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Abstract

We consider a portfolio with call option and the corresponding un-
derlying asset under the standard assumption that stock-market price
represents a random variable with lognormal distribution. Minimizing
the variance (hedging risk) of the portfolio on the date of maturity of
the call option we find a fraction of the asset per unit call option. As a
direct consequence we derive the statistically fair lookback call option
price in explicit form.

In contrast to the famous Black-Scholes theory, any portfolio can
not be regarded as risk-free because no additional transactions are
supposed to be conducted over the life of the contract, but the sequence
of independent portfolios will reduce risk to zero asymptotically. This
property is illustrated in the experimental section using a dataset of
daily stock prices of 18 leading Australian companies for the period of
3 years.

1 Introduction

A typical asset S as a geometric Brownian motion process [15], [16], [17] has
its price governed by the following equation:

dS

S
= µdt+ σdz,

where µ ∈ R and σ ∈ R+ are appreciation and volatility coefficients, z is a
standard Wiener process with

Edz = 0,E(dz)2 = dt.
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According to the Ito’s lemma,

d log {S(t)} =

(

µ− σ2

2

)

dt+ σdz. (1)

Therefore,

log {S(t+ T )} ∼ N (log {S(t)}+
(

µ− σ2

2

)

T, σ
√
T ),

where N (a, b) is the distribution function of a normal random variable with
mean a and standard deviation b. Let us denote the corresponding density
by

fS(x) =
1√

2π · x · b(T )
exp {−(log {x} − a(T ))2

2b2(T )
},

where

a(T ) = log {S(t)} + (µ− σ2

2
)T, b(T ) = σ

√
T .

Definition 1 A European call option contract allows its owner to purchase
one unit of the underlying asset at a fixed price K after date t + T in the
future or the owner of the call option may decide not to exercise if the price
of the underlying asset is less than strike price K. Respectively, the value of
a European call option with maturity date t+ T is

C(t+ T ) = ψ(S(t+ T )−K) = max {0, S(t+ T )−K}.
The fundamental problem in mathematical finance [8] is to find the fair

hedger or price of such an option at a time t prior to expiry.

1.1 Expectations hedging and Black-Scholes formula

According to [14] and [19] one suggestion would be that

Cexp(t) = e−rT ·Eψ(S(t+ T )−K) (2)

where r is the riskless rate.

Proposition 1 Suppose that parameters t, T, r and K are arbitrary fixed.
Then,

e−rT ·Eψ(S(t+ T )−K) = S(t) · e(µ−r)T · Φ(α)−K · e−rT · Φ(β) (3)

where Φ is a distribution function of the standard normal law, and

α =
log {S(t)

K
}+ (µ+ σ2

2 )T

σ
√
T

, β = α− σ
√
T .
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The formula (3) was proved by [16] who also noted that (3) will coincide
with Black-Scholes formula [3] in the particular case µ = r :

CBS(t) = S(t) · Φ(αr)−K · e−rT · Φ(βr), (4)

where

αr =
log {S(t)

K
}+ (r + σ2

2 )T

σ
√
T

, βr = αr − σ
√
T .

Remark 1 Similar results for variance gamma processes may be found in
[11]. Also, we note papers [6] and [5] where formulas for call options were
obtained using methods based on Fourier transformations.

However, suggestion (2) ignores the fact that the seller can himself con-
tinue to trade actively on the stock market. The BS-formula (4) provides a
unique price of the European contingent claim [10] in an ideal, complete and
unconstrained market. Under these conditions the contract is self-financing
and risk-free, to seller as well to buyer. In the given financial market, the
mean-variance hedging problem in continuous time [7], [18] is to find for
a given payoff a best approximation by means of a self-financing trading
strategies where the optimality criterion is the expected squared error [4].
In a series of recent papers, this problem has been formulated and treated
as a linear-quadratic stochastic control problem, see for instance [9], [1], [2].

According to [19] the original Black-Scholes formula is criticized on the
grounds that it holds out the quite unrealistic prospect of risk-free operation,
that it can sacrifice asset maximization to exact meeting of the contract.

2 Mean-variance hedger

Let us consider portfolio F consisting of the option C and h units of the
underlying asset S. The value of the portfolio (seller case) is therefore

F (t) = −C(t) + h · S(t) (5)

or

F (t) =

{

(h− 1) · S(t) +K if S(t) ≥ K;

h · S(t), otherwise.

According to the fundamental principles of mean-variance model [12] we
consider the rule that the investor considers expected return as a desirable
thing and variance of return as an undesirable thing. The above rule may be
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implemented using different methods. For example, we can define fractions
of the portfolio by maximizing the ratio of expected return to the standard
deviation of the portfolio, or we can minimize variance assuming that the
expected return is fixed. In our case we will minimize the variance of the
portfolio (5) assuming that the number of call options is arbitrary fixed. In
order to simplify notations we consider a portfolio with one call option.

The following Theorem represents the main result of the paper. It will
establish the value of the parameter h in order to minimize variance of the
portfolio (2). Then, we find hedging call option price or simply hedger

CMV (t) = h · S(t)− e−rTEF (t+ T ). (6)

Theorem 1 Suppose that the portfolio F is defined in (2). Then, the hedg-
ing problem

min
h
Qvar(F (t+ T )) where Qvar(F (t+ T )) := E [F (t+ T )−EF (t+ T )]2

has the unique solution

h =
A4 −K · A2 + (A2 +A3)(K ·A1 −A2)

A4 +A5 − (A2 +A3)2
, (7)

where

A1(K) :=

∫ ∞

K

fS(x)dx = Φ(
a(T )− logK

b(T )
);

A2(K) :=

∫ ∞

K

xfS(x)dx = exp {a(T ) + b2(T )

2
}Φ(b(T ) + a(T )− logK

b(T )
);

A3(K) :=

∫ K

0
xfS(x)dx

= exp {a(T ) + b2(T )

2
}
(

1− Φ(b(T ) +
a(T )− logK

b(T )
)

)

;

A4(K) :=

∫ ∞

K

x2fS(x)dx = exp {2(a(T ) + b2(T ))}Φ(2b(T )+ a(T )− logK

b(T )
);

A5(K) :=

∫ K

0
x2fS(x)dx

= exp {2(a(T ) + b2(T ))}
(

1− Φ(2b(T ) +
a(T ) + logK

b(T )
)

)

.
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Proof: According to the definition of variance (hedging risk)

Qvar(F (t+ T )) = EF 2(t+ T )− (EF (t+ T ))2 , (8)

where

EF 2(t+ T ) = (h− 1)2A4 + 2K(h− 1)A2 +K2A1 + h2A5;

EF (t+ T ) = h(A2 +A3)−A2 +K ·A1.

Minimizing (8) as a function of h we find the required solution (7). �
Finally, we find a mean-variance hedger according to (6)

CMV (t) = h · S(t)− e−rT [h(A2 +A3)−A2 +K ·A1] (9)

where parameter h is defined in (7).
Next, we can re-write (3) using new notations which were introduced in

this section:
Cexp(t) = e−rT (A2 −K ·A1) . (10)

The above call option relates to the portfolio combined with riskless asset
only:

F (t) = −C(t) + h, (11)

where h is a constant parameter. The corresponding standard deviation is
invariant under h and is given by the following formula (see Figure 2):

Sdev(F (t+ T )) =
√

A1(1−A1)K2 + 2A2K(A1 − 1) +A4 −A2
2.

Remark 2 Note that the price (9) may be negative, in contrast to the price
(10) which is always positive by definition.

Using relations

A2 +A3 = exp {a+ 0.5b2}, A4 +A5 = exp {2(a+ b2)},
we can simplify (7):

h(K) =
A4 −K ·A2 + exp {a+ 0.5b2}(K ·A1 −A2)

exp {2a+ b2}(exp {b2} − 1)
. (12)

Let us consider some marginal properties of the coefficients Ai(K), i =
1..5 :

A1(K) −→
K→0

1, A3(K) −→
K→0

0, A5(K) −→
K→0

0.

It follows from above that

h(K) −→
K→0

1 and Sdev(K) −→
K→0

0 (see Figure 2).
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Proposition 2 Assuming that σ > 0, the following range 0 < h < 1 is valid
where asset fraction parameter h is defined in (7).

The proof of the above Proposition 2 follows from the following two
Lemmas.

Lemma 1 Assuming that Φ is a distribution function of standard normal
law the following relation is valid:

Φ(v + b)− Φ(v)

Φ(v)−Φ(v − b)
< exp {0.5b2 − bv}, (13)

for any v ∈ R and b ∈ R+.

Proof: We have

Φ(v)− Φ(v − b) =
1√
2π

∫ v+b

v

exp {−(t− b)2

2
}dt = e−0.5b2

√
2π

∫ v+b

v

e−0.5t2ebtdt

<
e−0.5b2+bv

√
2π

∫ v+b

v

e−0.5t2dt =
e−0.5b2+bv

√
2π

[Φ(v + b)− Φ(v)] .

Therefore, the proof is completed. �

Lemma 2 Assuming that Φ is a distribution function of standard normal
law the following relation is valid:

Φ(v) <
eb

2

Φ(v + b) + exp {0.5b2 − bv}Φ(v − b)

1 + exp {0.5b2 − bv} , (14)

for any v ∈ R and b ∈ R+.

Proof: We have

eb
2

Φ(v + b)− Φ(v) > eb
2

[Φ(v + b)− Φ(v)] =
eb

2

√
2π

∫ v+b

v

exp {− t
2

2
}dt

=
eb

2

√
2π

∫ v

v−b

e−0.5(t+b)2dt =
e0.5b

2

√
2π

∫ v

v−b

e−0.5t2−btdt

> exp {0.5b2 − bv} [Φ(v)− Φ(v − b)] .

Therefore, the proof is completed. �
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Using definition of the coefficients Ai(K), i = 1..5, we can re-write (12)
in the following form:

h =
eb

2

Φ(v + b)− Φ(v)− exp {0.5b2 − bv} [Φ(v)− Φ(v − b)]

eb2 − 1
,

where v = b+ a−log {K}
b

.
Then, a strict upper and a lower bounds for h (as it is stated in the

Proposition 2) follows from (13) and (14) if σ > 0.

Remark 3 The left column of the Figure 1 illustrates descending property of
the hedging call option price as a function of the strike price. It is interesting
to note that the sum of the call option price and strike price is an ascending
function of the strike price. This fact is quite explainable because the second
part of the transaction (purchase of the stock) is not compulsory. According
to the Figure 1 the formulas (3) and (9) are more flexible comparing with
Black-Scholes formula which is independent of the appreciation coefficient
µ.

3 Experiments

Based on the representation (1) we can formulate an estimator for the his-
torical (moving) volatility [13]:

σ̂i,t =

√

∑n
j=1

(

Ri,t−j −Ri,t

)2

n− 1
(15)

where

Ri,t−j = log
Si,t−j+1

Si,t−j
;

Si,t is a closing price of i-asset on the day t > n and

Ri,t =
1

n

n
∑

j=1

log
Si,t−j+1

Si,t−j
.

Then, we can estimate historical (moving) appreciation:

µ̂i,t = Ri,t +
1

2
σ̂2i,t. (16)
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Table 1: All prices are given in cents. The first column gives the name of
asset, the second column gives the average price during period of 100 days
ending on 10th January 2006. Columns 3-6 represent final profits of buyer
and seller in cases of Expectations and MV approaches.

Asset Average Expectations Mean-Variance

Name Price Buy Sell Buy Sell

ANZ Bank 2306.53 922.63 -922.63 1801.59 3125.66
CBA, Commonwealth Bank 3909.16 -1410.77 1410.77 -485.93 5702.04
CML, Coles Myers 990.6 24.78 -24.78 461.42 1477.59
DJS, David Jones 236.11 1428.42 -1428.42 1844.33 -513.65
FXJ, Fairfax 417.18 -816.73 816.73 -657.82 -58.73
HVN, Harvey Norman 277.67 671.77 -671.77 347.12 642.38
NAB, National Bank 3193.27 -4433.27 4433.27 -4172.65 6730.61
PBL, Publish.Brodcast. 1625.36 3416 -3416 2419.06 2119.44
QAN, Qantas 350.14 2234.44 -2234.44 1344.69 64.72
QBE Insurance 1813.72 1216.89 -1216.89 5023.97 1466.49
RIO, Rio-Tinto 5788.09 33156.66 -33156.66 47506.18 -10089.97
STO, Santos 1141.14 -9401.15 9401.15 -2086.32 3910.58
TAH, Tabcorp 1606.01 -183.37 183.37 -1558.01 2335.71
TEN Network 342.78 -1192.97 1192.97 -1816.85 818.41
TLS, Telstra 412.26 -1372.16 1372.16 -1924.31 -1068.74
WBC, Westpac Bank 2104.37 3293.2 -3293.2 2949.07 2272.26
WOW, Woolworth 1633.53 -3596.63 3596.63 -2517.34 3440.02
WPL, Woodside Petroleum 3361.07 -21427.93 21427.93 3208.89 11465.86

3.1 Expectations hedging

The call option price Ci,t (see the right column of the Figure 3.1) was
computed according to (10) subject to the following condition: Ci,t ≥
0.03 · Si,t (administrative fees of not less than 3 %). The strike price was
computed using historical appreciation and volatility coefficients

Ki,t = Si,t · exp {
µi,t · T

β + γ · σi,t
}, β = 1.1, γ = 20.

The left and middle columns of Figure 3.1 correspond to the profit of
buyer PBi,t and seller PSi,t which were computed for the 100 consecutive
days ending on 10th January 2006 (j = 0..100). The computations were
conducted using the following rules:

PBi,t+T+j+1 = PBi,t+T+j

+

{

Si,t+T+j+1 −Ki,t+j+1 − Ci,t+j+1 if Si,t+T+j+1 ≥ Ki,t+j+1;

−Ci,t+j+1, otherwise;

8



and
PSi,t+T+j+1 = PSi,t+T+j

+

{

y
Ki,t+j+1 + Ci,t+j+1 − Si,t+T+j+1 if Si,t+T+j+1 ≥ Ki,t+j+1;

Ci,t+j+1, otherwise,

where initial values of PBi,t+T and PSi,t+T are set to zero.
In order to estimate the performance of the system against the whole set

of m assets, we computed average stock-prices ui, i = 1..m, for the period
under consideration. Then, we computed weights wi ∝ (ui)

−1 ,
∑m

i=1 wi = 1.
The average profits of buyers ABt and sellers ASt were computed using

the following formulas:

ABt =
m
∑

i=1

wi · PBi,t, (17a)

ASt =

m
∑

i=1

wi · PSi,t, (17b)

ATt =

m
∑

i=1

wi · Ci,t (17c)

where dash-dotted line corresponds to the average turnover ATt (see the
first two lines of the Figure 3).

3.2 Mean-variance hedging

Here we make modifications of (3.1) and (17c) (all other formulas remain
the same as in the previous Section):

PSi,t+T+j+1 = PSi,t+T+j + Ci,t+j+1

+

{

(1− hi,j+1)(Ki,t+j+1 − Si,t+T+j+1) if Si,t+T+j+1 ≥ Ki,t+j+1;

hi,j+1(Si,t+T+j+1 − Si,t+j+1), otherwise,

and

AQt =

m
∑

i=1

wi · (Ci,t + hi,tSi,t). (18)

As a result, turnover of seller will be larger comparing with turnover of
buyer. Third and Fourth lines of the Figure 3 illustrate average profits of
buyer and seller.
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4 Concluding remarks

The classical equation (2) establishes the hedging so that a transaction will
be statistically profitable for buyer if price is smaller, or profitable for seller if
price is higher. Any particular transaction is not risk-free, but the sequence
of independent transactions may reduce risk essentially (see for details Fig-
ure 3 and Table 1.

In contrast, risk-free formula (4) was obtained under ideal assumption
of absolute liquidity of the market. It means, any transaction represents a
continuous sequence of trading, which (as it was noticed in many papers)
can-not be achieved in real terms.

Combination of the call option with the corresponding asset represents
an additional degree of flexibility. On the one hand, it will help to reduce risk
for seller. On the other hand, the call option price will be reduced in the case
if performance of the stock is good historically. Anyway, in accordance with
MV approach a seller will calculate hedging call option price somewhere
between prices computed according to the BS and Expectations approaches.
Therefore, MV hedger may be regarded as a compromise between 2 base
solutions (see Figure 1).

Comparing the third and fourth lines with first two lines of the Figure 3,
which were developed using the same regulation parameters, we can see
advantages of the MV approach against Expectations approach.
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Figure 1: The left column illustrates behavior of call option C, the right
column illustrates behavior of the sum of call option and strike price K as
a function of K. The following parameters were used: (a-b) S(t) = 20, µ =
0.1, r = 0.05, σ = 1, T = 180/365; (c-d) S(t) = 20, µ = 0.02, r = 0.05, σ =
1, T = 180/365; green solid line, blue dash-dot line and red dotted line
correspond to MV (9), Expectations (3) and BS (4) solutions, respectively.

12



0 20 40 60 80 100
0

5

10

15

(a)
0 20 40 60 80 100

0

0.5

1

(b)

0 20 40 60 80 100
0

5

10

15

20

(c)
0 20 40 60 80 100

0

0.5

1

(d)

0 20 40 60 80 100
0

10

20

30

(e)
0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

(f)

Figure 2: The left column: standard deviation of the portfolio as a function
of K where the green solid line corresponds to (9), and the blue dash-dot
line corresponds to the portfolio with riskless asset only (2) (Expectations
approach); the right column: value of the parameter h as a function of strike
price K. The following parameters were used: a-b) µ = 0.1, σ = 0.9; c-d)
µ = 0.1, σ = 1.0; e-f) µ = 0.1, σ = 1.4. All other parameters are the same
as in the case of Figure 1.

13



0 20 40 60 80 100
−100

0

100

200

0 20 40 60 80 100
−20

0

20

40

0 20 40 60 80 100
−100

0

100

200

0 20 40 60 80 100
−40

−20

0

20

0 20 40 60 80 100
0

100

200

0 20 40 60 80 100
0

20

40

0 20 40 60 80 100
0

2000

4000

0 20 40 60 80 100
−50

0

50

Figure 3: General case of m = 18 assets (see Table 3.1). Performance of
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rows) and seller (2nd and 4th rows), dash-dotted line represents an average
turnover. All computations were done according to (17a - 17c) and (18).
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Figure 4: The left column illustrates stock market prices of Fairfax, Harvey
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on 10th January 2006; the middle and right columns illustrate moving means
and standard deviations which were computed according to (16) and (15)
using smoothing parameter n = 120.
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Figure 6: MV approach: the first 2 columns represent profits of buyer (3.1)
and seller (3.2) during period of 100 days ending on 10th January 2006; the
third column represents h parameter (7).
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