each of the particles is
characterized by an n-level state, i.e., the state space of
the k-th particle is Hk

∼= Cn for all k. Let {|ei〉} be a
complete orthonormal basis in Cn. By the isomorphism
among the constituent spaces Hk, any pure state |Ψ〉 in
the provisional space H =

⊗
k∈N

Hk of the total system
can be written as

|Ψ〉 =
∑

i1,i2,···,iN

Ψi1i2···iN

N⊗

k=1

|eik〉k , (8)

where Ψi1i2···iN ∈ C and {|eik〉k} is the complete or-
thonormal basis in Hk isomorphic to {|ei〉}.
To incorporate the indistinguishability of the particles,

consider an element σ ∈ SN of the symmetric group SN

associated with the permutation k → σ(k). In H, the
element is represented by a self-adjoint operator πσ with

πσ |Ψ〉 =
∑

i1,i2,···,iN

Ψi1i2···iN

N⊗

k=1

|eik〉σ(k) . (9)

From πσ, both the symmetrizer and the antisymmetrizer
are defined as

S =
1

|SN |
∑

σ∈SN

πσ, A =
1

|SN |
∑

σ∈SN

sgn(σ)πσ , (10)

where |SN | = N ! is the cardinality of SN , and sgn(σ) is
the signature of the permutation σ. The Hilbert space of
the total system ofN bosons (fermions) is the subspace of
H consisting of symmetric (antisymmetric) states. With
X = S for bosons and X = A for fermions, they are

HX = [H]
X
:=
{
X |Ψ〉

∣∣ |Ψ〉 ∈ H
}
. (11)
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To introduce the decomposition into subsystems in the
total system, we consider a partition Γ of the integer set
N into non-empty and mutually exclusive sets Γi ⊆ N ,

Γ = {Γi}si=1 ,

s⋃

i=1

Γi = N , Γi ∩ Γj = ∅ for i 6= j. (12)

For specifying the subsystems of indistinguishable parti-
cles, only the cardinality |Γi| of Γi matters. Note that
there is no apparent TPS inHX with respect to Γ, and we
need to somehow find an embedding of the measurement-
based description in the provision-based description.
This embedding is handled usually by considering the

positions of individual particles to gain a fictitious dis-
tinction among the particles. For the distinction to
be unambiguous, the measurements of the subsystems
should be performed remotely from each other, and this
amounts to introducing an orthogonal decomposition in
the 1-particle Hilbert space (after accommodating the
spatial degrees of freedoms). More generally, the embed-
ding requires an orthogonal structure V which is a set
of subspaces Vi ⊂ Cn mutually orthogonal to each other
with respect to the innerproduct of Cn,

V = {Vi}si=1, Vi ⊥ Vj for i 6= j. (13)

Together with the orthogonal complement,

V0 = (V1 ⊕ V2 ⊕ · · · ⊕ Vs)
⊥
, (14)

the set V furnishes an orthogonal decomposition of Cn.
The physical idea behind this is that these orthogonal
spaces correspond to mutually independent measurement
of subsystems such that, given a measurement setup, the
subsystem Γi is susceptible only for the measurement of
particles k ∈ Γi residing in Vi. If we denote the subspace
Vi in Hk by Vi(Hk) ⊂ Hk, then the actual Hilbert space
describing the measurement outcomes for Γi is given by

HX (Γi, Vi) =

[
⊗

k∈Γi

Vi(Hk)

]

X

. (15)

Here, as in Eq.(11), the symbol [∗]X implies the subspace
of ∗ invariant under X which is defined now for the sym-
metry group SK with K being the cardinality of ∗ (we
use the same X by abuse of notation); namely, in Eq.(15)
we haveK = |Γi|. Clearly, HX (Γi, Vi) is the actual space
of states determined from the measurement and, there-
fore, corresponds to Hmes(Γi) in the measurement-based
description Eq.(2) where the state |ψi〉Γi

∈ HX (Γi, Vi) is
identified with |ψi〉Γi

∈ Hmes(Γi).
From the description for the subsystems, we obtain the

Hilbert space of the total system by

HX (Γ, V ) =

[
s⊗

i=1

HX (Γi, Vi)

]

X

. (16)

Note that, due to the (anti)symmetrization X , the re-
sultant space HX (Γ, V ) has no TPS with respect to
the decomposition Γ and, hence, no obvious correspon-
dence with Hmes in Eq.(2). In spite of this, the two
spaces can be made isomorphic based on the identifica-
tion HX (Γi, Vi) ∼= Hmes(Γi) mentioned above. Indeed, it
is attained, with this identification, by the linear map,

fX : Hmes ∼=
s⊗

i=1

HX (Γi, Vi) 7→ HX (Γ, V ), (17)

defined by

fX

(
s⊗

i=1

|ψi〉Γi

)
=

√
MX

s⊗

i=1

|ψi〉Γi
, (18)

with the normalization factor M := N !/
∏s

i=1 |Γi|!. Ob-
viously, the map fX is surjective by construction, and to
see the injectivity, we note that, thanks to the orthog-
onal structure V in Eq.(13), the innerproduct is invari-
ant under the map [12]. It follows that ‖ ⊗i |ψi〉Γi

‖ =

‖
√
MX ⊗i |ψi〉Γi

‖, which ensures the injectivity of the
map and hence the isomorphism (see Fig.1).
The isomorphism Eq.(17) induces the correspondence

between the observables such that, if Oi are the observ-
ables in HX (Γi, Vi) for i = 1, . . . , s, then the observable
for their simultaneous measurement in HX (Γ, V ) reads

Õ = fX

(
s⊗

i=1

Oi

)
f−1
X

=MX
(

s⊗

i=1

Oi

)
X . (19)

The set of all such operators Õ defines a subset T (Γ, V )
of observables in HX (Γ, V ). With the identification of
the observablesOi betweenHX (Γi, Vi) andHmes(Γi), the
isomorphism Eq.(19) implies the isomorphism between

T mes and T (Γ, V ) through Ô ↔ Õ with Ô in Eq.(6).
In the provision-based description, the criterion on the

entanglement of indistinguishable particles then emerges
as follows. Given an arbitrary (normalized) state |Ψ〉 ∈
HX , we first decompose it as

|Ψ〉 = |Ψ(Γ, V )〉+
∣∣Ψ(Γ, V )⊥

〉
, (20)

according to the orthogonal decomposition,

HX = HX (Γ, V )⊕ HX (Γ, V )⊥. (21)

Since the piece
∣∣Ψ(Γ, V )⊥

〉
has a vanishing support for

the observables in T (Γ, V ) and is filtered out by the mea-
surement, the only part significant for correlation is the
piece |Ψ(Γ, V )〉. Thus, for describing the measurement
outcomes, one may renormalize it as ‖ |Ψ(Γ, V )〉 ‖ = 1.
It is now evident that, if the piece takes the form,

|Ψ(Γ, V )〉 =
√
MX

s⊗

i=1

|ψi〉Γi
, (22)
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HX (Γ, V )

s⊗

i=1

HX (Γi, Vi)

∼=

fX

HX

HX (Γ, V )⊥
H

mes

FIG. 1: A diagrammatical representation of the spaces men-
tioned in Eqs.(17) and (21). In the total space HX , we find
the subspace HX (Γ, V ) isomorphic to ⊗iHX (Γi, Vi) which has
a TPS. The latter is then identified with the space H

mes de-
scribing the measurement outcomes.

then for any Õ ∈ T (Γ, V ) we have the factorization,

〈Ψ| Õ |Ψ〉 =
s∏

i=1

〈Ψ| Õi |Ψ〉 , (23)

in analogy with Eq.(7). Since the converse is also true, we
learn that the state |Ψ〉 is separable if and only if the piece
|Ψ(Γ, V )〉 in Eq.(20) admits the (anti)symmetrized direct
product form Eq.(22); if not, it is entangled. We stress
that entanglement is determined only relatively with re-
spect to the measurement setup, as is evident from the
explicit dependence on V in |Ψ(Γ, V )〉.
Despite the relative nature of entanglement, there ex-

ists a special class of states in the bosonic case X =
S which are separable under all measurement choices.
These are the i.i.d. pure states |Ψ〉 ∈ HS defined by

|Ψ〉 =
N⊗

k=1

|φ〉k , |φ〉k ∈ Hk. (24)

To see the universal separability of the state, we decom-
pose |φ〉k according to Eqs.(13) and (14) as

|φ〉k =

s∑

i=0

|ϕi〉k , |ϕi〉k ∈ Vi(Hk). (25)

Plugging this into Eq.(24), we obtain Eq.(20) with

|Ψ(Γ, V )〉 =
√
MS

s⊗

i=1

|ψi〉Γi
, |ψi〉Γi

=
⊗

k∈Γi

|ϕi〉k .(26)

Since the piece |Ψ(Γ, V )〉, if non-vanishing, belongs to the
class Eq.(22), the i.i.d. states |Ψ〉 are separable. Further,

since this is true for any choice of (Γ, V ), the separability
holds irrespective of the measurement setup. Interest-
ingly, for N = 2 the converse is also true: states which
are universally separable must be the i.i.d. states.

In summary, we have presented a general criterion for
entanglement of an indistinguishable N particle system
decomposed into arbitrary s subsystems based on the
unambiguous measurability of correlation. The point is
that, although the Hilbert space HX of the system does
not admit a TPS, one can find a subspace HX (Γ, V ) ⊂
HX which has a TPS and is directly related to the space
Hmes describing the measurement outcomes. Since Hmes

has a common structure with the space of distinguish-
able particles, our approach allows us to treat indistin-
guishable particles on the equal basis with distinguish-
able ones. This implies that, under the unambiguous
measurability, all the standard measures of entanglement
devised so far can be used equally for the indistinguish-
able case. More importantly, the handling of states with-
out considering the effect of (anti)symmetrization prac-
ticed regularly in quantum optics is found to be safe as
long as it deals with the space Hmes.
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