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We investigate in a general form entanglement of biphoton qutrits and ququarts, i.e. states formed
in the processes of collinear and, correspondingly, degenerate and non-degenerate Spontaneous
Parametric Down-Conversion. Indistinguishability of photons and, for ququarts, joint presence of
the frequency and and polarization entanglement are fully taken into account. In the case of qutrits
the most general 3-parametric families of maximally entangled and non-entangled states are found,
and anti-correlation of the degree of entanglement and polarization is shown to occur and to be
characterized by a rather simple formula. Biphoton ququarts are shown to be two-qudits with the
single-photon Hilbert space dimensionality d = 4, which differs them significantly from the often
used two-qubit model (d = 2). New expressions for entanglement quantifiers of biphoton ququarts
are derived and discussed. Rather simple procedures for a direct measurement of the degree of
entanglement are described for both qutrits and ququarts.

1. INTRODUCTION

Optical qutrits and ququarts are promising objects
of the modern quantum information and quantum
cryptography [1–7]. Formally, qutrits and ququarts are
defined as superpositions of, correspondingly, three and
four basis states. In practice, most often, the basis
states for qutrits and ququarts are formed by biphoton
states arising in the processes of Spontaneous Parametric
Down-Conversion (SPDC). For qutrits it is sufficient
to use the collinear degenerate SPDC processes, i.e.,
such processes in which wave vectors of two photons
in a SPDC pair are strictly parallel to each other and
frequencies are also given and equal to each other. For
constructing ququarts, one has to use either the non-
collinear frequency-degenerate or collinear but frequency-
non-degenerate SPDC processes, i.e., processes in which
either directions of wave vectors or frequencies of two
photons in SPDC pairs differ from each other. Below we
will refer both of these possibilities as “non-degenerate”.
In theory, from the very beginning [8], biphoton qutrits
were considered as arbitrary superpositions of three Fock
states, corresponding to three possibilities of distributing
two indistinguishable photons of an SPDC pair in two
polarization modes, horizontal (H) and vertical (V ) ones.
Each of these basis states is a direct product of two
one-qubit single-photon states, and biphoton qutrits are
two-qubit states. There were many works devoted to
biphoton qutrits [9–15]. Most of them study polarization
properties of qutrits and much less entanglement. Giving
a comprehensive picture of entanglement of qutrits
is one of the goals of this paper. In particular, we
will find and describe general families of maximally
entangled and non-entangled qutrits, their entanglement
quantifiers such as the Schmidt entanglement parameter,

concurrence, and the subsystem entropy, relations
between entanglement and polarization of qutrits, etc.

An important point to be discussed is the role of
the symmetry of biphoton wave functions with respect
to permutation of particles’ variables. Existence of
entanglement related to symmetry was realized by
many authors rather long ago, [16–20] and so on.
But a general attitude to the entanglement related
to symmetry is rather sceptical, up to the opinion
that this type of entanglement is unimportant and
can be forgotten. In such approach all basis states
of qutrits and ququarts would be non-entangled and
the only reason for entanglement would be related to
various choice of coefficients in superpositions of basis
states. This is a configurational entanglement. But in
reality, owing to symmetry, basis states of qutrits and
ququarts are entangled (at least one basis states in
the case of qutrits and all basis states of ququarts).
This is a fundamental, unchangeable entanglement.
In superpositions of basis states the symmetry-related
and configuration entanglement exist together and each
of them is so strongly built into a general picture
of entanglement of qutrits and ququarts, and into
their entanglement quantifiers, that it’s impossible to
separate these two types of entanglement and to take off
the symmetry-related one without hurting significantly
the general picture and results. Thus, all kinds of
entanglement have to be taken into account together and
none of them can be “forgotten”.

In the case of ququarts, the symmetry-related
entanglement arises from both polarization and
frequency (or angular) degrees of freedom. This makes
the traditional two-qubit model of biphoton ququarts
invalid. As we show, biphoton ququarts are two-qudit
states with the dimensionality of the one-photon Hilbert
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space d = 4 and dimensionality of the two-photon
Hilbert space D = d2 = 16. This makes ququarts
significantly different from qutrits (where d = 2 and
D = d2 = 4), and a series of new results on entanglement
of ququarts is derived and discussed in Section 7. This
new understanding of the physics of ququarts raises
a question about changes in applications of ququarts
analyzed earlier in the frame of the two-qubit model
when the latter is substituted by the qudit picture. We
hope to return to such analysis elsewhere.

In addition to the above-mentioned entanglement
quantifiers, we use widely the Schmidt decomposition
of biphoton wave functions [21, 22]. As known [23],
for pure biphoton states with the dimensionality of the
one-photon Hilbert space d the maximal amount of
terms in the Schmidt decomposition equals d, and such
states are unseparable. Only if all but one coefficients
in the Schmidt decomposition are equal zero, and
the remaining exceptional coefficient equals unit, the
Schmidt decomposition is reduced to a single product of
Schmidt modes, and such state is separable. We consider
this criterion as the ultimate indication of whether states
are separable or not.

2. STATE VECTORS AND WAVE FUNCTIONS

OF BIPHOTON QUTRITS

In the form of state vectors, purely polarization
biphoton states (qutrits), are given by a superposition

|Ψ〉 = C1|2H〉+ C2|1H , 1V 〉+ C3|2V 〉, (2.1)

where the basis state vectors are given by

|2H〉 = 1√
2
a† 2H |0〉, |1H , 1V 〉 = a†Ha

†
V |0〉, |2V 〉 =

1√
2
a† 2V |0〉,
(2.2)

|0〉 is the vacuum state vector, a†H and a†V are the creation
operators of photons in the modes with horizontal
and vertical polarizations (with given equal frequencies
and given identical propagation directions). C1,2,3 are

arbitrary complex constants C1,2,3 = |C1,2,3|eiϕ1,2,3 ,
obeying the normalization condition

|C1|2 + |C2|2 + |C3|2 = 1. (2.3)

Actually, as the total phase of the state vector (2.1) or
wave function (see below) does not affect any measurable
characteristics of qutrits, one of the phases ϕ

1,2,3
, or a

linear combination of phases, can be taken equal zero,
and, hence, the general form of the qutrit state vector
(2.1) is characterized by four independent constants (e.g.,
|C1|, |C3|, ϕ1, and ϕ3 with ϕ2 = 0).

As qutrit (2.1) is a two-photon state, its polarization
wave function depends on two variables. A general rule of
obtaining multipartite wave functions from state vectors
is known pretty well in the quantum-field theory, and for

bosons the corresponding formula has the form [24] (in
slightly modified notations)

Ψ(x1, x2, ..., xn) = 〈x1, x2, ..., xn|n1, n2, ..., nk〉

=
1√

n1!n2!...nk!n!

∑

P

P
(
g1(x1)g1(x2)...g1(xn1)

×g2(xn1+1)g2(xn1+2)...g2(xn1+n2)...

×gk(xn1+n2+...+nk−1+1)...gk(xn)
)
, (2.4)

where x1, x2, ..., xn are dynamical variables of identical
boson particles, gj(xi) are single-particle wave functions
(of j-th modes and i-th variables), P indicates all possible
transpositions of variables xi in wave functions gj(xi),
n1, n2, ..., nk are numbers of particles in modes, n is the
total amount of particles in all modes, k is the total
amount of modes; for empty modes the corresponding
single-particle wave functions have to be dropped.

In the case of qutrits we have two modes (j = H orV )
and two particles, n = k = 2. The polarization variables
of two photons can be denoted as σ1 and σ2. In terms of
wave functions, the single-photon wave functions gj(xi)
are given by the Kronecker symbols. Thus, the qutrit
basis wave functions corresponding to the basis state
vectors in Eq. (2.1) can be written as

ΨHH(σ1, σ2) = 〈σ1, σ2|2H〉 = δσ1,Hδσ2,H , (2.5)

ΨHV (σ1, σ2) = 〈σ1, σ2|1H , 1V 〉

=
1√
2

[
δσ1,Hδσ2,V + δσ2,Hδσ1,V

]
, (2.6)

ΨV V (σ1, σ2) = 〈σ1, σ2|2V 〉 = δσ1,V δσ2,V . (2.7)

The same basis wave functions can be written
equivalently in the form of 2-row columns, which is more
convenient for calculation of matrices

ΨHH =

(
1

0

)

1

⊗
(
1

0

)

2

≡
(

1
0
0
0

)
, (2.8)

ΨV V =

(
0

1

)

1

⊗
(
0

1

)

2

≡
(

0
0
0
1

)
, (2.9)

ΨHV =
1√
2

[(
1

0

)

1

⊗
(
0

1

)

2

+

(
0

1

)

1

⊗
(
1

0

)

2

]

≡ 1√
2

[(
0
1
0
0

)
+

(
0
0
1
0

)]
=

1√
2

(
0
1
1
0

)
, (2.10)

where the upper and lower rows in two-row columns
correspond to the horizontal and vertical polarizations
and the indices 1 and 2 numerate indistinguishable
photons.

In a general form the qutrit wave function
corresponding to the state vector (2.1) is given by

Ψ = C1ΨHH + C2ΨHV + C3ΨV V , (2.11)
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where ΨHH , ΨHV , and ΨV V can be taken either in the
form (2.5)-(2.7) or (2.8)-(2.10).

Alternatively, the same general qutrit wave function
(2.11) can be presented in the form of an expansion in a
series of Bell states

Ψ = C+Φ
+ + C2Ψ

+ + C−Φ
−, (2.12)

where

C± =
C1 ± C3√

2
, (2.13)

Ψ+ ≡ Ψ2 (2.10) and

Φ± =
1√
2

[
ΨHH ±ΨV V

]

=
1√
2

[(
1

0

)

1

⊗
(
1

0

)

2

±
(
0

1

)

1

⊗
(
0

1

)

2

]

≡ 1√
2

[(
1
0
0
0

)
±
(

0
0
0
1

)]
=

1√
2

(
1
0
0
±1

)
. (2.14)

Φ± and Ψ+ are the wave functions describing three Bell
states. The fourth Bell state,

Ψ− =
1√
2

[(
1

0

)

1

⊗
(
0

1

)

2

−
(
0

1

)

1

⊗
(
1

0

)

2

]
, (2.15)

does not and cannot arise in the expansion (2.12) because
Ψ− (2.15) is antisymmetric with respect to the variable
transposition 1⇀↽ 2, whereas all biphoton wave functions
have to be symmetric. Nevertheless, in principle, the
antisymmetric Bell state (2.15) can be included into the
expansion (2.12) but obligatory with the zero coefficient:

Ψ = C+Φ
+ + C2Ψ

+ + C−Φ
− + 0×Ψ−. (2.16)

This obligatory zero coefficient in front of Ψ− or missing
forth antisymmetric Bell state in the expansion (2.12)
is related to restrictions imposed by the symmetry
requirements for two-bozon states. Thus, even existence
of biphoton qutrits as superpositions of only three basis
wave functions occurs exclusively owing to the symmetry
restrictions eliminating the forth (antisymmetric) basis
Bell state.

3. DENSITY MATRICES

The first step for finding the degree of entanglement
is related to a transition from the wave function Ψ to
the density matrix of the same pure biphoton state ρ =
ΨΨ†. The full density matrix of the qutrit (2.11) can be
presented in following two forms

ρ = |C1|2
(
1 0
0 0

)
1
⊗
(
1 0
0 0

)
2
+ |C3|2

(
0 0
0 1

)
1
⊗
(
0 0
0 1

)
2

+ |C2|2
2

[(
1 0
0 0

)
1
⊗
(
0 0
0 1

)
2
+
(
0 0
0 1

)
1
⊗
(
1 0
0 0

)
2

+
(
0 1
0 0

)
1
⊗
(
0 0
1 0

)
2
+
(
0 0
1 0

)
1
⊗
(
0 1
0 0

)
2

]

+C1C
∗
3

(
0 1
0 0

)
1
⊗
(
0 1
0 0

)
2
+ C∗

1C3

(
0 0
1 0

)
1
⊗
(
0 0
1 0

)
2

+
C1C

∗
2√

2

[(
1 0
0 0

)
1
⊗
(
0 1
0 0

)
2
+
(
0 1
0 0

)
1
⊗
(
1 0
0 0

)
2

]

+
C∗

1C2√
2

[(
1 0
0 0

)
1
⊗
(
0 0
1 0

)
2
+
(
0 0
1 0

)
1
⊗
(
1 0
0 0

)
2

]

+
C3C

∗
2√

2

[(
0 0
1 0

)
1
⊗
(
0 0
0 1

)
2
+
(
0 0
0 1

)
1
⊗
(
0 0
1 0

)
2

]

+
C∗

3C2√
2

[(
0 1
0 0

)
1
⊗
(
0 0
0 1

)
2
+
(
0 0
0 1

)
1
⊗
(
0 1
0 0

)
2

]

(3.1)

and

ρ =




|C1|
2 1√

2
C1C

∗
2

1√
2
C1C

∗
2 C1C

∗
3

1√
2
C∗

1C2
1

2
|C2|

2 1

2
|C2|

2 1√
2
C∗

3C2

1√
2
C∗

1C2
1

2
|C2|

2 1

2
|C2|

2 1√
2
C∗

3C2

C∗
1C3

1√
2
C3C

∗
2

1√
2
C3C

∗
2 |C3|

2




. (3.2)

The next step is the reduction of the density matrix with
respect to one of the photon variables, e.g., of the photon
2. Mathematically this means taking traces of all matrices
with the subscript 2 in Eq. (3.1), which gives

ρr = Tr2ρ =




|C1|2 +
|C2|2
2

C1C
∗
2 + C2C

∗
3√

2
C∗

1C2 + C∗
2C3√

2
|C3|2 +

|C2|2
2


 . (3.3)

It may be interesting to analyze a relation between the
4×4 density matrix (3.2) and the 3×3 coherence matrix
introduced by Klyshko in 1997 [25]. The density matrix
ρ (3.2) is written in a natural two-photon basis

(
1
0
0
0

)
,

(
0
1
0
0

)
,

(
0
0
1
0

)
,

(
0
0
0
1

)
. (3.4)

The question is how it can be transformed to the basis of
states ΨHH , ΨV V , ΨHV plus the empty antisymmetric
states Φ− (2.15)? Evidently, the transformation

(
1
0
0
0

)
,

(
0
1
0
0

)
,

(
0
0
1
0

)
,

(
0
0
0
1

)
→

→
(

1
0
0
0

)
,
1√
2

(
0
1
1
0

)
,
1√
2

(
0
1
−1
0

)
,

(
0
0
0
1

)
(3.5)
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is provided by the matrix

U =




1 0 0 0

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1



. (3.6)

Now, transformed to the basis {ΨHH ,ΨV V ,ΨHV ,Ψ
−},

the density matrix ρ (3.2) takes the form

ρtransf = UρU =




|C1|2 C1C
∗
2 0 C1C

∗
3

C∗
1C3 |C2|2 0 C∗

3C2

0 0 0 0

C∗
1C3 C3C

∗
2 0 |C3|2


 . (3.7)

A part of this matrix with nonzero rows and columns
coincides with the 3× 3 coherence matrix [8, 25]

ρcoh =



|C1|2 C1C

∗
2 C1C

∗
3

C∗
1C3 |C2|2 C∗

3C2

C∗
1C3 C3C

∗
2 |C3|2


 . (3.8)

Though the coherence matrix ρcoh (3.8) is widely used
and analyzed in literature, both ρcoh and ρtransf are
hardly appropriate for reduction over one of the photon
variables (e.g., 2) and for finding correctly the reduced
density matrix ρr (3.3) because the variables 1 and 2 are
mixed not only in the matrix ρtransf itself but also in the
transformed basis of Eq. (3.5).

4. DEGREE OF ENTANGLEMENT

As known [21, 22], the trace of the squared
reduced density matrix ρ2r determines purity of the
reduced state coinciding with the inverse value of the
Schmidt entanglement parameter K−1. The result of its
calculation for the reduced density matrix of Eq. (3.3) is
given by

K−1 = Tr(ρ2r) =

(
|C1|2 +

|C2|2
2

)2

+

(
|C3|2 +

|C2|2
2

)2

+|C∗
1C2 + C∗

2C3|2. (4.1)

With the normalization condition (2.3) taken into
account, Eq. (4.1) can be reduced to a much simpler form

K =
2

2− |2C1C3 − C2
2 |2

. (4.2)

It’s known also [23], that in the case of bipartite states
with the dimensionality of the one-particle Hilbert space
d = 2, there is a simple algebraic relation between
the Wootters’ concurrence C [26] and the Schmidt
entanglement parameter K, owing to which

C =

√

2

(
1− 1

K

)
= |2C1C3 − C2

2 |. (4.3)

At last, in terms of the constants C± (2.13), Eqs. (4.2)
and (4.3) take the form

K =
2

2− |C2
+ − C2

− − C2
2 |2

, C = |C2
+ −C2

−−C2
2 |. (4.4)

Note that the expressions for the concurrence C [Eq.
(4.3) and the last formula of Eq. (4.4)] can be derived
also directly from the original Wootters’ definition [26].
Indeed, for a pure bipartite state with the dimensionality
of the one-particle Hilbert space d = 2, the concurrence
is defined in Ref. [26] as

C = |〈Ψ|Ψ̃∗〉|2, (4.5)

where Ψ̃ is the function or state vector arising from Ψ
after the “spin-flip” operation

Ψ̃ = (σy)1 (σy)2 Ψ, (4.6)

and σy is the Pauli matrix, σy =
(
0 −i
i 0

)
. For qutrits, Ψ

is given by Eqs. (2.11) or (2.12). The rules of the “spin-
flip” transformation for one-photon wave functions are(
1
0

)
→ −i

(
0
1

)
and

(
0
1

)
→ i

(
1
0

)
. From here we easily find

the spin-flip transforms of the qutrit basis wave functions
(2.8)-(2.10)

Ψ̃HH = −ΨV V , Ψ̃V V = −ΨHH , Ψ̃HV = ΨHV ,

Ψ̃+ = −Ψ+, Ψ̃− = Ψ− (4.7)

and of the general-form qutrit wave function (2.11)

Ψ̃ = −C1ΨV V + C2ΨHV − C3ΨHH

= −C+Ψ+ + C−Ψ− + C2ΨHV . (4.8)

Substitution of these expressions into Eq. (4.5) gives

C2 =
∣∣∣−2C∗

1C
∗
3 + C∗ 2

2

∣∣∣ =
∣∣∣C∗ 2

− − C∗ 2

+ + C∗ 2

2

∣∣∣ , (4.9)

in a complete agreement with Eqs. (4.3) and (4.4).
In a special case of real constants C1,2,3 and

C±, owing to normalization (2.3), the Schmidt
entanglement parameter and concurrence (4.4) appear to
be determined by the only real parameter C+

Kreal =
2

1 + 4C2
+ − 4C4

+

, Creal = |2C2
+ − 1|. (4.10)

The functions Kreal(C+) and Creal(C+) are shown in
Fig. 1 together with the subsystem entropy found in the
following section. This picture demonstrates clearly that
qutrits are non-entangled (Kreal = 1 and Creal = 0) if

C+ = ±1/
√
2 and, hence, C2

− +C2
HV = 1

2 . Consequently,
the family of non-entangled qutrit wave functions with
real coefficients is given by

ΨNE real =
1√
2

(
Ψ+ + sinφΨHV + cosφΨ−

)

= cos2
(
φ

2

)
ΨHH +

sinφ√
2
ΨHV + sin2

(
φ

2

)
ΨV V (4.11)
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Рис. 1: The Schmidt entanglement parameter Kreal (4.2),

concurrence Creal (4.3) and the von Neumann subsystem entropy

Sr real (5.7) of the qutrit (2.11), (2.12) with real constants C1,2,3,

C± vs. C+ (2.13).

with arbitrary φ. If the constants C1,2,3, C± are complex,
a general condition of no-entanglement is the same:
C = 0. As seen from the general expression for C
(4.3), the concurrence depends on phases ϕ1,2,3 of the
constants C1,2,3 only via the combination ϕ1 +ϕ3 − 2ϕ2.
Hence, if ϕ2 = 1

2 (ϕ1 + ϕ3), in the case of complex

constants C1,2,3, Eq. (4.3) is reduced to C =
∣∣∣2|C1||C3|−

|C2|2
∣∣∣, i.e. this case appears to be equivalent to the

case of real constants C1,2,3. From here we find that the
general three-parametric family of wave functions of non-
entangled qutrits is given by

ΨNE general(φ, ϕ1, ϕ3) =
sinφ√

2
e

i
2 (ϕ1+ϕ3)ΨHV

+cos2
(
φ

2

)
eiϕ1ΨHH + sin2

(
φ

2

)
eiϕ3ΨV V (4.12)

with arbitrary φ, ϕ1, and ϕ3. With these wave functions
found explicitly we can reconstruct the corresponding
family of state vectors of non-entangled qutrits

|Ψ〉NE general =
1√
2

{
sinφ e

i
2 (ϕ1+ϕ3)a†Ha

†
V

+cos2
(
φ

2

)
eiϕ1a†

2

H + sin2
(
φ

2

)
eiϕ3a†

2

V

}
|0〉. (4.13)

Qutrits are maximally entangled when C = 1 and
K = 2, and for the wave functions with real constants
C1,2,3, C± this occurs in two cases: C+ = ±1 and
C+ = 0. In the first of these cases Ψ = ±Ψ+. In the
second case the maximally entangled wave function has
a form of an arbitrary superposition of ΨHV and Ψ−,
Ψ = sinφΨHV + cosφΨ−. As previously, this result
can be generalized for the case of wave functions with
complex coefficients such that ϕ2 = 1

2 (ϕ1 + ϕ3). As a
result we get the following three-parametric family of

wave functions of maximally entangled qutrits

Ψmax(φ, ϕ1, ϕ3) = sinφ e
i
2 (ϕ1+ϕ3)ΨHV

+
cosφ√

2

(
eiϕ1ΨHH − eiϕ3ΨV V

)
(4.14)

and the corresponding family of state vectors

|Ψ〉max =
{
sinφ e

i
2 (ϕ1+ϕ3)a†Ha

†
V

+
cosφ

2

(
eiϕ1a†

2

H − eiϕ3a†
2

V

)}
|0〉. (4.15)

Eqs. (4.14) and (4.15) are more general than the
expression for the maximally entangled state of Ref.
[27], which follows from (4.15) at φ = 0, |Ψmax〉|φ=0 =
1√
2
(eiϕ1 |2H〉 − eiϕ3 |2V 〉).
In the case φ = π/2 Eqs. (4.14) and (4.15) show

that the state ΨHV (|1H , 1V 〉) belongs to the family
of maximally entangled states too (contrary to a met
opinion that the state |1H , 1V 〉 is factorable). A way of
seeing explicitly whether qutrits are factorable or not
consists in finding their Schmidt decompositions, which
can contain either two products of Schmidt modes or only
one product. This analysis is carried out in the following
section.

But before switching to the Schmidt-mode analysis let
us discuss briefly the problem of qutrit polarization. If we
define the biphoton polarization vector, as suggested by

Wang [28], ~ξ = Tr (ρr~σ), where ~σ is the vector of Pauli
matrices, from Eq. (3.3) we easily find

~ξ =
{√

2Re(C1C
∗
2 + C2C

∗
3 ), −

√
2 Im(C1C

∗
2 + C2C

∗
3 ),

|C1|2 − |C3|2
}
. (4.16)

A direct comparison with the results obtained in 1999 by
Burlakov and Klyshko [8] for polarization characteristics

of qutrits shows that the polarization vector ~ξ (4.16)
coincides exactly with one half of the vector of Stokes

parameters ~S = {S1, S2, S3} of Ref. [8], and the absolute

value of ~ξ coincides with the degree of polarization P
(introduced also in [8])

~ξ =
1

2
~S,

∣∣∣~ξ
∣∣∣ = P =

1

2

√
S2
1 + S2

2 + S2
3 . (4.17)

Note that the Stokes parameter and the degree of
polarization were found in Ref. [8] in a way, absolutely
different from that used above for derivation of the
polarization vector ~ξ. For this reason the coincidences
(4.17) are rather non-trivial.

The derived expression for the polarization vector ~ξ
(4.16) can be compared with the general expression for
the qutrit concurrence C (4.3) to show that they obey

the relation ~ξ
2

= 1 − C2 obtained by Wang in 2000
[28]. Note, however, that for qutrits we have used the
concurrence of Eq. (4.3), C = |2C1C3 −C2

2 |, rather than
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2|ad − bc| obtained in Refs. [28] for the state |Ψ〉abcd =
a|00〉 + b|01〉 + c|10〉 + d|11〉 to be commented below in
section 7. In terms of the degree of polarization P the

relation ~ξ
2
= 1− C2 can be rewritten as

C2 + P 2 = 1. (4.18)

Thus, the degrees of polarization and entanglement
anti-correlate with each other: the maximally entangled
qutrits are non-polarized, and maximally polarized states
are non-entangled. Though, maybe, intuitively more or
less expected, as far as we know, anticorrelation of
polarization and entanglement has never been presented
in a rigorous mathematical form of Eq. (4.18).

5. SCHMIDT MODES OF QUTRITS AND THE

SUBSYSTEM ENTROPY

Entanglement means that the biphoton wave function
cannot be factorized whereas no-entanglement means
that it is factorable. A transition from non-factorable to
factorable wave functions can be reasonably explained
in terms of Schmidt modes. Schmidt modes are
eigenfunctions of the reduced density matrix, i.e.,
solutions of the equation ρrψ = λψ. As in the case of
qutrits ρr (3.3) is the 2×2 matrix, it has two eigenvalues

λ±, its eigenfunctions are 2-row columns ψ± =
(

a±

b±

)
,

and the eigenvalue-eigenfunction equation has the form

ρr

(
a±
b±

)
= λ±

(
a±
b±

)
. (5.1)

The modes can be normalized |a±|2+ |b±|2 = 1 and they
are orthogonal to each other a+a

∗
−+b+b

∗
− = 0. In terms of

λ± the Schmidt entanglement parameter equals to K =(
λ2+ + λ2−

)−1
.

In accordance with the Schmidt theorem, the biphoton
wave function can be presented as a sum of products of
Schmidt modes (Schmidt decomposition). In the case d =
2 (two-qubit states or qutrits) the Schmidt decomposition
contains only two terms

Ψ =
∑

±

√
λ± ψ±(1)ψ±(2), (5.2)

where arguments of the Schmidt modes indicate variables
of photons “1” and “2”. This decomposition shows that
in a general case the wave function Ψ is nonseparable.
Exceptions occur when one of the eigenvalues of the
reduced density matrix, λ+ or λ−, becomes equal zero.

Eigenvalues of the matrix (3.3) can be found rather
easily and they can be reduced to a very simple form
being expressed via the concurrence C

λ± =
1

2

(
1±

√
1− C2

)
. (5.3)

In the case C = 1, when entanglement is maximal,
λ+ = λ− = 1

2 , i.e., two products in the Schmidt

decomposition (5.2) are presented with equal weights
and, clearly, the wave function is nonseparable.

In the case C = 0 (no entanglement) Eq. (5.3) gives
λ+ = 1 and λ− = 0. In this case one of the products of
Schmidt modes (ψ−ψ−) in the Schmidt decomposition

disappears because the coefficient
√
λ− in front of

it vanishes. This is the reason of separability of the
wave function in the case of no-entanglement. As for
the remaining product in the Schmidt decomposition,
the corresponding eigenfunction of the reduced density
matrix ψ+ at C = 0 can be found easily and has a
reasonably simple form (4.12)

ψ+ =

(
a+
b+

)
=

(
cos(φ/2)e

i
2ϕ1

sin(φ/2)e
i
2ϕ3

)
. (5.4)

With this expression we find immediately that in the
case C = 0 the Schmidt decomposition (5.2) gives the
following representation for the factored biphoton wave
function

ΨNE =

(
cos(φ/2)e

i
2ϕ1

sin(φ/2)e
i
2ϕ3

)

1

(
cos(φ/2)e

i
2ϕ1

sin(φ/2)e
i
2ϕ3

)

2

. (5.5)

Identity of Eqs. (4.12) and (5.5) can be checked directly,
be means of substitution in Eq. (4.12) instead of ΨHH ,
ΨHV , ΨV V their column representations (2.8)-(2.10),
calculation of direct products of columns in all terms of
Eq. (4.12) and in Eq. (5.5), and presenting ΨNE in both
cases in the form of the following 4-row column

ΨNE general(φ, ϕ1, ϕ3) =




cos2(φ/2)eiϕ1

1
2 sin(φ)e

i(ϕ1+ϕ3)

1
2 sin(φ)e

i(ϕ1+ϕ3)

sin2(φ/2)eiϕ3


 . (5.6)

Eq. (5.3) can be used to find the subsystem entropy
[29] defined as

Sr = −Tr (ρr log2 ρr) = −
∑

±
λ± log2 λ±. (5.7)

In the case of qutrits with real coefficients the
concurrence Creal itself is a function of C+ (4.10). With
Creal(C+) substituted instead of C into Eq. (5.3) and
then λ±[C(C+)] substituted into Eq. (5.7), we get a
function Sr real(C+), which is plotted in Fig. 1. Though
different from both C(C+) and K(C+), the subsystem
entropy Sr real(C+) has the same main features as two
other entanglement quantifiers: Sr real is minimal and
equals zero at C+ = ±1/

√
2 and Sr real is maximal and

equals 1 at C+ = 0 and C+ = ±1. Therefore, though
the Schmidt entanglement parameter K, concurrence C
and the subsystem entropy Sr characterize the degree of
entanglement in different metrics, their behavior is very
similar, which confirms all conclusions made above about
conditions of separability and nonseparability of qutrits
and their wave functions.
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As mentioned above, one of the basis wave functions of
qutrits, ΨHV (2.6), is maximally entangled (K = 2, C =
1) and, hence, unseparable. Eigenvalues of the reduced
density matrix of this state are degenerate, λ+ = λ− = 1

2 ,
and the Schmidt decomposition has the form

ΨHV =
ψ+(1)ψ+(2) + ψ−(1)ψ−(2)√

2
(5.8)

with the Schmidt modes given by

ψHV
+ =

1√
2

(
1

1

)
, ψHV

− =
1√
2

(
1

−1

)
. (5.9)

Thus, entanglement of the state ΨHV (2.6) is proved
here in several ways, by direct calculations of the
entanglement quantifiers K, C and Sr, and by showing
that its Schmidt decomposition contains two products of
the Schmidt modes (5.8). In literature the opinion about
entanglement of the state ΨHV is shared by some authors
[17, 20], though sometimes the state ΨHV is claimed to
be separable [30]. Actually, this difference of opinions
reflects a rather popular point of view that all basis states
of qutrits and ququarts (see below) are separable and
non-entangled. In a more general form, this statements
can be reformulated as saying that all states of the type

a†ia
†
j |0〉 generate separable wave functions in both cases

of coinciding i = j and non-coinciding i 6= j mode
indices. Our analysis shows that for biphoton states the
latter is not true. In reality, for arbitrary photon variables
(polarization, angular, frequency, or their combinations),
if ψi and ψj are the wave functions of the i−th and j−th
modes and i 6= j, the state vector a†ia

†
j |0〉 generates the

wave function of the type ΨHV (2.6),

Ψij =
ψi(1)ψj(2) + ψi(2)ψj(1)√

2
, (5.10)

which is entangled with the degree of entanglement
characterized by K = 2, C = Sr = 1, and the Schmidt
decomposition of the type (5.8), (5.9).

6. FINDING THE DEGREE OF

ENTANGLEMENT OF QUTRITS FROM DIRECT

POLARIZATION MEASUREMENTS

In this section we will show that there is a rather
simple method of measuring experimentally the degree
of entanglement of qutrits (supposedly not known in
advance). The key idea consists in splitting the original
biphoton beam for two identical parts by a non-selective
beam splitter (BS) and performing a series of coincidence
photon-counting measurements in the arising channels I
an II (see Fig. 2a). Measurements have to be done with
polarizers installed in the horizontal (x) and vertical (y)
directions, as well as along the axes x′ and y′ turned for
the angle 45◦ with respect to, correspondingly, x- and y-
axes (Fig. 2b)). As shown below this set of measurements

Рис. 2: (a) A scheme of and (b) two bases for coincidence

measurements; BS denotes beam splitter, M - mirror and D -

detectors.

is sufficient for determining the degree of entanglement
as well as for a full reconstruction of all parameters of
arbitrary biphoton qutrits.

A. Beam splitter

In terms of biphoton wave functions, BS adds an
additional degree of freedom to each photon - the
propagation angles θ1 and θ2, which can take only two
value, 0 and 90◦. In a nonselective BS each photon has
equal probabilities of transmitting or being reflected.
Thus, if the biphoton wave function in front of BS is
Ψ, after BS it takes the form

ΨafterBS = Ψ× 1
2 (δθ1, 0 − δθ1, 90◦)(δθ2, 0 − δθ2, 90◦)

≡ Ψ⊗ 1
2

(
1
−1

)(θ)
1

⊗
(

1
−1

)(θ)
2
, (6.1)

As the angular variables in ΨafterBS are separated from
polarization variables of Ψ and, besides, parts depending
on the variables θ1 and θ2 are also factorized, the angular
factor in ΨafterBS (6.1) does not add any additional
entanglement to this wave function compared to Ψ.
I.e., the nonselective BS itself does not increase or
diminish the degree of entanglement of any biphoton
states. Coincidence measurements in the state arising
after BS are suggested here as a tool for determining
qutrit parameters in front of BS and the degree of
entanglement of the original biphoton state.

As it follows from Eq. (6.1) and from the described
features of BS, the latter splits between the channels I
and II only photons of a half of all incoming biphoton
pairs, whereas another half of pairs remains unsplit, and
these unsplit pairs are equally distributed between the
channels I and II. Let N tot

HH , N tot
V V , and N tot

HV be large
(≫ 1) total amounts of biphoton pairs with coinciding
(HH , V V ) and differing (HV ) polarizations of photons
generated in a crystal per some given time. Then the total
amount of generated pairs isN tot

pairs = N tot
HH+N tot

V V +N
tot
HV

and the total amount of generated photons is N tot
phot =

2N tot
pairs. Among all these generated photons there are

N tot
H = 2N tot

HH + N tot
HV horizontally and N tot

V = N tot
HV +

2N tot
V V vertically polarized photons. Relative amounts

of horizontally and vertically polarized photons can be
interpreted as single-particle (absolute) probabilities for
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photons to have horizontal and vertical polarizations

w
(s)
H =

N tot
H

N tot
phot

=
N tot

HH + 1
2N

tot
HV

N tot
HH +N tot

V V +N tot
HV

w
(s)
V =

N tot
V

N tot
phot

=
N tot

V V + 1
2N

tot
HV

N tot
HH +N tot

V V +N tot
HV

. (6.2)

Though these equations are nice, unfortunately, in
experiment amounts of generated pairs are not directly
observable.

After BS we get 1
4N

tot
σσ′ unsplit pairs in each channel,

and photons of the remaining 1
2N

tot
σσ′ split pairs are

equally distributed between the channels I and II (Fig.
3). Owing to unsplit pairs results of photon counting by

Рис. 3: Distribution of photons in channels I and II after BS for

(a)HH and (b)HV pairs; double lines are unsplit pairs, arcs with

arrows indicate photons of split pairs.

a single detector in one of the channels I or II can be
rather confusing, because when an unsplit pair comes
to the detector the latter can produce one click instead
of two. In contrast, coincidence measurements by two
detectors in channels I and II [Fig. 2a] register only
photons of split pairs, which makes such measurements
quite unambiguous and informative.

Relations between amounts of single photons and the
corresponding total amounts of pairs are different in
the cases when single photons arise from split HH and
V V pairs, and when they arise from split HV pairs.
As seen from Fig. 3, the amount of H- or V -polarized
photons arising from the split HH or V V pairs equals to
1
2N

tot
HH or 1

2N
tot
V V (Fig. 3a), whereas amounts of the same

photons arising from the splitHV pairs is equal to 1
4N

tot
HV

(Fig. 3b). From these results we easily find amounts of

detector coincidence counts N
d (c)
σ

∣∣∣
σ′

obtainable when

σ- and σ′-polarizers are installed in front of detectors,
correspondingly, in the channels I and II

N
d (c)
H

∣∣∣
H

=
η

2
N tot

HH , N
d (c)
V

∣∣∣
V
=
η

2
N tot

V V ,

N
d (c)
H

∣∣∣
V
= N

d (c)
V

∣∣∣
H

=
η

4
N tot

HV , (6.3)

where η is the efficiency of detectors. Relative amounts of
coincidence counts have sense of conditional probabilities

w
(c)
σ

∣∣∣
σ′

for a photon “1” to have polarization σ under the

condition that another photon, “2”, has polarization σ′.
They are defined as ratios of specific coincidence detector
counts (6.3) to the total amounts of coincidence counts

w(c)
σ

∣∣∣
σ′

=
N

d (c)
σ

∣∣∣
σ′

∑
σ,σ′ N

d (c)
σ

∣∣∣
σ′

, (6.4)

where

∑

σ,σ′

Nd (c)
σ

∣∣∣
σ′

=
η

2

[
N tot

HH+N tot
HV +N tot

V V

]
=
η

2
N tot

pair. (6.5)

Evidently, the sum of all conditional probabilities (6.4)
equals unit

∑

σ,σ′

w(c)
σ

∣∣∣
σ′

= w
(c)
H

∣∣∣
H
+ 2 w

(c)
H

∣∣∣
V
+ w

(c)
V

∣∣∣
V
= 1 (6.6)

Eqs. (6.4) and (6.5) show that, in principle,
experimental measurement of conditional probabilities is
straightforward because they are expressed explicitly in

terms of the coincidence detector counts N
d (c)
σ

∣∣∣
σ′

. In

terms of amounts of pairs in a beam expressions for
conditional probabilities take the form

w
(c)
H

∣∣∣
H

=
N tot

HH

N tot
pair

, w
(c)
V

∣∣∣
V
=
N tot

V V

N tot
pair

,

w
(c)
H

∣∣∣
V
= w

(c)
V

∣∣∣
H

=
N tot

V H

2N tot
pair

. (6.7)

By the definition of conditional probabilities, their sums
can be constructed to give single-particle, unconditional
probabilities:

w
(s)
H = w

(c)
H

∣∣∣
H
+ w

(c)
H

∣∣∣
V
=
N tot

HH + 1
2N

tot
HV

N tot
pair

w
(s)
V = w

(c)
V

∣∣∣
V
+ w

(c)
V

∣∣∣
H

=
N tot

V V + 1
2N

tot
HV

N tot
pair

. (6.8)

These expressions are absolutely identical to Eqs. (6.2)
derived simply from counting amounts of photons in
the original biphoton beam without any beam splitter.
Coincidence of Eqs. (6.2) and (6.8) proves that, indeed,
coincidence measurements after BS can be used for
getting information about such features of the beam
before BS as characterizing it unconditional (single-
particle) probabilities for photons to have horizontal or
vertical polarizations. In other words, Eqs. (6.8) show
that though owing to unsplit pairs direct measurement
of single particle probabilities after BS is problematic,

nevertheless, the probabilities w
(s)
H and w

(s)
V can be found

from results of coincidence measurements.
Conditional probabilities of Eq. (6.7) can be used for

a partial reconstruction of the qutrit parameters from
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experimental data. Indeed, directly from Eq. (3.1) for the
density matrix ρ we find the following relations between
the absolute values of all three coefficients C1,2,3 in the
wave function (2.11) and the conditional probabilities

w
(c)
H

∣∣∣
H

= |C1|2, w(c)
V

∣∣∣
V
= |C3|2

w
(c)
V

∣∣∣
H

= w
(c)
H

∣∣∣
V
= 1

2 |C2|2.
(6.9)

For single-particle probabilities (6.8) relations with
parameters of qutrits Ci have the form

w
(s)
H = |C1|2 +

1

2
|C2|2, w(s)

V = |C3|2 +
1

2
|C2|2. (6.10)

B. Qutrits in a turned basis

In addition to absolute values of Ci, we have to
find their phases, ϕ1,2,3, and this requires additional
measurements, e.g. with polarizers installed at 45◦ to
x- and y-axes, as shown in Fig. 2b. In theory, this is
equivalent to description of the biphoton wave function
in a turned basis. In a general case, let xα and yα be
axes turned for an angle α with respect to x- and y-
axes. Let polarizations along the axes xα and yα be
denoted as Hα and V α. The corresponding one-photon

wave functions are
(
1
0

)(α)
and

(
0
1

)(α)
. From these one-

photon wave functions we can construct the two-photon
basis wave functions ΨHαHα , ΨHαV α , and ΨV αV α in the
same way (2.8)-(2.10) as ΨHH , ΨHV , and ΨV V were
constructed from the one-photon wave functions

(
1
0

)
and(

0
1

)
. Let us present the wave function (2.11) in terms of

expansion in the basis wave function of the frame (xα, yα)

Ψ = C1(α)ΨHαHα + C2(α)ΨHαV α + C3(α)ΨV αV α .
(6.11)

One-photon wave functions in the α- and original frames
are related with each other by the evident transformation
formulas

(
1
0

)
= cosα

(
1
0

)(α) − sinα
(
0
1

)(α)
,

(
0
1

)
= sinα

(
1
0

)(α)
+ cosα

(
0
1

)(α)
.

(6.12)

By applying these formulas to all terms and columns in
Eq. (2.11) and regrouping the arising α-frame column
products we reduce finally the biphoton wave function
(2.11) to the form (6.11) with the following relations
between the coefficients C1,2,3(α) and C1,2,3

C1(α) = cos2 αC1 +
√
2 cosα sinαC2 + sin2 αC3,

C2(α) = −
√
2 cosα sinα (C1 − C3) + cos 2αC2,

C3(α) = sin2 αC1 −
√
2 cosα sinαC2 + cos2 αC3.

(6.13)

Note that similar transformation formulas for the
constants C± (2.13) have the form

C+(α) = C+, (6.14)
{
C−(α) = cos 2αC− + sin 2αC2

C2(α) = − sin 2αC− + cos 2αC2
. (6.15)

This means, in particular, that

Ψ
(α)
+ ≡ Ψ+,

Ψ
(α)
− = cos 2αΨ− + sin 2αΨHV ,

Ψ
(α)
HV = cos 2αΨHV − sin 2αΨ−, (6.16)

i.e. the function Ψ
(α)
+ has the same form in all α-frames,

whereas the functions Ψ
(α)
− and Ψ

(α)
HV transform into each

other with changing α.
In a special case α = 45◦ Eqs. (6.13) are reduced to

C1,3(45
◦) =

C1 + C3

2
± C2√

2
, C2(45

◦) =
C1 − C3√

2
.

(6.17)

Similarly to (6.9), the qutrit parameters in the basis
turned for 45◦ can be expressed in terms of the
corresponding conditional probabilities

w
(c)
H45

∣∣∣
H45

= |C1(45
◦)|2, w(c)

V 45

∣∣∣
V 45

= |C3(45
◦)|2

w
(c)
V 45

∣∣∣
H45

= w
(c)
H45

∣∣∣
V 45

= 1
2 |C2(45

◦)|2.
(6.18)

In their turn, the conditional probabilities w
(c)
σ45

∣∣∣
σ′ 45

are related by equations identical to (6.7) to the
corresponding amounts of counts with polarizers installed
in front of detectors along the directions of the x′ and y′

axes in Fig. 2b

w
(c)
σ45

∣∣∣
σ′ 45

=
N

d (c)
σ45

∣∣∣
σ′ 45

∑
σ45,σ′ 45 N

d (c)
σ45

∣∣∣
σ′ 45

. (6.19)

Similarly to (6.8) and (6.10) we can define also single-
particle probabilities via conditional ones in a turned
basis

w
(s)
H45 = w

(c)
H45

∣∣∣
H45

+ w
(c)
H45

∣∣∣
V 45

= |C1(45
◦)|2,

w
(s)
V 45 = w

(c)
V 45

∣∣∣
V 45

+ w
(c)
V 45

∣∣∣
H45

= |C3(45
◦)|2. (6.20)

C. Concurrence and full reconstruction of qutrit

parameters from experimental data

In terms of absolute values of the qutrit parameters
C1,2,3 and their phases ϕ1,2,3, the squared concurrence C
Eq. (4.3) has the form

C2 = 4|C1|2|C3|2 + |C2|4

−4|C1||C3||C2|2 cos(ϕ1 + ϕ3 − 2ϕ2). (6.21)
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As well known and mentioned above, the common phase
of the biphoton wave function does not affect any
measurements. This means that multiplication of Ψ by an
arbitrary phase factor eiϕ0 does not change any physical
results. Let us take, for example, eiϕ0 = −ϕ2, which
makes the parameter eiϕ0C2 real, with corresponding
changes of phases in two other parameters, C1 and C3.
Equivalently, keeping in mind this procedure we simply
can take C2 real and, in a general case, C1,3 complex,|
C1 = |C1|eiϕ1 and C3 = |C3|eiϕ3 . With real C2 (ϕ2 = 0),
Eq. (6.21) takes the form

C2 = |2C1C3 − C2
2 |2

= 4|C1|2|C3|2 + C4
2 − 4|C1||C3|C2

2 cos(ϕ1 + ϕ3). (6.22)

For finding phases ϕ1 and ϕ3 we can use Eqs. (6.17), the
second of which gives

|C2(45
◦)|2 =

|C1 − C3|2
2

=
|C1|2 + |C3|2

2
− |C1||C3| cos(ϕ1 − ϕ3). (6.23)

One equation for two unknown phases ϕ1 and ϕ3 can be
obtained from the difference of squared absolute values
of the parameters C1(45

◦) and C3(45
◦) in Eqs. (6.17):

|C1(45
◦)|2 − |C3(45

◦)|2 =
√
2C2 Re(C1 + C3)

=
√
2C2

[
|C1| cosϕ1 + |C3| cosϕ3

]
. (6.24)

In a general case, Eqs. (6.23) and (6.24) hardly can be
further simplified to yield a simple analytical formula
for the squared concurrence (6.21) in terms of the
experimentally measurable conditional probabilities. But
numerical solution of Eqs. (6.23) and (6.24) with all
parameters |Ci| and |Ci(45

◦)| known does not represent
any problems. Thus, by getting a full set of measurements
of coincidence counts in two bases (xy) and (x′y′) (Fig.

2b) one can find all conditional probabilities w
(c)
σ

∣∣∣
σ′

(6.7) and w
(c)
σ45

∣∣∣
σ′ 45

(6.19). Then, from Eqs. (6.9) and

(6.18) one finds all absolute values of parameters Ci

and and Ci(45
◦). And, finally, with known values of |Ci|

and |Ci(45
◦)|, one solves numerically Eqs. (6.23) and

(6.24) and finds the phases ϕ1 and ϕ3 with ϕ2 = 0.
This procedure permits to reconstruct completely all
qutrit parameters and to find its degree of entanglement
(6.22) from experimental coincidence measurements.
This procedure might be referred to as an alternative
protocol of quantum state tomography of biphoton-based
qutrits rather than those one described in [3, 14].

Note, that if it’s known in advance that all parameters
Ci are real, the procedure of finding the degree
of entanglement from experimental data significantly
simplifies. In this case it’s more convenient to begin
with Eq. (4.1) for the inverse Schmidt entanglement
parameter, which is easily expressed in terms of single-
particle probabilities (6.10). For the upper line on the

right-hand side of Eq. (4.1) we get

(
|C1|2 +

|C2|2
2

)2

+

(
|C3|2 +

|C2|2
2

)2

= w
(s) 2
H + w

(s) 2
V ≡ 1

2

{
1 +

[
w

(s)
H − w

(s)
V

]2}
. (6.25)

On the other hand, with the help of Eqs. (6.17)and (6.20),
the lower line on the right-hand side of Eq. (4.1) can be
easily expressed in terms of qutrit parameters and single-
particle probabilities in the basis turned for 45◦:

|C∗
2C1 + C2C

∗
3 |2 = C2

2 (C1 + C3)
2

=

{
[C1(45

◦)]2 − [C3(45
◦)]2
}2

2
=

(
w

(s)
H45 − w

(s)
V 45

)2

2
.

(6.26)

Altogether this gives

K−1 =
1

2

{
1 +

(
w

(s)
H − w

(s)
V

)2
+
(
w

(s)

H(45) − w
(s)

V (45)

)2}

(6.27)

and

C =

√
1−

(
w

(s)
H − w

(s)
V

)2
−
(
w

(s)

H(45) − w
(s)

V (45)

)2
.

(6.28)

7. QUQUARTS

A. Definitions and wave functions

As mentioned in the Introduction, in the generally
accepted treatment, ququarts are considered as two-qubit
states. In an abstract form, with unspecified pairs of
distinguishable particles, the state vectors of ququarts
are taken in the form [28]

|Ψ〉2 qb = C1|00〉+ C2|01〉+ C3|10〉+ C4|11〉 (7.1)

with one-qubit single-particle states |0〉 and |1〉. Written
in the form of two-row columns, the wave function of the
state (7.1) takes the form

Ψ2 qb = C1

(
1

0

)

1

⊗
(
1

0

)

2

+ C2

(
1

0

)

1

⊗
(
0

1

)

2

+C3

(
0

1

)

1

⊗
(
1

0

)

2

+ C4

(
0

1

)

1

⊗
(
0

1

)

2

. (7.2)

With this wave function one can easily obtain the reduced
density matrix of Ref. [5]

ρr (2 qb) =

( |C1|2 + |C2|2 C1C
∗
3 + C2C

∗
4

C∗
1C3 + C∗

2C4 |C3|2 + |C4|2
)
, (7.3)
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Schmidt entanglement parameter

K2 qb =
1

Tr
(
ρ2r 2 qb

) =
1

1− 2|C1C4 − C2C3|2
, (7.4)

and concurrence of Ref. [28]

C2 qb = 2|C1C4 − C2C3|. (7.5)

Though this approach and Eqs. (7.3)-(7.5) are rather
widely used and accepted, we claim that they are
inapplicable for biphoton ququarts formed by non-
degenerate SPDC pairs. The first objection is the
symmetry. The wave function (7.2) is asymmetric with
respect to the permutation of particle variables 1 ⇀↽ 2,
and this is strictly forbidden for any biphoton wave
functions. A simple symmetrization of the wave function
(7.2) is insufficient and, actually, it does not help much,
because it reduces the wave function (7.2) to the qutrit’s
wave function (2.11), with C2 + C3 playing the role of
C2 in Eq.(2.11) and with all peculiarities of ququarts
completely lost.

The second objection concerns photon degrees of
freedom and dimensionality of the Hilbert space. In
contrast to the traditional treatment, biphoton ququarts
formed by non-degenerate SPDC pairs of photons have a
higher dimensionality than qutrits. Single-photon states
from which the biphoton ququarts are constructed are
not qubits and they form the Hilbert space of a
dimensionality d = 4, rather than d = 2 occurring in the
case of qutrits. Indeed, if for example, SPDC photons
in pairs have two different frequencies ωh (high) and
ωl (low), ωh > ωl, one cannot say for sure, which of
two photons gets a higher or lower frequency. Hence, the
photon frequency ω becomes a second photon variable,
additional to polarization and taking two values, ωh

(high) and ωl. In other words, each photon has now
two degrees of freedom, polarization and frequency [31].
Together, they make four states which can be occupied
by each photon, or four combined polarization-frequency
modes, Hh, Hl, V h, andV l (instead of two polarization
modes H andV in the case of degenerate photons). Four
modes correspond to the dimensionality of the single-
photon Hilbert space d = 4, in contrast to d = 2 and
two modes in the cases of qutrits and of the traditional
two-qubit model of ququarts. The four single-photon
polarization-frequency state vectors are now given by

a†Hh|0〉, a
†
Hl|0〉, a

†
V h|0〉, a

†
V l|0〉. (7.6)

The corresponding single-photon wave functions,
describing states with two degrees of freedom, have two
factors, depending on polarization (σ) and frequency (ω)

variables

δσ,Hδω,ωh
≡
(
1

0

)pol

⊗
(
1

0

)ω

=

(
1
0
0
0

)
,

δσ,Hδω,ωl
≡
(
1

0

)pol

⊗
(
0

1

)ω

≡
(

0
1
0
0

)
,

δσ,V δω,ωh
≡
(
0

1

)pol

⊗
(
1

0

)ω

=

(
0
0
1
0

)
,

δσ,V δω,ωl
≡
(
0

1

)pol

⊗
(
0

1

)ω

=

(
0
0
0
1

)
, (7.7)

The superscripts pol and ω are used here for
differentiating the polarization- and frequency- parts of
the two-variable wave functions written in the form of
direct products of two-row columns.

As dimensionality of the single-photon Hilbert space is
d = 4, these states are d=4-qudits, rather than qubits.
Then, as well as qutrits are two-qubit states, the biphoton
ququarts are two-qudit states. Their basis state vectors
are given by all possible products of two different creation
operators times the vacuum state. But, if we assume that
two photons in each non-degenerate SPDC pair definitely
have different frequencies, the products of two creation
operators corresponding to coinciding frequencies have
to be excluded to give finally only four two-photon basis
state vectors

|Ψ(qqrt)
HH 〉 = a†Hha

†
Hl|0〉, |Ψ(qqrt)

HV 〉 = a†Hha
†
V l|0〉,

|Ψ(qqrt)
V H 〉 = a†V ha

†
Hl|0〉, |Ψ(qqrt)

V V 〉 = a†V ha
†
V l|0〉, (7.8)

where, of course, all creation operators commute with
each other. The basis wave functions corresponding to the
state vectors (7.8) are obtained with the help of general
rules of quantum electrodynamics (2.4):

Ψ
(qqrt)
HH =

(
1

0

)pol

1

⊗
(
1

0

)pol

2

⊗ 1√
2

[(
1

0

)ω

1

⊗
(
0

1

)ω

2

+

(
0

1

)ω

1

⊗
(
1

0

)ω

2

]

≡ 1√
2

{(
1
0
0
0

)

1

⊗
(

0
1
0
0

)

2

+

(
0
1
0
0

)

1

⊗
(

1
0
0
0

)

2

}
, (7.9)

Ψ
(qqrt)
HV =

1√
2

[(
1

0

)pol

1

⊗
(
0

1

)pol

2

⊗
(
1

0

)ω

1

⊗
(
0

1

)ω

2

+

(
0

1

)pol

1

⊗
(
1

0

)pol

2

⊗
(
0

1

)ω

1

⊗
(
1

0

)ω

2

]

≡ 1√
2

{(
1
0
0
0

)

1

⊗
(

0
0
0
1

)

2

+

(
0
0
0
1

)

1

⊗
(

1
0
0
0

)

2

}
, (7.10)
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Ψ
(qqrt)
VH =

1√
2

[(
0

1

)pol

1

⊗
(
1

0

)pol

2

⊗
(
1

0

)ω

1

⊗
(
0

1

)ω

2

+

(
1

0

)pol

1

⊗
(
0

1

)pol

2

(
0

1

)ω

1

⊗
(
1

0

)ω

2

]

≡ 1√
2

{(
0
0
1
0

)

1

⊗
(

0
1
0
0

)

2

+

(
0
1
0
0

)

1

⊗
(

0
0
1
0

)

2

}
, (7.11)

Ψ
(qqrt)
V V =

(
0

1

)pol

1

⊗
(
0

1

)pol

2

⊗ 1√
2

[(
1

0

)ω

1

⊗
(
0

1

)ω

2

+

(
0

1

)ω

1

⊗
(
1

0

)ω

2

]

≡ 1√
2

{(
0
0
1
0

)

1

⊗
(

0
0
0
1

)

2

+

(
0
0
0
1

)

1

⊗
(

0
0
1
0

)

2

}
. (7.12)

In a general form, the state vector and wave function of
the biphoton ququart are given by superpositions of four
basis state vectors (7.8) and four basis wave functions
(7.9)-(7.12)

|Ψ〉(qqrt) = C1|Ψ(qqrt)
HH 〉+ C2|Ψ(qqrt)

HV 〉
+C3|Ψ(qqrt)

VH 〉+ C4|Ψ(qqrt)
V V 〉 (7.13)

and

Ψ(qqrt) = C1Ψ
(qqrt)
HH + C2Ψ

(qqrt)
HV + C3Ψ

(qqrt)
VH + C4Ψ

(qqrt)
V V .
(7.14)

As it should be, both all basis wave functions (7.9)-
(7.12) and the general ququart wave function (7.14) are
symmetric with respect to the particle permutations 1⇀↽
2. Also these expressions take into account properly a
higher dimensionality of the biphoton ququarts compared
to qutrits and compared to the traditional simplified
vision of biphoton ququarts based on Eqs. (7.1)-(7.2).

Once again, dimensionality of the one-photon Hilbert
for non-degenerate photons is d = 4. The dimensionality
of the biphoton Hilbert space is D = d2 = 16.
The question is why do ququarts are characterized
by only 4 rather than 16 basis wave functions? A
general answer is because of some restrictions, owing
to which 12 basis wave functions are excluded. One of
these restrictions was mentioned above: we assume that
frequencies of photons are always different. This excludes
states |h, σ;h, σ′〉 and |l, σ; l, σ′〉, which give rise to 6
symmetric wave functions. Their exclusion does not have
fundamental reasons and is related rather with the most
often met experimental conditions. The second, deeply
fundamental restriction is symmetry. Six remaining and
excluded wave functions are antisymmetric, and they
cannot be realized with photons at all. Thus, in ququarts
all 12 excluded basis wave functions either are missing
in all possible superpositions or can be made present
symbolically but with obligatory zero coefficients, like

the only antisymmetric wave function in the qutrit wave
function (2.16). As well as in the case of qutrits, the
existence of ququarts with only 4 basis wave functions
is crucially related to the requirement of symmetry of all
biphoton wave functions.

B. Degree of entanglement

As known [23], in the case of pure two-particle states
the dimensionality of the single-particle Hilbert space
d determines directly the maximal achievable value
of the Schmidt entanglement parameter, Kmax = d.
Consequently, a two times higher dimensionality of
the double-qubit Hilbert space (compared to qubits)
doubles the maximal achievable degree of entanglement
of ququarts if it’s evaluated by the Schmidt entanglement
parameter, Kmax = 4 (to be compared with Kmax = 2 in
the case of qutrits). To find the entanglement quantifiers
of ququarts in a general case, following to the standard
procedure, we have to start with finding the density
matrix ρ(qqrt), corresponding to the wave function Ψ(qqrt)

(7.14). Dimensionality of ρ(qqrt) is 16 × 16 which is too
large to be shown explicitly. But the reduced density

matrix ρ
(qqrt)
r is much more compact, its dimensionality

is 4× 4 and, explicitly, it is given by

ρ(qqrt)r =

1
2

(
|C1|2 + |C2|2 0 C1C∗

3 + C2C∗
4 0

0 |C1|2 + |C3|2 0 C1C∗
2 + C3C∗

4
C∗
1C3 + C∗

2C4 0 |C3|2 + |C4|2 0

0 C∗
1C2 + C∗

3C4 0 |C2|2 + |C4|2

)

(7.15)

The derived expression for the 4 × 4 reduced density
matrix (7.15) differs significantly from the 2 × 2 density
matrix of Ref. [5] where ququarts were considered as
two-qubit states. As explained above, the key reasons
of this and other differences between this paper and
[5] and others are in the symmetry of wave functions
and in a higher dimensionality of ququarts compared to
qutrits properly taken into account in Eqs. (7.9)-(7.12)
and (7.14).

By calculating the squared reduced density matrix(
ρ
(qqrt)
r

)2
and its trace, we find that the Schmidt

entanglement parameter of ququarts is simply twice
larger than that obtained in the two-qubit model (7.4)

K =
2

1− 2|C1C4 − C2C3|2
= 2K2 qb. (7.16)

As for the concurrence, rigorously, its original Wootters’
definition [26] is invalid for two-qudit states with d > 2.
But instead, one can use the so called “I-concurrence”
[23], by definition, determined via the Schmidt

entanglement parameter K as CI =
√
2(1−K−1).

Defined in this way, the I-concurrence does not provide
any new information about entanglement of ququarts
compared to that provided by the Schmidt entanglement
parameter K. But the I-concurrence can be useful for
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comparison with other entanglement quantifiers, and
for comparison with results of the two-qubit model of
ququarts . In a general case Eq. (7.16) yields

CI =
√
1 + 2|C1C4 − C2C3|2. (7.17)

As it follows from Eqs. (7.16) and (7.17), the maximal
achievable values of K and CI for ququarts are Kmax = 4
and CI max =

√
3/2, in agreement with the general

expectations for qudits Kmax = d and CI max =√
2(1− d−1) [23]. The minimal values of the Schmidt

entanglement parameter and I-concurrence are achieved
when C1C4 = C2C3, and in this case K = Kmin = 2
and CI = CI min = 1. This means that all biphoton
ququarts are entangled and nonfactorable (in contrast to
this, earlier [5], in a two-qubit model, it was assumed that
at C1C4 = C2C3 ququarts are factorable). In particular,
all basis states of ququarts (7.9)-(7.12) are minimally
entangled. It may be interesting to note that the nature
of entanglement of different basis states is different.

The wave functions Ψ
(qqrt)
HH and Ψ

(qqrt)
V V are seen to be

factorized for polarization and frequency parts, and only

their frequency parts are entangled, i.e., the states Ψ
(qqrt)
HH

and Ψ
(qqrt)
V V have only a purely frequency entanglement.

On the other hand, the wave functions Ψ
(qqrt)
HV and Ψ

(qqrt)
VH

are not factorized for polarization and frequency parts,
and in these cases we have a nonseparable frequency-
polarization entanglement.

Some examples of maximally entangled ququarts are

1√
2

(
Ψ

(qqrt)
HH ±Ψ

(qqrt)
V V

) (
C1 = ±C4 = 1√

2
, C3 = C2 = 0

)
,

1√
2

(
Ψ

(qqrt)
HV ±Ψ

(qqrt)
VH

) (
C1 = C4 = 0, C2 = ±C3 = 1√

2

)
,

1
2

(
Ψ

(qqrt)
HH +Ψ

(qqrt)
HV +Ψ

(qqrt)
VH −Ψ

(qqrt)
V V

)
, (7.18)

and all functions similar to the last one but with the
only sign “minus” located in front of other terms, Ψ

(qqrt)
HH ,

Ψ
(qqrt)
HV or Ψ

(qqrt)
VH .

To see explicitly how the degree of entanglement of
ququarts changes from Kmin = 2 to Kmax = 4, let
us consider, for example, the case C1 = cosφ, C4 =
sinφ, C3 = C2 = 0, i.e., the wave function

Ψφ = cosφΨ
(qqrt)
HH + sinφΨ

(qqrt)
V V . (7.19)

For this state Eqs. (7.16) and (7.17) give K(φ) = 4/(1 +

cos2 2φ) and CI(φ) =
√
1 + 1

2 sin
2 2φ. These functions

are plotted in Fig. 4 together with the subsystem entropy
Sr(φ) = −∑4

i=1 λi log2 λi, where λi are eigenvalues of

the reduced density matrix ρ
(qqrt)
r (7.15). In the case

Ψ(qqrt) = Ψφ (7.19) the matrix ρ
(qqrt)
r φ is very simple

ρ
(qqrt)
r φ =




1
2 cos

2 φ 0 0 0
0 1

2 cos
2 φ 0 0

0 0 1
2 sin

2 φ 0
0 0 0 1

2 sin
2 φ


 .

(7.20)

Evidently, its eigenvalues are λ1 = λ2 = 1
2 cos

2 φ and

λ3 = λ4 = 1
2 sin

2 φ, which yields

Sr(φ) = 1− 2
(
cos2 φ log2 | cosφ|+ sin2 φ log2 | sinφ|

)
.

(7.21)

Рис. 4: The Schmidt entanglement parameter K(φ), I-concurrence

CI(φ), and subsystem entropy Sr(φ) for the ququart characterized

by the wave function Ψφ (7.19).

Eigenvalues of the reduced density matrix ρ
(qqrt)
r φ are

twice degenerate λ1 = λ2 and λ3 = λ4. If none of
them equals zero, the Schmidt decomposition of the
wave function Ψφ contains four terms of Schmidt-mode
products. However, at φ = 0, when the entropy Sr(φ)
is minimal, two of these eigenvalues turn zero, λ3 =
λ4 = 0, and two Schmidt-mode products in the Schmidt
decomposition disappear. It is the reason why in this
case the degree of entanglement is minimal. However,
the remaining two terms in the Schmidt decomposition
indicate that in the case φ = 0 the state Ψφ is entangled
and non-factorable. The degree of entanglement of the
state Ψφ is maximal when λ1 = λ2 = λ3 = λ4 = 1/4, i.e.,
when all four Schmidt-mode products enter the Schmidt
decomposition with equal weights, and this occurs at
φ = 45◦ and φ = 135◦.

In a general case, ququarts are multi-parametric
objects, and it’s rather difficult to show all their features
in a limited amount of pictures. However, it may be
interesting to show one example more, when the ququart
wave function has the form

Ψ′
φ =

cosφΨ
(qqrt)
HH + sinφΨ

(qqrt)
V V√

2
+

Ψ
(qqrt)
HV +Ψ

(qqrt)
V H

2
,

(7.22)

for which C1 = cosφ/
√
2, C4 = sinφ/

√
2, and C2 =

C3 = 1/2. The Schmidt entanglement parameter K(φ)
and I-concurrence C(φ) of the state (7.22) are shown in
Fig. 5. Asymmetry of these curves with respect to the
substitution φ→ π−φ indicates sensitivity of the degree
of entanglement with respect to the sign of the product
C1C3, i.e., to phases of these real constants.



14

Рис. 5: The Schmidt entanglement parameter K(φ), and I-

concurrence CI (φ) for the ququart characterized by the wave

function Ψφ (7.22).

To conclude this subsection, let us describe here
one example more of a rather peculiar polarization-
angular ququart obtainable from qutrits with the help
of a beam splitter and post-selection. As mentioned
earlier, polarization-frequency and polarization-angular
ququarts are equivalent. Nondegeneracy of photons can
be provided by different direction of photons with equal
frequencies in the noncollinear SPDC process. Another
way of providing noncollinear propagation of originally
collinear and frequency-degenerate photons is in using
a nonselective beam splitter. As discussed above in
Section 6A, after BS photons acquire new variables,
θ1 and θ2, which can take one of two values each,
0◦ and 90◦. The combined polarization-angular wave
function after BS is given by Eq. (6.1). This wave
function is not yet a complete analog of ququarts
considered above because of unsplit pairs in Fig. 3.
Mathematically they correspond to terms in Eq. (6.1)
proportional to δθ1,0δθ2,0 and δθ1,90◦δθ2,90◦ . In the case of
frequency nondegenerate biphoton states similar terms
would describe both photons with high or both with low
frequencies, which we have excluded (see the discussion
in the previous Subsection). Owing to these terms with
coinciding angles θ1 and θ2, as mentioned above, the
angular part of the combined wave function in Eq. (6.1)
does not provide any additional entanglement to the
polarization part Ψ (qutrit). However, if we make a post-
selection by killing (eliminating) in some way unsplit
pairs in both channels I and II of Fig. 3, we get a true
polarization-angular ququart with the wave function of
the form

Ψqqrt = Ψqtr(σ, σ′)
1√
2
[δθ1,0δθ2,90◦ + δθ1,90◦δθ2,0], (7.23)

where Ψqtr(σ, σ′) is an arbitrary qutrit wave function
and, as usual, σ and σ′ are polarization variables of
photons. Peculiarity of the ququart, characterized by the

wave function (7.23) consists in factorization of parts
depending on polarization and angular variables. For this
reason the total Schmidt entanglement parameter of the
state (7.23) appears to be factorable too:

Kqqrt = Kqtr ×Kangle, (7.24)

where Kqtr and Kangle are the Schmidt entanglement
parameters of the qutrit Ψqtr and of the angular part
of the wave function Ψqqrt, 1√

2
[δθ1,0δθ2,90◦ + δθ1,90◦δθ2,0].

Actually, evidently enough, the Schmidt entanglement
parameter of the state, characterized by the last wave
function equals two, Kangle = 2. For this reason Eq.
(7.24) takes the simplest form: Kqqrt = 2Kqtr, i.e., in
terms of the Schmidt entanglement parameter, the post-
selection after BS doubles the degree of entanglement
of the original qutrit. Though interesting enough, this
last result and factorization of the Schmidt entanglement
parameter described by Eq. (7.24) are specific features
of the ququart of the form (7.23). In a general case
the degree of entanglement of ququarts, characterized
by any entanglement quantifiers, is unseparable for
angular/frequency and polarization parts.

C. Measurements

A possible way for measuring directly parameters of
ququarts and, in particular, their degree of entanglement
is similar to that described above for qutrits and
illustrated by Fig. 3: the original biphoton beam has to
be split for two channels by a nonselective beam splitter
and a full set of coincidence measurements has to be
done in the xy and x′y′ bases of Fig. 3b. In difference
with qutrits, in addition to polarizers one has to install
frequency filters in front of detectors to count amounts
of photons in given frequency-polarization Hh, Hl, V h,
and V l. As in ququarts all basis biphoton states are of

the type a†ia
†
j |0〉 with i 6= j (where i and j numerate

above indicated modes), distribution of photons of split
pairs in channels I and II corresponds to the type, shown
in Fig. 3b. For this reason, if N tot

i,j are total amounts
of generated pairs with photons in modes i and j,
the amounts of the corresponding coincidence detector
counts are determined by equations similar to that of
the last formula in Eq. (6.3):

N
d (c)
j

∣∣∣
j
= N

d (c)
j

∣∣∣
i
=
η

4
N tot

i,j , (7.25)

with η denoting the efficiency of detectors. The full set
of data on coincidence amounts of counts can be used
further to find conditional probabilities for a photon “1”
to be in some mode i under the condition that the second
photon of the same pair is in some other mode j (similarly
to Eq. (6.7))

w
(c)
i

∣∣∣
j
=

N
d (c)
i

∣∣∣
j

∑
i,j N

d (c)
i

∣∣∣
j

(7.26)
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with the normalization condition
∑

i,j w
(c)
i

∣∣∣
j
= 1.

On the other hand, the conditional probabilities are
determined by diagonal elements of the full density
matrix with respect to both polarization and frequency
variables and of both photons. Directly from expressions
(7.9)-(7.12) for the basis wave functions of ququarts,
from the general expression (7.14) for the ququart wave
function, and from the definition of the density matrix
ρ = ΨΨ† we find the following series of relations between
the conditional probabilities and the parameters Ci of
ququarts

|C1|2 = 2w
(c)
Hh

∣∣∣
Hl

= 2w
(c)
Hl

∣∣∣
Hh
,

|C2|2 = 2w
(c)
Hh

∣∣∣
V l

= 2w
(c)
V l

∣∣∣
Hh
,

|C3|2 = 2w
(c)
Hl

∣∣∣
V h

= 2w
(c)
V h

∣∣∣
Hl
,

|C4|2 = 2w
(c)
V h

∣∣∣
V l

= 2w
(c)
V l

∣∣∣
V h
.

(7.27)

The same relations (7.25)-(7.27) between amounts of
detector counts, conditional probabilities and expansion
coefficients of the ququart wave function can be written
also in the x′y′ basis turned for 45◦ with respect to
the horizontal-vertical basis. Thus, all set of coincidence
measurements in two bases can be used to determine all
absolute values of ququarts parameters in both bases,
|Ci|2 and |Ci(45

◦)|2. Relations between Ci(45
◦) and Ci

are easily found in the same way as in the case of qutrits,
and in the case of ququarts they are given by

C1(45
◦) = 1

2 (C1 + C2 + C3 + C4) ,

C2(45
◦) = 1

2 (−C1 + C2 − C3 + C4) ,

C3(45
◦) = 1

2 (−C1 − C2 + C3 + C4) ,

C4(45
◦) = 1

2 (C1 − C2 − C3 + C4) .

(7.28)

The squared absolute values of expressions on the left-
and right-hand sides of Eqs. (7.28) take the form of
equations for the phases ϕ1,2,3,4 of the constants Ci.
For shortening formulas these equations can be written
grouped in pairs to give

|C1(45
◦)|2 + |C2(45

◦)|2 − 1
2 =

|C1||C3| cos(ϕ1 − ϕ3) + |C2||C4| cos(ϕ2 − ϕ4), (7.29)

|C1(45
◦)|2 + |C3(45

◦)|2 − 1
2 =

|C1||C2| cos(ϕ1 − ϕ2) + |C3||C4| cos(ϕ2 − ϕ4), (7.30)

|C1(45
◦)|2 + |C4(45

◦)|2 − 1
2 =

+|C1||C4| cos(ϕ1 − ϕ4) + |C2||C3| cos(ϕ2 − ϕ3). (7.31)

Because of normalization
∑

i |Ci(45
◦)|2 = 1, one can

get only three independent equations of the type (7.29)-
(7.31) from four Eqs. (7.28). The fourth equation for

finding four phases ϕ1,2,3,4 follows from the above
mentioned fact that the phase of the wave wave function
Ψ(qqrt) (7.14) as a whole does not affect any observable
quantities and can be arbitrarily chosen. For this reason
one can put some additional condition restriction for
phases, e.g., such as

ϕ1 + ϕ2 + ϕ3 + ϕ4 = 0. (7.32)

Four equations (7.29)-(7.32) are sufficient for finding
numerically all phases ϕ1,2,3,4 as soon as the squared
absolute values |Ci|2| and |Ci(45

◦)|2 are found from
coincidence measurements. Thus the procedure described
above provides a full reconstruction of the ququart
wave function Ψ(qqrt) (7.14) and, in particular, can be
used for determining the degree of entanglement. This
procedure serves as an alternative protocol of quantum
state tomography of ququarts described in the work [5].

Note that, in analogy with the case of qutrits,
determination of entanglement quantifiers of ququarts
from experimental data is simplified if the parameters
C1,2,3,4 are known in advance to be real. In this case the
key element of Eqs. (7.16) and (7.17) for the Schmidt
entanglement parameter and I-concurrence, |C1C4 −
C2C3|2 can be written as

|C1C4 − C2C3|2 = C2
1C

2
4 + C2

2C
2
3 − 2C1C4C2C3. (7.33)

On the other hand, by summing the squared first and
last lines of Eqs. (7.28) we get

C1C4 + C2C3 = C2
1 (45

◦) + C2
4 (45

◦)2 − 1
2 . (7.34)

Now, with a simple algebra, we find from Eqs. (7.33) and
(7.34) the following final expression for |C1C4 − C2C3|2

|C1C4 − C2C3|2 = 2
(
|C1|2|C4|2 + |C2|2|C3|2

)

−
[
|C1(45

◦)|2 + |C4(45
◦)|2 − 1

2

]2
, (7.35)

where all terms on the right-hand side are expressible via
conditional probabilities either in the original (xy) basis,
or in the basis turned for 45◦. This solves the problem of
determining the entanglement quantifiers K or CI .

8. DISCUSSION

One of the key elements of the approach of this
paper consists in the analysis how does the obligatory
symmetry of biphoton wave functions affect the particle
entanglement. The conclusion is that the symmetry
restrictions on biphoton states imposed by the Boze
statistics are found to be important not only for correct
calculations of the entanglement quantifiers but also for
existence of biphoton qutrits and ququarts as classes of
states with, correspondingly, only three and four basis
states. Actually, for biphoton states with dimensionality
D = 4 (qutrits) and D = 16 (ququarts) one can expect
appearance of, correspondingly, four and sixteen basis
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wave functions. In both cases such formations would be
more complicated than qutrits and ququarts. To return
to true qutrits and ququarts, we have to restrict the
amount of basis wave functions by excluding some of
them, and the exclusion has to result from some physics
rather than being made artificially. The key role in such
restriction of the amount of basis wave functions belongs
to the symmetry requirements. In the case of qutrits the
wave function to be excluded is the antisymmetric Bell
state Ψ− (2.15), which cannot arise in any superpositions
of purely polarization biphoton wave functions, because
its appearance would contradict to the Boze statistics of
photons. Alternatively, this fourth antisymmetric basis
wave function can be included in superpositions but with
obligatory zero coefficient, as in Eq. (2.16). In the case
of ququarts the situation is even more dramatic. To get
four basis wave functions instead of sixteen we have to
exclude twelve wave functions. Six of them are excluded
because we consider here only SPDC processes with non-
coinciding frequencies of photons, and the remaining six
basis wave functions are excluded because of symmetry
restrictions as antisymmetric ones and, hence, forbidden
by the Boze statistics. Thus, indeed, in the case of
biphoton ququarts, symmetry restrictions are crucially
important for existence of such class of states.

The question that is often raised concerns relations
between the fundamental entanglement arising owing
to symmetry of wave functions and “configurational”
entanglement arising owing to varying choice of
coefficients Ci in superpositions of basis wave functions
(2.11) and (7.14). As seen from our analysis, the
entanglement arising owing to symmetry is the intrinsic
feature of all basis wave functions of ququarts (7.9)-

(7.12) and of the qutrit’s basis wave function Ψqtr
HV (2.6),

(2.10). This entanglement is fixed and cannot be changed
by any basis transformations. On the other hand,
entanglement arising in superpositions of basis functions
depends on the coefficients in these superpositions.
In this sense one can speak about configurational
entanglement as an “addition” to entanglement arising
owing to symmetry of wave functions. But the word
“addition” should not be understood in this case as
summing different types of entanglement. In a general
case none of the entanglement quantifiers equals to a
sum or a product of the same quantifiers, related to
symmetry and to superposition of basis wave functions.
I.e., the symmetry and configurational entanglement
are unseparable from each other and together they
determine the degree of entanglement of ququarts
and qutrits. Related to this, it’s often assumed that
entanglement arising owing to symmetry is resourceless
whereas the configurational entanglement is resourceful
for applications such as protocols of quantum information
and quantum communication like quantum teleportation
[32], dense coding [33], quantum key distribution [34],
etc. Moreover, sometimes this idea is extrapolated to
the assumption that entanglement related to symmetry
can be ignored at all or “forgotten”. We think that

such formulations are excessive. As said above, symmetry
and configurational entanglements are unseparable from
each other, and it’s impossible to distinguish in a total
entanglement the resourceless and resourceful parts. On
the other hand, it’s a rather interesting and important
question what changes in applications of ququarts
analyzed earlier in the frame of the two-qubit model when
the latter is substituted by the above described two-qudit
picture. We hope to return to this manifold of problems
elsewhere.

In connection with different opinions on entanglement
related to symmetry of indistinguishable particles, it’s
worth mentioning the formulation by A. Peres [18]: “We
must now convince ourselves that this entanglement is
not a matter of concern: No quantum prediction, referring
to an atom located in our laboratory, is affected by the
mere presence of similar atoms in the remote universe”.
The second part of this statement is absolutely correct:
far objects cannot affect any measurements performed
solely with a laboratory object. But as for “not a matter
of concern”, it depends on for what and under what
conditions. For local laboratory measurements it’s not
a matter of concern, but measurements of the degree of
entanglement assume coincidence measurements carried
out in both laboratory and remote systems, and they
assume a possibility of communication between systems
for selecting only coinciding signals. Only if these
possibilities occur, we can formulate a question about
the degree of entanglement of the laboratory and remote
particles. Then, if particles are indistinguishable and if
their common state is pure, the entanglement related
to symmetry can be a matter of concern for correct
determining the total degree of entanglement of a
bipartite system. To specify a little bit further these
general speculations, let us consider the same example as
in [18]: two well separated identical one-electron atoms,
“a” and “b”, both in the ground states. Let the two-
electron state be pure and let the spin state of two
electrons be symmetric and non-entangled, |↑↑〉. Then
the coordinate wave function of two electrons is

ψ0(x1, x2) =[
ϕ0(x1 − a)ϕ0(x2 − b)− ϕ0(x2 − a)ϕ0(x1 − b)

]
√
2

, (8.1)

where x1 and x2 are positions of atomic electrons, a and
b are given positions of atomic nuclei, both x1,2 and a,
b can be vectors. We can assume that atoms are located
far enough for the wave functions ϕ0(x−a) and ϕ0(x−b)
to not overlap, which means that

∫
dxϕ∗

0(x − a)ϕ0(x −
b) = 0. Eq. (8.1) takes into account indistinguishability
of electrons and the necessary Fermi-Dirac symmetry
requirements ψ0(x1, x2) = −ψ0(x2, x1). Owing to this,
we cannot say, which of electrons, “1” or “2” is located
near the atom “a”, and which near the atom “b”. To
illustrate that, indeed, local measurements with one of
two atoms are not affected by antisymmetrization of the
wave function, we can consider, e.g., the process of laser
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excitation solely of an atom “a”. This situation can occur
if the laser field is focused around the point a and is zero
around b. The excited two-electron state with an electron
in the atom a being at an excited level, and in the atom
b - in the ground state has the wave function of the form:

ψ1(x1, x2) =[
ϕ1(x1 − a)ϕ0(x2 − b)− ϕ1(x2 − a)ϕ0(x1 − b)

]
√
2

, (8.2)

where ϕ1(x − a) is the electron wave function at the
excited level. As we don’t know which electron is located
near the atom “a”, we have to take the atom-light dipole
interaction in the form V cosωt with V = −eε0(t)[(x1 −
a) + (x2 − a))], where ε0 and ω are the field-strength
amplitude and frequency of the exciting field. The rate
of transitions found with the help of the Fermi Golden
Rule is given by

ẇ =
2π

h̄

∣∣∣∣
〈
ψ1

∣∣∣∣
V

2

∣∣∣∣ψ0

〉∣∣∣∣
2

δ(E1 − E0 − h̄ω)

≡ 2π

h̄

∣∣∣
〈
ϕ1(x)

∣∣∣
eε0x

2

∣∣∣ϕ0(x)
〉∣∣∣

2

δ(E1 − E0 − h̄ω), (8.3)

where E0 and E1 are energies of the ground and excited
atomic states. Identity of expressions in the upper and
lower lines of Eq. (8.3) confirms that for local excitations
only in one of two atoms the second atom does not affect
the rate of transitions at all and the latter can be found
without anisymmetrization of the two-electron wave
function, simply with ψ0 (8.1) and ψ1 (8.2) substituted
by

ψ̃0 = ϕ0(x1 − a)ϕ0(x2 − b), ψ̃1 = ϕ1(x1 − a)ϕ0(x2 − b).
(8.4)

However, if we are interested in whether the state of
two one-electron atoms in ground states is entangled or
not, we have to find some of its entanglement quantifiers.
E.g., the Schmidt entanglement parameter in the case of
continuous variables x1 and x2 is known [35] to be given
by

K−1 =

∫
dx1dx2dx

′
1dx

′
2 ψ0(x1, x2)ψ

∗
0(x

′
1, x2)

×ψ∗
0(x1, x

′
2)ψ0(x

′
1, x

′
2). (8.5)

For two remote atoms the integral on the right-hand side
equals 1

2 , which gives K = 2 and which means that
the state of two remote atoms characterized by a pure
two-electron wave function is always entangled. “Always”
means in this case as long as the state ψ0(x1, x2)
remains pure, i.e., as long as its purity is not hurt by
external factors. Also this means that two atoms have
to arise in a pure two-electron state. An example when
it’s true is the dissociation of a hydrogen molecule by
a Fourier-limited light field for two Hydrogen atoms.
An opposite example, when the state of electrons in
two remote atoms is hardly pure, is when the atoms
are obtained from different sources. In particular, the

two-electron state hardly is pure and hardly can be
described by a wave function when one of them is
produced in the Earth laboratory and another somewhere
in a remote Universe. For such atoms the quoted above
formulation of Ref. [18] is absolutely correct: remote
objects arising from different sources are non-entangled,
and symmetrization or antisymmetrization of their wave
functions has no sense because their common state
cannot be characterized by a bipartite wave function. But
for remote indistinguishable particles in a pure bipartite
state their entanglement arising owing to symmetry
can occur, can be important and measurable, and
is unseparable from the configurational entanglement
related to superposition of basis states.

9. CONCLUSIONS

To summarize, the consideration given above provided
a systematic description of biphoton qutrits and ququarts
and such their features as symmetry, dimensionality,
and entanglement. As both qutrits and ququarts are
two-bozon formations, their wave functions are obliged
to be symmetric with respect to permutations of
photon variables, and this condition is important for
correct evaluation of the degree of entanglement. In our
analysis the degree of entanglement is evaluated by such
entanglement quantifiers as the Schmidt entanglement
parameter, concurrence, and subsystem von Neumann
entropy. All of them are good for pure bipartite states,
they characterize the degree of entanglement in different
metrics but, of course, their predictions must be and
they are compatible with each other. The Schmidt-mode
analysis is also applied and shown to be very fruitful
for finding families of non-entangled, factorable qutrits.
For qutrits we found explicitly the most general three-
parametric families of non-entangled and maximally
entangled states. In particular, we showed that one
of the basis state of qutrits, in which photons have
different polarization (horizontal and vertical), belongs
to the family of maximally entangled qutrits. Some other
interesting features of qutrits are analyzed, such as,
e.g., anticorrelation of entanglement and polarization,
and so on. In the case of biphoton ququarts, even
more interesting, the traditional two-qubit model is
shown to be invalid. As ququarts are produced by
biphoton beams with nondegenerate photons (either in
frequencies or in directions of propagation), they have
more degrees of freedom than qutrits, e.g., polarization
and frequency. In such case frequencies of photons are
variables rather than simply some given numbers, and
frequency entanglement has to be taken into account
together with polarization entanglement. Thus, biphoton
ququarts are shown to be two-qudit rather than two-
qubit states, with the dimensionality of the one-photon
Hilbert space d = 4 and dimensionality of the two-
photon Hilbert space D = d2 = 16 (in contrast with
d = 2 and D = d2 = 4 in the case of qutrits). This
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new understanding of the physics of biphoton ququarts
gave new formulas for their entanglement quantifiers
(7.16) and (7.17). One of qualitative consequences of
these results is that all ququarts are entangled and
unseparable, in contrast to earlier predictions of the two-
qubit model. For both qutrits and ququarts, schemes of
their complete reconstruction from experimental data are
suggested. The schemes are based on using a nonselective
beam splitter and carrying out full sets of coincidence

photon-counting measurements in the usual horizontal-
vertical basis and in the basis turned for 45◦.
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