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Abstract

It is shown that the seminal Horodecki 2-qutrit state belongs to the class of states dis-
playing symmetry governed by a commutative subgroup of the unitary group U(3). Taking a
conjugate subgroup one obtains another classes of symmetric states and one finds equivalent
representations of the Horodecki state.

1 Introduction

In a seminal paper [I] Pawel Horodecki provided an example of a density operator living in C3 @ C3
which represents entangled state positive under partial transposition (PPT)
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and a € [0,1]. The above matrix representation corresponds to the standard computational basis
lij) = |i) ® |7) in C3>® C? and to make the picture more transparent we replaced all zeros by dots.
Since the partial transposition p, = (1® T)p, > 0 the state is PPT for all a € [0,1]. It is easy to
show that for a = 0 and a = 1 the state is separable and it was shown [1] that for a € (0,1) the
state is entangled (for the recent reviews of quantum entanglement and the methods of its detection
see [2] and [3]). Actually, the family (I) provides one of the first examples of bound entanglement.
In this Letter we analyze the structure of (). In particular we study its symmetry group.
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2  Symmetry group

Let G be a subgroup of the unitary group U(d) (a group of unitary d x d matrices). A state p living
in C?®C? is G ® G-invariant if

UUp=pUU, (3)
where U € G, and U denotes the complex conjugation of the matrix elements with respect to the
computational basis |i). It is clear that if p is G ® G-invariant then its partial transposition is
G ® G—invariant, that is

UUp=pUxU, (4)

where U € G. Recall, that if G = U(d), then G ® G-invariant states define a class of isotropic
states [4], whereas G ® G—invariant states define a class of Werner states [5]. Recently [6] we found
a class of G ® G-invariant states, where G defines a maximal abelian subgroup of U(d) defined as

follows: .
Ux = exp (izxm(k\) : (5)
k=1

and x = (z1,...,74) € R It was shown [6] that states invariant under the maximal abelian
subgroup have the following structure
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where the matrix ||a;;|| > 0, and the numbers d;; > 0. The normalization condition gives
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The corresponding matrix representation for d = 3 reads as follows
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Let us observe that (7)) is PPT if and only if
digdjs > |ag|* ,  i#7 . (8)

Surprisingly many well know states considered in the literature belong to this class (see [6] for
examples). Note, however, that Horodecki state (Il) does not belong to (7)) unless a = 1. Consider



now a subgroup Gy of the G defined by (B) with 1 = x3. One finds the following structure of
invariant states
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and it evidently contains Horodecki state ([Il). Interestingly, invariant states (@) have almost perfect
chessboard structure [7] (see also the recent paper [8]. Note, however, that only a subclass of states
considered in [7, 8] are Gy ® Go—invariant. The characteristic feature of (J)) is that p has a direct
sum structure p = p1 @ p2 B p3 where the corresponding operators py are supported on Hp

H1 = Span(C{ |11>7 |13>7 |22>7 |31>7 |33>} )

Hy = spanc{[12), |32)}, (10)

Hs = spanc{[21), |23)},
giving rise to the direct sum decomposition C3® C? = H; @ Ho & Hs. Similarly, the partial
transposition
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has a direct sum structure p' = p1 ® po ® p3 where the corresponding operators pj, are supported
on Hy
%1 = Spa‘n(c{ ‘11>7 ’13>7 ’31>7 ’33>} )
Hy = spanc{[12), [21), [23), [32)} , (12)
%3 = Spa‘n(c{ ‘22>} ’
together with C3 @ C3 = Hi & Hy & Hs. Interestingly one has
HioHs=H1, Ho@MHz=Hs. (13)

Hence to check for PPT one needs to check positivity of two 4 x 4 leading submatrices of (IIJ).
Note, that decompositions (I0) and (I2)) remind the characteristic circulant decompositions [9].
There is however important difference: (I0) and (I2]) are governed by the symmetry group Go
whereas the circulant decompositions are not directly related to any symmetry. For other types of
decompositions which simplify PPT conditions see also [10].



3 Another representations of the Horodecki state

Consider now another commutative subgroup G{, defined by x1 = 3. It is clear that
b =5'GoS'm, (14)
where S’ represents permutation (1,2,3) — (1, 3,2), that is
1

= - - 1]. (15)
1

Hence a class of G|, ®@67invariant states is defined by
P =528 psTesT, (16)

where p is Gy ® Go-invariant. The corresponding matrix representation of p’ has the following form
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In particular one obtains the following representation of the Horodecki state invariant under G,

pd =8 @8 p,ST@8, (18)
or in the matrix form
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The characteristic feature of (I7T) is that p’ has a direct sum structure p’ = p} @ p, @ ps where the
corresponding operators py are supported on Hj,

H/l = (Sl@Sl)Hl :SpanC{|11>v |12>7 |21>7 |22>7 |33>} )
Hy = (S'®S)Hy =spanc{|[13), [23)}, (20)
H;, = (S'®S5)Hs =spanc{|31), |32)} .



One easily finds for the partial transposition
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It is evident that p/' has a direct sum structure p/' = P} @ ph @ ps where the corresponding

operators [)’k are supported on ’Hff

Hy = (S'@8)Hy = spanc{[11), [12), [21), [22), } ,
H/2 = (S/®S/)H2 = Span(C{ |13>7 |23>7 |31>7 |32>} > (22)
Hy = (8'©S8)Hs =spanc{|33)} .

Again the analog of the formulae (I3]) holds, that is
Hy oM, =H,, HyoH,=H,. (23)
Finally, let us consider another commutative subgroup Gj of G defined by zo = x3. It is clear that
Gy = S"GoS" | (24)
where S” represents permutation (1,2,3) — (2,1,3), that is
1

=11 - - |. (25)
|

Hence a class of G{j ®@gfinvariant states is defined by
p// — S// ® S//pS//T ® S//T , (26)

where p is Gy ® Gg-invariant. The corresponding matrix representation of p” has the following
form
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In particular one obtains the following representation of the Horodecki state invariant under G{

Pa” — S// ® S// Pa S//]L ® S//]L , (28)
that is,
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Again, the characteristic feature of (27) is that p” has a direct sum structure p” = pf @ pf & p§
where the corresponding operators py, are supported on

Hll/ = (S//®S//)H1 ZSpch{|11>, |23>7 |22>7 |32>7 |33>}’
Hy = (8" ®S")Hy =spanc{[21), [31)}, 30
Hi = (S"®S"YHs =spanc{|12), [13)} .

One easily finds for the partial transposition
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which is supported the direct product of three subspaces

" = (S"®S8")H, =spanc{[21), |23), [32), |33)} ,
HY = (8" ®8")Hy =spanc{|12), [21), [13), |31)} , (32)
Hy = (S"®S")Hs =spanc{|11)} .

It is evident that the analog of (I3) is satisfied for #} and ﬁg

4 Conlcusions

We shown that the celebrated Horodecki state [1] belongs to a class of states invariant under a
commutative subgroup Go of U(3). Taking conjugate subgroups Gf, and G{j we provided another



classes of invariant states. In particular we found equivalent representations of the Horodecki
state invariant under G{, and Gy, respectively (cf. formulae (I9) and (29)). Interestingly, known
entanglement witnesses detecting PPT entangled state () display Go-invariance (see [11, 12]). It
should be clear that our discussion can be immediately generalized from 3® 3 to d ® d (d arbitrary
but finite). Now, the maximal commutative subgroup of U(d) defined by (B gives rise to a number
of subgroups corresponding to x, = ... = xy,. In particular using a subgroup defined by z1 = 24
one may introduce the generalized Horodecki state in d ® d. We believe that our discussion opens
new perspectives to study symmetric states of composite quantum systems. It would be interesting
to generalize our analysis to multipartite case [13, [14].
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