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Abstract

The paper generalizes the construction by stochastic flows of consistent utilities processes

introduced by M. Mrad and N. El Karoui in [17]. The market is incomplete and securities

are modeled as locally bounded positive semimartingales. Making minimal assumptions and

convex constraints on test-portfolios, we construct by composing two stochastic flows of home-

omorphisms, all the consistent stochastic utilities whose the optimal wealth process is a given

admissible portfolio, strictly increasing in initial capital. Proofs are essentially based on change

of variables techniques.

1 Introduction.

The purpose of this paper is to generalize the construction by stochastic flows introduced in

[17] in a Itô’s framework where securities are modeled as continuous Itô’s semimartingales.

∗With the financial support of the ”Fondation du Risque” and the Fédération des banques Françaises.
†Key Words. forward utility, performance criteria, horizon-unbiased utility, consistent utility, progressive utility,

portfolio optimization, optimal portfolio, duality, minimal martingal measure, Stochastic flows of homeomorphisms
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The concept of consistent stochastic utilities, also called ”forward dynamic utilities”, has been

introduced by M. Musiela and T. Zariphopoulou in 2003 [21, 20, 22, 24, 26] ; since this notion

appears in the literature in varied forms, in the work of T. Choulli, C. Stricker and L. Jia [1], V.

Henderson and D. Hobson [4], F. Berrier, M. Tehranchi and Rogers [9], G. Zitkovic [36] and in

the work of M. Mrad and N. El Karoui in [17]. Intuitively, a stochastic utility should represent,

possibly changing over time, individual preferences of an agent. The agent’s preferences are

affected over time by the information available on the market represented by the filtration

(Ft, t ≥ 0) defined on the probability space (Ω,P,F∞). For this, the agent starts with today’s

specification of his utility, u(x) , and then builds the process U(t, x) for t > 0 taking into

account the information flow given by (Ft, t ≥ 0). Consequently, its utility, denoted by U(t, x)

is a progressive process depending on time and wealth, t and x, which is as a function of x

strictly increasing and concave. These utility processes will be called progressive utilities in

that follows. In contrast to the classical literature, there is no pre-specified trading horizon at

the end of which the utility datum is assigned.

Working on incomplete market, the progressive utility process of an investor may satisfy

some additional properties on a convex class-test X of positive wealths. We study the op-

timality conditions in general way and we give an example of consistent utilities, based on

simple utility function, to illustrate one of the main difficulties of our study. In paragraph

2.4, we show the stability of the notion of consistent utility by change of numeraire and, then,

without loss of generality we consider the market martingale where admissible portfolios are

local martingales.

Our main contribution is the new approach by stochastic flows of consistent dynamic utilities,

proposed in Section 3. The idea is very simple and natural: suppose the optimal portfolio

denoted by X∗ is strictly increasing with respect to the initial capital and denoting by X the

reverse flow, then using the duality identity Ux(t,X
∗
t (x)) = Y(t, x) where Y/Ux(0, .) is the

optimal process of the dual problem yields Ux(t, x) = Y(t,X (t, x)). Finally we get U by inte-

gration. We then, by stochastic flows techniques, construct all consistent utilities generating

X∗ as optimal portfolio.

The paper is organized as follows. In the next section, we introduce the market model and we

define consistent stochastic utilities. Next we study the optimality conditions and we elaborate

on the question of duality and numeraire change. In section 3, we present our new approach.

We close the paper by a return (using numeraire change techniques) to initial market where
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wealths are not necessary local martingales.

2 Market Model and Consistent Stochastic Utilities.

The model of securities market consists of d + 1 assets one riskless asset with price S0 given

by dS0
t = S0

t rtdt and d risky assets. The price of the d risky assets are modeled as a locally

bounded positive semimartingales Si, i = 1, . . . , d defined on a filtered probability space

(Ω,Ft≥0,P), with the filtration (Ft)t≥0 satisfying the usual conditions, where F0 is assumed

to be trivial, i.e., generated by the P-null sets.

A (self−financing) portfolio is defined as a pair (x, φ) where the constant x is the initial value

of the portfolio and φ = (φi)1≤i≤d is a predictable S-integrable process specifying the amount

of each asset held in the portfolio. The value process X = (Xt)t≥0 of such portfolio φ is given

by
Xt

S0
t

=
x

S0
+

∫ t

0

φα

S0
α

d(
Sα

S0
α

), t ≥ 0. (1)

To facilitate the exposition, we restrict our study to the set X+ of wealth processes X which

are positive almost surely. Define for any X ∈ X+ the portfolio proportion by

πt =
φt

Xt
, if Xt 6= 0 and πs = 0 for s ≥ t if Xt = 0. (2)

a process which is {Ft}-progressively measurable. The components of πt represent the pro-

portions of wealth Xt invested in the respective assets at time t ≥ 0. The dynamics of wealth

processes (1) becomes

dXt

Xt
= rtdt+ πt.

(dSt

St
− rt1dt), t ≥ 0 (3)

where the d-dimensional vector such all components are equal to 1 is denoted by 1 and the

inner scalar product is denoted by ”.”.

Definition 2.1. A probability measure Q ∼ P is called an equivalent local martingale measure

if for any X ∈ X+, X
S0 is a local martingale under Q.

The family of equivalent local martingale measures will be denoted by M. We assume

throughout this paper that

M 6= ∅

This condition is intimately related to the absence of arbitrage opportunities on the security

market. See [7], [5] for a precise statement and references.
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2.1 Definition of X -consistent Stochastic Utilities.

In this paragraph we recall the concept of consistent utilities which has been introduced by

M. Musiela and T. Zariphopoulou [21, 20, 22, 24, 26] under the name ”forward utilities”,

also called ”forward performance processes”. A progressive utility U is a positive adapted

continuous random field U(t, x), such that t ≥ 0, x > 0 7→ U(t, x) is an increasing concave

function, (in short utility function).

Obviously, this very general definition of progressive utility has to be constrained to represent,

possibly changing over time, the individual preferences of an investor in a given financial

market. The idea is to calibrate these utilities with regard to some convex class (in particular

vector space) of positive wealth processes, denoted by X , on which utilities may have more

properties.

Definition 2.2 (X -consistent Utility). A X -consistent stochastic utility U(t, x) process

is a positive progressive utility, in particular t ≥ 0, x > 0 7→ U(t, x) is an increasing, strictly

concave function such that Ux(t, x) :=
∂
∂x

U(t, x) exists and continuous with the following prop-

erty:

• Consistency with the test-class For any admissible wealth process X ∈ X , E(U(t,Xt)) <

+∞ and

E(U(t,Xt)/Fs) ≤ U(s,Xs), ∀s ≤ t .a.s.

• Existence of optimal wealth For any initial wealth x > 0, there exists an optimal

wealth process X∗ ∈ X , such that X∗
0 = x), and U(s,X∗

s ) = E(U(t,X∗
t )/Fs) ∀s ≤ t.

In short for any admissible wealth X ∈ X , U(t,Xt) is a positive supermartingale and a

martingale for the optimal-benchmark wealth X∗.

The class X is a class of test portfolios which only allows to define the stochastic utility. Once

his utility defined, an investor can then turn to a portfolio optimization problem on the general

financial market to establish his optimal strategy or to calculate indifference prices. They are

two interpretation of X . X is chosen because it is rather rich with high liquidity, so that the

investor is able to specify his preferences. Second, the investor have no interest to invest in

this class and for this reason he use it only to define his utility.

The important novel feature of our definition of consistent dynamic utilities and this is

where our notion differs from that in the work of Musiela and Zariphopoulou [21, 20, 22, 24, 26],

Barrier et al. [9] and Zitkovic [36] is that: First, the wealth process X is not required to be
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discounted; this variation opens the door to a more general analysis as the question of numeraire

change. Second, the notion of class-test, that has not been introduced in the previous literature

gives more sense to the notion of progressive ”forward” utility, as explained above. Note also

that in the literature, consistent stochastic utilities are, in general, defined on the general set

X+. But one might wonder what remains to optimize after having built the utility.

Admissible Wealth Processes As the initial conditions of wealth processes has a par-

ticularly important role in this work, more precisions and definitions are necessary for the rest

of the paper.

Definition 2.3. • For s ≥ 0, a Fs-measurable random variable η is said to be s-attainable if

there exists X ∈ X such that Xs = η a.s.

• A wealth process X is said to be an admissible test portfolio if X ∈ X . Furthermore, a

wealth process X(s, η) starting at time s from η is said to be an admissible test portfolio, and

we write X(s, η) ∈ X (s, η), if there exists X ∈ X such that Xs = η, and Xt = Xt(s, η) for

t ≥ η.

To continue the investigations, a more precise assumption on the structure of the class X is

also needed.

Assumption 2.1 (Convexity). The class X is closed and convex in the sense that is for

s ≥ 0, ε ∈ [0, 1] and for any η, η′ s-admissible wealths

εX (s, η) + (1− ε)X (s, η′) ⊂ X (s, εη + (1− ε)η′).

2.2 Optimality Conditions.

In the remainder of this section we shall focus on optimality conditions. Assuming the optimal

portfolio X∗ to be increasing with respect to x, we shall prove the existence of a X -consistent

dynamic utility. Then, in Section 3.4.2 we extend this result to a fully characterization of all

X -consistent dynamic utilities that generate X∗ as optimal wealth.

Theorem 2.1. Let U be an X -consistent stochastic utility with optimal wealth process X∗.

Suppose that Ux = ∂
∂x

U exists and it is continuous, then

(OC) For any s-attainable wealths η, η′ > 0 and for any X(s, η) ∈ X (s, η′) the process
(

(Xt(s, η
′)−X∗

t (s, η))Ux(t,X
∗
t (s, η)), t ≥ s

)

is a supermartingale.

Furthermore, if the convex set X is homogeneous that is for any λ > 0 λX ⊂ X , then
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(i) The process
(

X∗
t (s, η)Ux(t,X

∗
t (s, η))

)

t≥s
is martingale.

(ii) For any s-attainable wealths η, η′ > 0, and any test-wealth X ∈ X (s, η′), the process
(

Xt(s, η
′)Ux(t,X

∗
t (s, η))

)

t≥s
is a supermartingale.

Before proceeding to the proof of this result, it is interesting to note that this optimality

conditions established in a general way are quite different from those of [17]. Indeed, in the

last paper the process Ux(t,X
∗
t ) is a state density process, in turn for any admissible wealth

X, XtUx(t,X
∗
t ) is a local martingale and a martingale if X = X∗. This is due essentially to

the structure of the class X which is, only, assumed to be convex in the present paper and

X = X+ (set of all positive wealth processes) in [17].

Proof. First remark, by convexity of X , that for any admissible wealth-test X(s, η′) ∈ X (s, η′)

and any ε ∈ [0, 1], the process ε
(

X(s, η′)−X∗(s, η)
)

+X∗(s, η′) is an admissible process starting

from ε(η′ − η) + η at time t = s. Consequently, by consistency property with the class X and

by martingale property of U(.,X∗
. (s, η)), it follows for t ≥ α ≥ s ≥ 0

E
(

U
(

t, ε(Xt(s, η
′)−X∗

t (s, η)) +X∗
t (s, η)

)

− U(t,X∗
t (s, η))/Fα

)

≤ U
(

α, ε(Xα(s, η
′)−X∗

α(s, η)) +X∗
α(s, η)

)

− U
(

α,X∗
α(s, η)

)

. (4)

Dividing by ε > 0 and denoting, for any t, η and η′, f(ε) the functional defined by

f(t, ε) :=
1

ε

[

U
(

t, ε
(

Xt(s, η
′)−X∗

t (s, η)
)

+X∗
t (s, η

′)
)

− U
(

t,X∗
t (s, η

′)
)

]

.

From the derivability assumption of U for any t, f(t, ε) goes to f(t, 0) when ε 7→ 0. By

this, the right hand side of last inequality converge almost surely to f(t, 0) = (Xt(s, η
′) −

X∗
t (s, η))Ux(t,X

∗
t (s, η)). To conclude, it remains to justify the passage to the limit under the

expectation sign. For this end, remark that by concavity and the increasing properties of

U(t, .) , ε 7→ f(t, ε) is a decreasing function with the same sign as
(

Xt(s, η
′)−X∗

t (s, η)
)

. Then,

on the set Xt(s, η
′) −X∗

t (s, η) ≥ 0, f(t, ε) is positive and increase to f(t, 0). Letting ε ց 0,

the conditional monotone convergence theorem implies

E
(

f(t, ε)1Xt(s,η′)≥X∗

t
(s,η)/Fα

)

−→ E
(

f(0)1Xt(s,η′)≥X∗

t
(s,η)/Fα

)

On the other hand, on the set Xt(s, η
′) − X∗

t (s, η) ≤ 0, −f(t, ε) is positive and increase to

−f(t, 0). The dominated convergence theorem applied, yields for t ≥ α ≥ s ≥ 0

E
(

f(t, ε)1Xt(s,η′)≤X∗

t
(s,η)/Fα

)

−→ E
(

f(0)1Xt(s,η′)≤X∗

t
(s,η)/Fα

)
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This justifies the passage to the limit on the inequality (4). Hence, it follows that

E
(

(

Xt(s, η
′)−X∗

t (s, η)
)

Ux(t,X
∗
t (s, η))/Fα

)

≤
(

Xα(s, η
′)−X∗

α(s, η)
)

Ux(α,X
∗
α(s, η)). (5)

Which proves (OC).

Let , now, focus on the the case where the convex set X is homogeneous. In this case

stability property of X by a positive multiplication implies that for any ε > −1, the wealth

(1 + ε)X∗(s, η) still admissible and hence, by the same argument as above, we deduce for

−1 < ε < 0 respectively ε > 0, the following inequalities

1

ε
E
(

U
(

t, (1 + ε)X∗
t (s, η)

)

− U
(

t,X∗
t (s, η)

)

/Fα

)

≥
1

ε

(

U
(

α, (1 + ε)X∗
α(s, η)

)

− U
(

α,X∗
α(s, η)

)

)

1

ε
E
(

U
(

t, (1 + ε)X∗
t (s, η)

)

− U
(

t,X∗
t (s, η)

)

/Fα

)

≤
1

ε

(

U
(

α, (1 + ε)X∗
α(s, η)

)

− U
(

α,X∗
α(s, η)

)

)

.

Passing to the limit ε → 0, yields

E
(

X∗
t (s, η)Ux(t,X

∗
t (s, η))/Fα

)

= X∗
α(s, η)Ux(α,X

∗
α(s, η)), ∀t ≥ α ≥ s ≥ 0

and (i) hold. Reconciling (i) and (OC) yields (ii).

2.3 Duality.

The use of convex duality in utility maximization and optimal stochastic control in general

has proven extremely fruitful. As it is established in [17] analysis of utility random fields is

no exception, the process Ux(t,X
∗
t ), t ≥ 0 is a State price density process which is optimal

to some dual problem. The idea here is to adopt a similar approach by duality in order to

prove the dual optimality of Ux(t,X
∗
t ), t ≥ 0. This will support the intuition and allows us a

constructive intuition on different difficulties encountered in the study of consistent progressive

utilities.

We start with a straightforward translation of the well-known Fenchel-Legendre conjugacy

to the random-field case. For a utility random field U we define the dual random field Ũ :

[0,+∞[×[0,+∞[×Ω, by

Ũ(t, y)
def
= max

x∈Q∗

+

(

U(t, x)− xy
)

, fort ≥ 0, y ≥ 0 (6)

By a simple derivation with respect to x, the maximum is achieved at x∗t = (Ux)
−1(t, y) =

−Ũy(t, y). In turn

Ũ(t, y) = U(t, I(t, y)) − y(Ux)
−1(t, y) (7)
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For the remainder of this section, assume that the set X to be homogeneous. Let Y denote the

set of all positive processes Y such that Y X is a supermartingale for any X ∈ X . Moreover,

define the class

Y (s, y) := {Y (s, y) ≥ 0 : (Yt(s, y)Xt, t ≥ s) supermartingale, ∀X ∈ X and Ys(s, y) = y}

and note that this sets contain the process Ux(t,X
∗).

As in the definition of stochastic utilities, we introduce in the following definition the s attain-

ability of a dual random variable κ.

Definition 2.4. For fixed s ≥ 0, a random variable κ is s-attainable if there exists an s-

attainable wealth η such that κ = Ux(s, η) a.s.

The goal of this section is now, the proof of the following theorem :

Theorem 2.2 (Duality). Assume the set X to be homogeneous. Then the convex conjugate

Ũ of an X -Consistent utility U , given by (6), satisfies

(i) for any t ≥ 0, y 7→ Ũ(t, y) is convex decreasing function.

(ii) for any Y (s, κ) ∈ Y (s, κ), we have

Ũ(s, κ) ≤ E(Ũ(t, Yt(s, κ))/Fs), t ≥ s, κ > 0. (8)

(iii) Suppose that κ is s-attainable that is, there exists an s-attainable wealth η such that

κ = Ux(s, η) a.s. Then there exists a unique optimal process Y ∗
t (s, κ) s.t.

Ũ(s, κ) = E(Ũ(t, Y ∗
t (s, κ))/Fs) = inf

Y (s,κ)∈Y (s,κ)
E(Ũ(t, Yt(s, y))/Fs), t ≥ s (9)

Furthermore, Y ∗
t (s, Ux(s, η)) = Ux(t,X

∗
t (s, η)) where we recall that X∗

t (s, η) denote the

optimal wealth process at time t associated to U , starting from the s-attainable capital η

at t = s.

The reader should note the difference between assertions (ii) and (iii) of this theorem. Indeed,

(ii) assert that inequality (8) is satisfied for any κ > 0 while assertion (iii) says that equality in

(8) hold if κ is s-admissible. This is, essentially , due to the fact that sets X (s, .) and Y (s, .)

are not in perfect duality because (Ux)
−1(.,Y (s, .)) * X (s, .), in general. In other terms,

existence of solutions is intimately related to the inverse image of Ux, i.e. (Ux)
−1(.,Y (s, .)).
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For more details see [18] for the classical case of optimization problem. For example, if U(0, .)

satisfies Inada conditions that is limx 7→0 Ux(0, x) = +∞, limx 7→+∞Ux(0, x) = 0 (or such that

asymptotic elasticity, introduced in [18], is less than 1 ) then any y > 0 is 0-admissible which

implies that for any y > 0 the dual problem (9) at s = 0 (replacing s by 0) admits a unique

solution.

Let us also point out that the homogeneity property of the set X plays a crucial role in

Theorem 2.2 in particular to establish inequality (8). Within this property, by optimality

condition (OC), we easily sees that Y is not the adequate set in which belongs Ux(t,X
∗
t ).

Furthermore, within homogeneity property the dual problem is ill posed because there is no

clear characterization of the dual set of process Y satisfying (OC).

Proof. Assertion (i) is a simple consequence of the definition of the convex conjugate. Let prove

(ii) and (iii). From definition of Fenchel Transform, it is immediate that for any Y (y) ∈ Y (y),

Ũ(t, Yt(y)) ≥ U(t,X∗
t (x))− Yt(y)X

∗
t (x).

Using definition of Y (s, κ) and the martingale property of (U(t,X∗
t ))t≥0, one easily, sees that,

for any s-attainable wealth η

E(Ũ(t, Yt(s, κ))/Fs) ≥ E(U(t,X∗
t (s, η))/Fs)− E(Yt(κ)X

∗
t (s, η)/Fs) ≥ U(s, η)− κη.

In turn, by the homogeneity property of X , we get for any λ > 0

E(Ũ(t, Yt(s, κ))/Fs) ≥ U(s, λη)− λκη.

let λ such that λη = (Ux)
−1(s, κ) then

E(Ũ(t, Yt(s, κ))/Fs) ≥ U(s, (Ux)
−1(s, κ)) − κ(Ux)

−1(s, κ) = Ũ(s, κ).

Which proves (ii). Now we turn to the case where κ is s-admissible. By assumption, there

exists an s-admissible wealth η such that Ux(s, η) = κ. Denote by
(

X∗
t (s, η)

)

t≥s
the associated

optimal process and by
(

Y ∗
t (s, κ)

)

t≥s
the process defined by

Y ∗
t (s, κ) = Ux(t,X

∗
t (s, (Ux)

−1(s, κ))) > 0.

and observe that

(Ux)
−1(t, Y ∗

t (s, κ)) = X∗
t (s, (Ux)

−1(s, κ))

9



which implies

Ũ(t, Y ∗
t (s, κ)) = U(t,X∗

t (s, (Ux)
−1(s, κ))) − Y ∗

t (s, κ)X
∗
t (s, (Ux)

−1(s, κ))).

Since U is an X consistent stochastic utility, from the martingale property of processes
(

X∗
t (s, η)Ux(t,X

∗
t (s, η))

)

t≥s
and

(

U(t,X∗
t (s, η))

)

t≥s
and by definition of

(

Y ∗
t (s, κ)

)

t≥s
we get

that
(

Ũ(t, Y ∗
t (s, κ))

)

t≥s
is martingale. In order to conclude, let us observe that by optimal-

ity conditions (Theorem 2.1) we have, also, that for any s-admissible η′ and any wealth-

test X ∈ X (s, η′), the process
(

Xt(s, η
′)Y ∗

t (s, κ)
)

t≥s
is a positive supermartingale and hence

Y ∗(s, κ) ∈ Y (s, κ). Finally using (ii),

inf
Y (s,κ)∈Y (s,κ)

E(Ũ(t, Yt(s, κ))/Fs) ≥ Ũ(s, κ) = E(Ũ(t, Y ∗
t (s, κ))/Fs)

≥ inf
Y (s,κ)∈Y (s,κ)

E(Ũ(t, Yt(s, κ))/Fs)

Which achieves the proof.

2.4 Stability by numeraire change.

We saw in the previous sections, how optimality conditions, in non-homogeneous case, which

satisfy the X -consistent utilities are not intuitive. Because it is more convenient and more

simpler to work with local martingales then semimartingales, the idea of this paragraph is

to simplify the market model, which allow us to simplify the approach and to develop a

constructive intuition about this study. The class X is only assumed convex, the goal of this

paragraph is then to prove the following result.

Theorem 2.3 (Stability by numeraire change).

Let U(t, x) be a stochastic field and let Y be a positive semimartingale, and denote by X Y the

class of processes defined by X Y = {X
Y
, X ∈ X }, then the process V defined by

V (t, x) = U(t, xYt) (10)

is an X Y -consistent stochastic utility if and only if U is an X -consistent stochastic utility.

Roughly speaking, the theorem says, that the notion of X -consistent stochastic utility is

preserved by numeraire change. In particular, as the set of equivalent martingale measure

10



is a nonempty, for any equivalent martingale measure M , this theorem shows that study-

ing X -consistent stochastic utilities is equivalent to study the X M -consistent utilities. The

advantage, here, is that the new wealth processes in X M are positive local martingales (in

particular a supermartingales). From this point, in the sequel, we will deep the study of our

utilities in the new market X M ,M ∈ M(X ).

Proof. To show this result it is enough to verify assertions of definition 2.2.

− Concavity : for t ≥ 0, x 7→ V (t, x) is increasing concave function, by definition .

− Consistency with the test-class X Y : For any test-process X̃ ∈ X Y , E
(

V (t, X̃t) =

U(t,Xt)
)

< +∞ a.s. and

E(V (t, X̃t)/Fs) = E(U(t,Xt)/Fs) ≤ U(s,Xs)
def
= V (s, X̃s)

− Existence of optimal: Let η̃ be an s-admissible wealth. As U is an X -consistent utility

and η = Ysη̃ is s-admissible wealth in the initial market, there exists an optimal wealth

process X∗(s, η) ∈ X (s, η),

U(s, η) = E(U(t,X∗
t (s, η))/Fs) = ess supX∈X (s,η) E(U(t,Xt(s, η))/Fs), ∀s ≤ t.

Taking X̃∗(s, η̃) = X∗(s, x)/Y yields, by definition of V and that of X Y we get

V (s, η̃) = U(s, η) = E(U(t,X∗
t (s, η))/Fs) = sup

X∈X (s,η)
E(U(t,Xt(s, η))/Fs)

= E(V (t, X̃∗
t (s, η̃))/Fs) = sup

X̃∈X Y (s,η̃)

E(V (t, X̃t(s, η̃))/Fs), ∀s ≤ t.

The proof is complete.

3 New approach by stochastic flows.

In this section, where X is only assumed to be convex class, we generalize the construction

of consistent progressive utilities proposed in [17] where the market securities are modeled as

a continuous semimartingale in a brownien market and where X is the set of all positives

wealth processes. We remind the reader that the results of the following sections are stated in

the martingale market and that similar results can be obtained for the initial market by using

results of Theorem 2.3. To simplify, we keep same notations as in Section 2: X for wealth’s

processes and X for the class-test. The main contribution of this section is the explicit

construction of progressive dynamic utilities by techniques of stochastic flows composition.

11



3.1 Optimality Conditions: martingale market.

We remind in this paragraph some results and notations, established in the previous section,

which will play crucial role in the sequel. Let U be an X -consistent stochastic utility, optimal-

ity conditions in the martingale market imply that the derivative Ux taken over the optimal

portfolio X∗, i.e. (Ux(t,X
∗
t (x))) plays the role of dual process in our study (Theorem 2.1). In

the case of homogeneous constraint (Ux(t,X
∗
t (x))) is a positive local martingale. Furthermore,

the local martingale normalized Ux(t,X
∗
t (x))/Ux(0, x) is the optimal dual process of the dual

optimization problem (9). For simplicity we denote it by (Y(t, x))t≥0,x>0. Notation Y serves

for recalling that this process plays the role of dual process and not a wealth process. We

remind, also, the conditions which have to satisfy necessarily optimum processes X∗(x) and

Y(., x) as we established them in Theorem 2.1 of paragraph 2.2. For it, we begin by defining a

set of properties to which we shall often refer afterwards. Except opposite mention, we assume

that the reference market is ”the martingale market”.

Definition 3.1. Let (X∗
t (x); t ≥ 0) and (Y(t, x); t ≥ 0) be two given stochastic fields. Con-

ditions (O∗) are :

(O1) For all x > 0, (X∗
t (x); t ≥ 0) is a local martingale and an admissible wealth process.

(OC) For any initial positive wealth’s x, x′ and any admissible wealth process X ∈ X (x′),

(Xt(x
′)−X∗

t (x))Y(t, x)); t ≥ 0) is submartingale.

Recall that conditions (O∗) are necessary conditions satisfied by the optimal portfolio (X∗
t (x); t ≥

0) and the random variable (Ux(t,X
∗
t (x)); t ≥ 0).

3.2 Main Idea.

Because we know several properties of Ux, the derivative of an X -consistent utility, along the

optimal trajectory, i.e, (Ux(t,X
∗
t (x)))) given in Theorem 2.1, the question is the following one:

can we obtain more information about the process Ux(t, x), itself, from these properties?

Although this can appear too much to ask, because we try to characterize the derivative

of a stochastic utility from its behavior on a very particular trajectory, but the answer to

this question is positive and simple. Suppose that the optimal wealth process X∗ is strictly

increasing with respect to its initial condition x. In turn the process Y(t, x) defined by

Y(t, x)
def
= Ux(t,X

∗
t (x)) (11)

12



is strictly decreasing with respect to x because U is strictly concave. Denoting by X (t, z) the

inverse flow of X∗(t, z), one, easily, sees that last identity becomes,

Ux(t, z) = Y(t,X (t, z)), ∀t ≥ 0, z > 0.

Integrating yields

U(t, x) =

∫ x

0
Y(t,X (t, z))dz, ∀t ≥ 0, z > 0.

This identity is the key of the construction which we propose, in the sequel, to characterize

X -consistent stochastic utilities.

Note that monotony assumption of the optimal wealth process is very natural.. For example,

in the results of Example ??, the optimal wealth is strictly monotonous and even twice differ-

entiable with respect to the initial capital x, under certain additional hypotheses. This is still

true within the framework of decreasing (in the time) consistent ”forward” utilities, studied

by M. Musiela et al [28] and Berrier et al. [9]. We can also find these properties of the optimal

wealth in the classic framework of portfolio optimization in the case of power, logarithmic,

exponential utilities and in the multitude of examples proposed by Huyên Pham in [10] and

by Ioannis Karatzas and Steven Shreve in [16]. To conclude, let us notice that, by absence of

arbitrage opportunities on the security market, the optimal wealth can be only increasing with

regard to the initial wealth, because otherwise by investing less money we could obtain the

same gain. Mathematically, technical problems can appear, what leads to put this property

as a hypothesis.

Assumption 3.1. Suppose the process (X∗
t (x); t ≥ 0) satisfying

∀t ≥ 0, x 7→ X∗
t (x) continuous and strictly increasing, s.t. X∗

t (0) = 0 X∗
t (∞) = ∞.

Remark 3.1. As a direct consequence of this hypothesis, we note that as the process Y(t, x)

plays the role of Ux(t,X
∗
t (x)) ( equation (11)), Y should satisfy also,

∀t ≥ 0, x 7→ Y(t, x), positive strictly decreasing, and s.t. Inada conditions hold if

Y(t, 0) = +∞, Y(t,∞) = 0.

13



3.3 Optimal wealth process as a stochastic flow.

Hypothesis 3.1 of monotony of the wealth process X∗
t (x) brings us naturally to consider it as

the value, leaving from x at t = 0, of a stochastic flow (X∗
t (s, x))s≤t, which we define below.

We can then consider the wealth as leaving from condition x at t = 0 or leaving from condition

z at date s.

Proposition 3.1. Let (X∗
t x)) be a strictly monotonous flow with respect to x with values in

[0,∞). Its inverse X (t, z) = (X∗
t (.))

−1(z) is also a strictly monotonous stochastic flow, defined

on [0,∞). We prolong the flow X∗ and its inverse X in the intermediate dates (s < t) in the

following way

X∗
t (s, x) = X∗

t (X (s, x)) (12)

Xs(t, z) = (X∗
t (s, .))

−1(z) = X∗
s (X (t, z)).

In particular, we have the following properties

(i) Equality X∗
t (s, x) = X∗

t (α,X
∗
α(s, x)) hold true for all 0 ≤ α ≤ s ≤ t a.s..

Identity Xs(t, z) = Xs(α,Xα(t, z)) hold true for all 0 ≤ s ≤ α ≤ t a.s..

(ii) Moreover, X∗
t (t, x) = x,Xt(t, z) = z, and

Xs(t,X
∗
t (s, x)) = x, X∗

t (s,Xs(t, x)) = x, for all 0 ≤ s ≤ t.

For more details, we invite the reader to see H.Kunita [19] for the general theory of stochastic

flows.

3.4 Construction of X -consistent utilities for a given optimum

portfolio: martingale market.

3.4.1 Existence of X -consistent utilities for a given optimum portfolio.

As we announced it in the introduction of this section, our objective, under strictly monotonous

hypothesis of wealth X∗, is to construct X -consistent utility of given optimum wealth X∗ on

the financial martingale market. The previous study shows that if optimum wealth is martin-

gale, (and not only a local martingale), the process Y s.t. Y(t, x)/Y(0, x) = 1 is admissible in

the sense that the pair (X∗,Y(0, x)) satisfy conditions O∗ of Definition 3.1. Let us choose initial

condition of Y(0, x) = ux(x) as the derivative of an utility function, satisfying Inada conditions

14



. The main idea (equation (12)) suggests a very simple form of an X -consistent utility u(t, x) of

given monotonous optimum wealth . If X (t, z) denote the inverse ofX∗
t (x), the concave increas-

ing process U(t, x) such that Ux(t, x) = ux(X (t, x)) is a good candidate to be an X -consistent

utility. Another remarkable property of this stochastic process is that Ux(t,X
∗
t (x)) = ux(x),

what is in another way to express that optimal dual process Y(t, x)/Y(0, x) is constant. This

is the main idea of the following result.

Theorem 3.2. Let X∗
t (x) an admissible portfolio assumed to be martingale and strictly

increasing with respect to the initial wealth. Denote by X (t, z) its inverse flow. Then for all

utility function u such that ux(X (t, z)) is locally integrable near z = 0, the stochastic process

U defined by

U(t, x) =

∫ x

0
ux(X (t, z))dz, U(t, 0) = 0 (13)

is an X -consistent utility in the martingale market. The associated optimal wealth process is

X∗ and the optimal dual process is constant equal to 1. Further, the convex conjugate of U

denoted by Ũ , is given by

Ũ(t, y) =

∫ +∞

y

X∗(t,−ũy(z))dz, (14)

The proof of Theorem 3.2 will be broken into several steps.

Lemma 3.3. For any s-attainable wealth η and any test-process (Xt(s, η); s ≤ t) ∈ X (s, η),

we have

E
(

U(t,Xt(s, η)/Fs

)

≤ E
(

U(t,X∗
t (s, η))/Fs

)

(15)

Proof. By concavity of the process U(t, x), we have

U
(

t,Xt(s, η)
)

− U
(

t,X∗
t (s, η)

)

≤
(

Xt(s, η)−X∗
t (s, η)

)

Ux

(

t,X∗
t (s, η)

)

.

From Definition (22) of U , we get that Ux

(

t,X∗
t (s, η)

)

= ux(X (t,X∗
t (s, η))). On the other

hand, using proposition 3.1, we have X∗
t (s, η) = X∗

t (X (s, η)) and hence, by definition of X , we

obtain Ux

(

t,X∗
t (s, η)

)

= ux(X (s, η)) = Ux(s, η). The inequality bellow becomes

U
(

t,Xt(s, η)
)

− U
(

t,X∗
t (s, η)

)

≤
(

Xt(s, η) −X∗
t (s, η)

)

Ux

(

t, η
)

. (16)
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We have also that (X∗
t (s, η), t ≥ 0) is a martingale by assumption and (Xt(s, η), t ≥ 0) is a

supermartingale because Xt(s, η) is an admissible wealth-test in the martingale market. Those

properties, together with (16), imply

E
(

U
(

t,Xt(s, η)
)

− U
(

t,X∗
t (s, η)

)

/Fs

)

≤ E
(

(Xt(s, η)−X∗
t (s, η)

)

/Fs

)

Ux

(

s, η
)

≤ 0.

This will prove the validity of (15).

Lemma 3.4. For all s ≥ 0 and for any s-admissible wealth test η,

U(t,X∗
t (s, η)) = Ux(s, η)X

∗
t (s, η)−

∫ X (s,η)

0
X∗

t (z)dux(z)

and it is a martingale.

Proof. By definition,

U(t,X∗
t (s, x)) =

∫ X∗

t
(s,x)

0
ux(X (t, z))dz

Consider the increasing change of variable z′ = X (t, z) or equivalently z = X∗
t (z

′). Using

identity X (t,X∗
t (s, x)) = X (s, z) it follows

U(t,X∗
t (s, x)) =

∫ X (s,x)

0
ux(z) dz X

∗
t (z)

Integration by parts with integrability assumptions imply

U(t,X∗
t (s, x)) = ux(X (s, x))X∗

t (s, x)−

∫ X (s,x)

0
X∗

t (z)dux(z).

Replacing x by η and using the fact that ux(X (s, x)) = Ux(s, x) yields the desired identity

U(t,X∗
t (s, η)) = Ux(s, η)X

∗
t (s, η) −

∫ X (s,η)

0
X∗

t (z)dux(z).

While (X∗
t (s, η), t ≥ s) is a martingale and Ux(s, η) is Fs-mesurable Ux(s, η)X

∗
t (s, η), t ≥

s is a martingale. Using the Fubini-Tonelli theorem, the integral on ux(z) of X∗
t (z) is a

martingale. Consequently, as a sum of two martingales, the sequence of random variables

(U(t,X∗
t (s, x)), t ≥ s) is a martingale.

16



We are now able to proof Theorem 3.2.

Proof. (Theorem 3.2) Since u is an utility function 1 and X is strictly increasing, U(t, .) is a

strictly concave and increasing function. To conclude, we have to check that the above Lemmas

imply assertions ii) and iii) of Definition 2.2.

Let (Xt(s, η); s ≤ t) ∈ X (s, η) be an admissible wealth process, we have, using Lemmas 3.3

and 3.4,

E
(

U(t,Xt(s, η)/Fs

)

≤ E
(

U(t,X∗
t (s, η))/Fs

)

= U(s, η)

Which proves the consistency with the class-test X . Existence and uniqueness of optimal is a

simple consequence of X∗-admissibility and strict concavity of U , so that we may deduce that

U is an X -consistent stochastic utility with X∗ as optimal portfolio. Note that (23) holds

from definition of U and that optimal dual process is given by Ux(t,X
∗
t (s, η))/Ux(s, η) which

is equal to one by construction.

Remark 3.2. Let us note that, if the process Xt(s, x) defined by

Xt(s, x) = Xt(X (s, x)) (17)

are admissible wealth-test, then we can replace η in the previous two Lemmas, simply, by x.

There is no modifications to be brought in proofs. In other words, if we can start at any time

s from any x ∈ R+ then, replacing Xt(s, η) by Xt(s, x) and X∗
t (s, η) by X∗(s, x), Lemmas 3.3

and 3.4 still valid.

3.4.2 Construction of all X -consistent utilities for a given optimum port-

folio.

We showed in Theorem 3.2 that for every increasing wealth processX∗, suchX∗ is a martingale,

we can construct a consistent utilities of optimal wealth X∗. The feature of these consistent

utilities, defined by (22), is that the optimal dual process is fixed to 1. In order to characterize

all consistent utilities with given optimal portfolio X∗, we consider more general class of

processes Y such that optimality conditions O∗ are satisfied for the pair (X∗,Y). As we saw

it, the intuition is to characterize utilities U such that Ux(t, x) = YoX (t, x), where X (t, x) is

the inverse flow of X∗. The monotony condition of X∗ draw away that the stochastic flow Y

1u is a strictly concave and increasing function
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must be decreasing to guarantee that Ux(t, x) is decreasing. To resume, in the sequel we, only,

consider pairs (X∗,Y) of processes satisfying

Assumption 3.2. (A1) The process (X∗
t (x);x ≥ 0, t ≥ 0) is strictly increasing from 0 to

+∞ while (Y(t, x);x ≥ 0, t ≥ 0), according to remark 3.1, is strictly decreasing from +∞

to 0 such that Y(t, x) is locally integrable near x = 0. Y(0, x) is a strictly decreasing

functional, denoted by ux(x).

(A2) The pair (X∗,Y) satisfy O∗.

It is important to notice that martingale property (assertion (ii) of Theorem 2.1) of the process
(

X∗(x)tY(t, x); t ≥ 0
)

hold true with X∗ replaced by his derivative (if it exists) DxX
x with

respect to x . To justify passage on the limit and furthermore, in order to establish the main

result of this section, we suppose that assertions of the following domination assumption hold

true.

Assumption 3.3. H1 local) For all x, there exists an integrable positif adapted process,

Ut(x) > 0 such that, if we denote by B(x, α) the ball of radius α > 0 centered at x,

∀y, y′ ∈ B(x, α), |X∗
t (y)−X∗

t (y
′)| < |y − y′|Ut(x), t ≥ 0 (18)

H2 global) Ut(x) is increasing with respect to x and U I
t (x) =

∫ x

0 Y(t, z)Ut(z)dz is integrable

for all t ≥ 0.

Let us point out that this hypothesis is introduced only to justify result of the following

proposition. Summing up, under this assumption

Proposition 3.5. Let assumption 3.3 hold. If the derivative with respect to x of the increasing

process X∗
t (x) denoted by DxX

∗
t (x) exists in any point x, then Y(t, x)Dx X

∗
t (x) is a martingale.

Otherwise, without derivability assumption, the process
∫ x

0
Y(t, z)dzX

∗
t (z), (19)

is also a martingale.

We show in the proof of Theorem 3.6, that quantity

∫ X (s,η)

0
Y(t, z)dzX

∗
t (z).
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correspond to U(t,X∗
t (s, η)) where U is a process which we define afterwards. Particularly,

this proposition is other than a generalization of Lemma 3.4 where we replace deterministic

quantity ux with process Y.

Proof. a) First, suppose X∗
t (x) is differentiable with respect to x. For 0 < ǫ < α, the process

Y(t, x)
(

X∗
t (x + ǫ) −X∗

t (x)
)

is a positive supermartingale (assertion ((OC) of Theorem 2.1).

By assumption 3.3 the right derivative with respect to ǫ, Y(t, x)D+
x X∗

t (x) is a positive super-

martingale.

Furthermore, the case when the set X of admissible wealth is homogeneous,

Y(t, x)
(

X∗
t (x)−X∗

t (x− ǫ)
)

is a positive local martingale. Assumption 3.3 implies at once that this local martingale is a

martingale and that this martingale property is preserved in passing to the limit when ǫ goes

to 0. The result follows by differentiability of X∗
t (x).

In the general case, Y(t, x)
(

X∗
t (x)−X∗

t (x−ǫ)
)

is a positive submartingale. Once again, the hy-

pothesis 3.3 is used to show that we can again pass to the limit and deduct that Y(t, x)D−
x X

∗
t (x)

is a positive submartingale. From derivability of X∗, D−
x X

∗
t (x) = D+

x X
∗
t (x) = DxX

∗
t (x) and

then the process Y(t, x)DxX
∗
t (x) is, consequently, a sub and supermartingale and therefore

martingale.

b) In the general case, without differentiability assumption on X∗, we use Darboux sum to

study the properties of S(x) =
∫ x

0 Y(t, z)dzX
∗
t (z). We partition the interval [0, x] into N

subintervals ]zn, zn+1] where the mesh approaches zero. To approach the integral (19) by

below respectively by above we consider respectively the following sequences

SN (t, x) =

n=N−1
∑

n=0

Y(t, zn)
(

X∗
t (zn+1)−X∗

t (zn)
)

S′
N (t, x) =

n=N−1
∑

n=0

Y(t, zn+1)
(

X∗
t (zn+1)−X∗

t (zn)
)

.

By the same arguments as above, the sequence SN (t, x) is a positive supermartingale, while

the sequence S′
N (t, x) is a positive sub-martingale, and a positive local martingale if X is

homogeneous. In all cases, by hypothesis 3.3, the positive processes SN (t, x) and S′
N (t, x) are
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bounded above by

S̄N (t, x) :=

n=N−1
∑

n=0

Y(t, zn+1)Ut(zn+1)

Moreover, under assertion H2 global) of hypothesis 3.3 , S̄N (t, x) is bounded above by U I
t (x) =

∫ x

0 Y(t, z)Ut(z)dz. As the properties of sub and supermartingale are preserved in passing to

the limit it follows that
∫ x

0 Y(t, z)dzX
∗
t (x) is a martingale.

We have now all elements to characterize consistent utilities of given optimal wealth.

Theorem 3.6. Let (X∗,Y) a pair of strictly positif processes satisfying assumptions 3.2 and

3.3, such that Y(t, x) is locally integrable near x = 0 and Y(t, 0) = +∞, Y(t,+∞) = 0. Let

X the inverse flow of X∗, then the concave increasing process U defined by

U(t, x) =

∫ x

0
Y(t,X (t, z))dz (20)

is an X -consistent stochastic utility on the martingale market with u as the initial function,

X∗ as the optimal wealth process. The optimal dual process is Y(t, x)/Y(0, x) and the convex

conjugate is given by

Ũ(t, y) =

∫ +∞

y

X∗
t ((Y)

−1(t, z))dz. (21)

In Theorem 3.2, for a given initial utility, we construct an X -consistent utility of given op-

timal portfolio (martingale). The extension which we give here which, up-technical points,

characterizes all the X -consistent utilities equivalent to the previous one (in the sense that

they gives the same optimal portfolio process). This characterization expresses only how we

have to diffuse the function ux(x) to stay within the framework of the X -consistent utilities.

The answer is intuitive because it expresses that it is enough to keep a monotonous flow of

martingale Y which do not influence the reference market.

Proof. The proof is made in two step, as in the construction of the previous section. The

consistency with the universe of investment is based on two essential properties:

− On one hand on the fact that (U(t,X∗
t (s, η)), t ≥ s) is a martingale.

− On the other hand, the consistency with the class-test X (s, η).

There is no modifications to be brought to the proof of the theorem 3.2, the consistency with

the universe of investment is automatic if we show U(t,X∗
t (x)) is a martingale. To be made, we

proceed as in the previous example by writing that U(t,X∗
t (s, η)) =

∫X∗

t
(s,η)

0 YoX (t, z′)dz′. Let
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us make the change of variable X (t, z′) = z, consequently, because X (t,X∗
t (s, η)) = X (s, η),

we get

U(t,X∗
t (s, η)) =

∫ X (s,η)

0
Y(t, z)dz(X

∗
t (z))

Finally, by proposition 3.5,
(

∫ X (s,η)
0 Y(t, z)dz(X

∗
t (z)), t ≥ s

)

is a martingale and, hence,
(

U(t,X∗
t (s, η)), t ≥ s

)

is a martingale and the proof is complete.

4 Return to Initial Market.

As our purpose at the beginning of this paper is to study the consistent utilities in the universe

of investment describes in the paragraph 2, we give in this section the equivalents of the results

of the previous paragraphs established in the framework of martingale market.

Theorem 4.1. Let M be an equivalent local martingale and let X∗
t (x) be an admissible strictly

increasing with respect to the initial wealth. Denote by X (t, z) its inverse flow. Assume that

X∗M is a martingale. Then for all utility function u such that ux(X (t, z)) is locally integrable

near z = 0, the stochastic process U defined by

U(t, x) = Mt

∫ x

0
ux(X (t, z))dz, U(t, 0) = 0 (22)

is an X -consistent utility in the initial market. The associated optimal wealth process is X∗

and the optimal dual process is M . Further, the convex conjugate of U denoted by Ũ , is given

by

Ũ(t, y) =

∫ +∞

y

X∗(t,−ũy(
z

Mt
))dz, (23)

The proof of this result proceeds exactly as the proof of Theorem 3.2 and it is based on Lemma

3.3 (established in this context using the fact that (Ms,tX
∗
t (s, η))t≥s is a martingale) and the

equivalent of Lemma 3.4 which is

Lemma 4.2. Denote by (Ms,t)t≥s the process (Mt/Ms)t≥s, for all s ≥ 0 and for any s-

admissible wealth test η,

U(t,X∗
t (s, η)) = Ux(s, η)Ms,tX

∗
t (s, η)−Ms,t

∫ X (s,η)

0
X∗

t (z)dux(z)

and it is a martingale.
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Also the identity in this result is obtained by the same change of variable as in Lemma 3.4

and the martingale property is achieved using the fact that (Ms,tX
∗
t (s, η))t≥s is a martingale)

Now, let us turn to the equivalent of Theorem 3.6. For that purpose, it is important to to

remind some notations and results of the previous section. We recall essentially the optimality

conditions in this market.

Let (X∗,Y) be a pair of processes satisfying

Assumption 4.1.

(O1’) The process (X∗
t (x);x ≥ 0, t ≥ 0) is admissible wealth process strictly increasing from

0 to +∞.

(O2’) While (Y(t, x);x ≥ 0, t ≥ 0) is strictly decreasing from +∞ to 0 such that Y(t, x) is a

locally integrable near x = 0.

(OC) For any initial positif wealth’s x, x′ and any admissible wealth process X ∈ X (x′),

(Xt(x
′)−X∗

t (x))Y(t, x)); t ≥ 0) is a submartingale.

Remark 4.1. Note that this hypothesis is the same as assumptions 3.2 in the martingale

market. In fact they are valid for the initial and the martingal market.

In analogy to Theorem 3.6, we establish the following main result in the market described in

2.

Theorem 4.3 (Return to Initial Market). Let (X∗,Y) be a pair of strictly positif processes

satisfying assumptions 4.1 and 3.3. Let X the inverse flow of X∗ then the concave increasing

process U defined by

U(t, x) =

∫ x

0
Y(t,X (t, z))dz (24)

is an X -consistent stochastic utility on the martingale market with u as the initial function,

X∗ as the optimal wealth process. The optimal dual process is Y(t, x)/Y(0, x) and the convex

conjugate is given by

Ũ(t, y) =

∫ +∞

y

X∗
t ((Y)

−1(t, z))dz. (25)

Proof. There is no modifications to be brought in the proof of Theorem 3.6 because the fact

that the test-wealths X ∈ X are local martingales is not so important and only optimality

conditions (OC) and monotony properties of X∗ and Y are needed, and they are the same as

in the market martingale as we saw above.
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[3] J. Cvitanić and I. Karatzas. Convex duality in constrained portfolio optimization. Ann.

Appl. Probab., 2(4):767–818, 1992.

[4] V. Henderson D. and Hobson. Horizon-unbiased utility functions. Stochastic Process.

Appl., 117(11):1621–1641, 2007.

[5] F. Delbaen and W. Schachermayer. A general version of the fundamental theorem of asset

pricing. Math. Ann., 300(3):463–520, 1994.

[6] F. Delbaen and W. Schachermayer. The no-arbitrage property under a change of
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