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Abstract

Oblivious Transfer is the cryptographic primitive where Alice sends one of two
bits to Bob but is oblivious to the bit received. Using quantum communication we
can build oblivious transfer protocols with security provably better than any protocol
built using classical communication. However, with imperfect apparatus one needs to
consider other strategies. In this paper we present an oblivious transfer protocol which
is impervious to lost messages with bias 0.4295.

1 Introduction

Quantum information allows us to perform certain cryptographic tasks which are impossible
using classical information alone. In 1984 Bennett and Brassard gave a quantum key
distribution scheme which is unconditionally secure against an eavesdropper. This lead to
many new problems such as finding quantum protocols for other cryptographic primitives
such as coin-flipping and oblivious transfer.

Coin-flipping is the cryptographic primitive where Alice and Bob generate a random
bit over a communication channel. Aharonov et al. [ATVY00] showed the existence of
quantum coin-flipping protocols where neither party can force the outcome with probability
1. Ambainis [Amb01] then showed a protocol where neither party can force the outcome
with probability higher than 0.75. As for lower bounds, Mayers, Lo and Chau showed
that perfect coin-flipping is impossible and then Kitaev [Kit03] extended this bound to
show that in any quantum coin-flipping protocol one of the parties can force the outcome
with probability at least 0.707. The question of whether or not this bound is optimal was
finally answered by Chailloux and Kerenidis [CK09] showing the existence of protocols
approaching Kitaev’s bound.

Another cryptographic primitive which has been studied is oblivious transfer. Oblivious
transfer is interesting since it can be used to construct secure two-party protocols [EGL82],
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[Cré87], [Rab81]. An oblivious transfer protocol, denoted as OT, with bias ε is a protocol
where:

• Alice inputs two bits x0 and x1;

• Bob inputs an index b ∈ {0, 1};

• Bob learns xb;

• Cheating Alice can learn b (without Bob aborting) with maximum probability 1

2
+εA;

• Cheating Bob can learn (x0, x1) (without Alice aborting) with maximum probability
1

2
+ εB ;

• ε = max {εA, εB}.

Note that when Bob is honest he learns xb thus cheating Bob learns (x0, x1) with probability
at least 1/2. It was shown in [CKS10] that we can build protocols for OT with bias 0.25
and that no protocol can achieve a bias less than 0.0586. Finding the best bias for OT
remains an open problem.

We note here that various settings for oblivious transfer have been studied before such
as the noisy-storage model and bounded-storage model. In this paper we study only infor-
mation theoretic security but we allow the possibility of lost messages.

Loss-tolerance is the security notion where neither party can cheat to their advantage
by declaring that a message is lost or by deliberately sending an empty message. Loss-
tolerance was first applied to quantum coin-flipping by Berlin et al. [BBBG09]. They
showed a vulnerability in the best-known coin-flipping protocol construction of Ambainis
[Amb01]. They rectified this problem by exhibiting a protocol which is impervious to lost
messages and where neither party can force the outcome with probability higher than 0.90.
Aharon, Massar, and Silman [AMS10] generalized this protocol to a family of loss-tolerant
coin-flipping protocols with security slightly better at the cost of using more qubits in
the communication. Recently, Chailloux [Cha10] improved Berlin et al.’s protocol so that
no party can cheat with probability higher than 0.859. It remains an open problem to
show whether Kitaev’s lower bound can be achieved with protocols that are loss-tolerant
or whether a better lower bound exists for loss-tolerant protocols.

In this paper we show how to build loss-tolerant OT protocols from loss-tolerant coin-
flipping protocols. We use the results of [BBBG09], [AMS10], and [Cha10] to show the
existence of loss-tolerant OT protocols where neither party can cheat with probability 1.
Precisely, we show the following result.

Theorem 1.1 If there exists a loss-tolerant coin-flipping protocol with bias ε then there

exists a loss-tolerant OT protocol with bias at most
1

4
+
ε

2
.
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Since there exists a loss-tolerant coin-flipping protocol with bias 0.359 [Cha10] we have
the following theorem.

Theorem 1.2 There exists a loss-tolerant OT protocol with bias at most 0.4295.

2 Definitions

We first define what it means for a protocol to be loss-tolerant.

Definition 2.1 A loss-tolerant protocol is a cryptographic protocol which is impervious to
lost messages. That is, neither Alice nor Bob can cheat more by

• communicating “lost message” even if it was received;

• sending a blank message deliberately.

If a protocol is not loss-tolerant we say it is loss-vulnerable.

We prefix a protocol with “LT−” to indicate that it is loss-tolerant.

Definition 2.2 A coin-flipping protocol, denoted CF, with bias ε is a protocol with no
inputs where

• Alice and Bob both output a randomly generated bit c ∈ {0, 1};

• Cheating Alice can force Bob to accept a desired outcome for c with maximum prob-
ability 1

2
+ εA;

• Cheating Bob can force Alice to accept a desired outcome for c with maximum prob-
ability 1

2
+ εB;

• ε = max {εA, εB}.

When we consider “cheating” in this paper we mean that a party digresses from pro-
tocol. Also, when we consider a cheating party we assume that the other party follows
the protocol honestly. The idea is to design protocols which protect honest parties from
dishonest parties.

There is another variant of coin-flipping called weak coin-flipping. In weak coin-flipping
Alice only desires outcome 0 whereas Bob desires outcome 1. We note here that the results
of this paper still hold if we replace coin-flipping with this weaker primitive.

Definition 2.3 A random oblivious transfer protocol, denoted ROT, with bias ε is a pro-
tocol with no inputs where

• Alice outputs two randomly generated bits x0 and x1;
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• Bob outputs a randomly generated index b ∈ {0, 1} and learns xb;

• Cheating Alice can learn b (without Bob aborting) with maximum probability 1

2
+ εA;

• Cheating Bob can learn (x0, x1) (without Alice aborting) with maximum probability
1

2
+ εB;

• ε = max {εA, εB}.

Note that cheating Bob learns (x0, x1) with probability at least 1/2 since he can learn
xb perfectly by communicating honestly.

When a party cheats, we only refer to the probability for which they can learn the
desired values without the other party aborting. For example, when Bob cheats he outputs
a guess for (x0, x1) and we are interested in how correct his guess is. We do not suppose,
for example, that either bit in Bob’s guess is correct with probability 1.

We can also consider a traditional oblivious transfer protocol where Alice gets to choose
x0 and x1 and Bob gets to choose b.

Definition 2.4 An oblivious transfer protocol, denoted OT, with bias ε is a protocol where

• Alice inputs two bits x0 and x1;

• Bob inputs an index b ∈ {0, 1};

• Bob learns xb;

• Cheating Alice can learn b (without Bob aborting) with maximum probability 1

2
+ εA;

• Cheating Bob can learn (x0, x1) (without Alice aborting) with maximum probability
1

2
+ εB;

• ε = max {εA, εB}.

In the definition above there can be different ways to interpret the bias. For example, we
could consider worst case choices over inputs, assuming the inputs are chosen randomly,
etc. However, the protocol construction given in this paper is independent of how the
inputs are chosen thus we simply leave it as the probability of learning.

3 A Loss-Vulnerable Protocol

In this section we examine a protocol for oblivious transfer and show it is loss-vulnerable.
This protocol has the same vulnerability as the best-known coin-flipping protocols based
on bit-commitment, see [BBBG09].

A protocol for ROT, which yields a protocol for OT [CKS10], is the following.
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Random Oblivious Transfer Protocol [CKS10]

1. Bob randomly chooses b ∈ {0, 1} and creates the state |φb〉 :=
1√
2
|bb〉+ 1√

2
|22〉.

Bob sends one of the qutrits to Alice.
2. Alice randomly chooses x0, x1 ∈ {0, 1} and applies the unitary |a〉 → (−1)xa |a〉,

where x2 := 0.
3. Alice returns the qutrit to Bob. Bob now has the two-qutrit state

|ψb〉 :=
(−1)xb

√
2

|bb〉+ 1√
2
|22〉.

4. Bob performs on the state |ψb〉 the measurement {Π0 = |φb〉〈φb|,Π1 := |φ′
b
〉〈φ′

b
|,

I −Π0 −Π1}, where |φ′
b
〉 := 1√

2
|bb〉 − 1√

2
|22〉.

If the outcome is Π0 then xb = 0, if it is Π1 then xb = 1, otherwise he aborts.

It has been shown in [CKS10] that Alice can learn b with maximum probability 3/4
and Bob can learn both of Alice’s bits with maximum probability 3/4. However there is a
different kind of cheating strategy which allows Alice to learn Bob’s index b with probability
1 and this is as follows. Suppose Alice measures the first message in the computational
basis. If she sees outcome “0” or “1” then she knows with certainty Bob’s index b. If the
outcome is “2” then she replies to Bob “Sorry I lost your message.” Then they restart the
protocol and Alice can measure again. This will eventually let Alice learn b perfectly.

4 From LT-Coin-Flipping to LT-Random Oblivious Transfer

Consider the following LT-ROT protocol built using an LT-CF protocol.

Loss-Tolerant Random Oblivious Transfer Protocol

1. Alice and Bob perform an LT-CF protocol with bias ε so that
Alice and Bob output the shared random bit c ∈ {0, 1}.

2. If c = 0 then Alice chooses b, x0, x1 at random and sends b, xb to Bob.
3. If c = 1 then Bob chooses b, x0, x1 at random and sends x0, x1 to Alice.
4. If the LT-CF protocol is aborted then Alice and Bob abort.
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We see that this defines a valid ROT protocol since the outputs are random and Bob
learns xb.

Loss-Tolerance The LT-CF protocol is loss-tolerant by definition. Since the rest of the
messages are classical there is no loss of information if messages are lost; they can simply
be sent again.

Cheating Alice, Bob We see that if c = 0 then Alice learns b perfectly and if c = 1
then she learns b with probability 1/2. Thus Alice can learn b with probability

Pr[c = 0] +
1

2
Pr[c = 1] ≤ Pr[c = 0] +

1

2
(1− Pr[c = 0]) =

1

2
+

1

2
Pr[c = 0] ≤ 3

4
+
ε

2
,

since Pr[c = 0] ≤ 1

2
+ ε.

Showing Bob can learn (x0, x1) with probability at most 3

4
+ ε

2
follows the same argu-

ment.
We have shown the following lemma.

Lemma 4.1 If there exists an LT-CF protocol with bias ε then there exists an LT-ROT

protocol with bias at most
1

4
+
ε

2
.

5 From LT-Random Oblivious Transfer to LT-Oblivious Trans-

fer

Consider the following LT-OT protocol built using an LT-ROT protocol.

Loss-Tolerant Oblivious Transfer Protocol

1. Alice chooses her inputs x0 and x1 and Bob chooses his input b.
2. Alice and Bob perform an LT-ROT protocol with bias ε so that

Alice outputs (x′
0
, x′

1
) and Bob outputs (b′, x′

b′
).

3. If the LT-ROT protocol is aborted then Alice and Bob abort.
4. Bob sends b⊕ b′ to Alice. They define x′c = x′

c⊕b⊕b′
for c ∈ {0, 1}.

5. Alice sends (x0 ⊕ x′
0
, x1 ⊕ x′

1
) to Bob. Bob adds xb ⊕ x′

b
to x′

b
to get xb.

We see that this defines a valid OT protocol since Bob learns xb consistent with their
inputs. It has been shown [CKS10] that this OT protocol has the same bias as the ROT
subroutine. This OT protocol is loss-tolerant because the ROT protocol is loss-tolerant
and the other messages are classical.
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Lemma 5.1 If there exists an LT-ROT protocol with bias ε then there exists an LT-OT
protocol with bias ε.

The following theorem follows from Lemmas 4.1 and 5.1.

Theorem 5.2 If there exists an LT-CF protocol with bias ε then there exists an LT-OT

protocol with bias at most
1

4
+
ε

2
.

Since there exists an LT-CF protocol with bias 0.359 [Cha10] we have the following
theorem.

Theorem 5.3 There exists an LT-OT protocol with bias at most 0.4295.

6 Summary and Open Questions

The table below summarizes the best-known lower and upper bounds for the bias of loss-
tolerant protocols.

bias ε LT-CF LT-ROT LT-OT

Lower Bound 1/
√
2− 1/2 [Kit03] 0.0586 [CKS10] 0.0586 [CKS10]

Upper Bound 0.359 [Cha10] 0.4295 (this paper) 0.4295 (this paper)

Finding the best loss-tolerant protocols for the primitives discussed in this paper re-
mains an open problem. It would be interesting to see if the best-known lower bounds can
be achieved with protocols that are loss-tolerant or if there are larger lower bounds for this
restricted class of protocols.
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