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We demonstrate that the two-dimensional AKLT state on a honeycomb lattice is a universal
resource for measurement-based quantum computation. Our argument proceeds by reduction of
the AKLT state to a 2D cluster state, which is already known to be universal, and consists of
two steps. First, we devise a local POVM by which the AKLT state is mapped to a random 2D
graph state. Second, we show by Monte Carlo simulations that the connectivity properties of these
random graphs are governed by percolation, and that typical graphs are in the connected phase.
The corresponding graph states can then be transformed to 2D cluster states.

PACS numbers:

I. INTRODUCTION

Quantum computation promises exponential speedup
over classical computation by exploiting the quantum
mechanical nature of physical processes, such as unitary
evolution, superposition and measurement [1]. In addi-
tion to the standard circuit models and adiabatic evolu-
tion of quantum computation based on unitarity, surpris-
ingly, local measurement alone provides the same power
of computation, given only a prior sufficiently entangled
state [2]. Cluster states are the first known resource
states for such measurement-based quantum computa-
tion (MBQC) [2, 3]. Cluster states of small size were
created with photons [4]. They can also be created with
active Ising-type interactions, and were demonstrated in
cold-atom systems [5]. They also arise as the unique
ground state of five-body interacting Hamiltonian on a
square lattice; however, they cannot be the exact unique
ground state of any two-body Hamiltonian [6, 7]. Fun-
damentally, could there be unique ground states of any
two-body interacting Hamiltonian that are universal re-
sources?

Indeed, resource states other than cluster states for
MBQC were later devised via a valence-bond-solid pic-
ture, and the computation is performed in the so-called
correlation space [8, 9]. These states can have local
Hilbert-space dimension greater than that of a spin-1/2.
For example, the 1D spin-1 AKLT state [10], first appear-
ing in connection with Haldane’s conjecture on the spec-
tral gap of isotropic integer-spin chains [11], can actually
be used to implement one-qubit gates [9, 12]. This was
recently demonstrated with photons [13]. Even though
1D AKLT chains alone are not sufficient for universal
quantum computation, further active coupling of many
such chains can in principle implement quantum compu-
tation [14].

A universal resource state can therefore only exist in
spatial dimensions greater than one. In searching for
such resourceful ground states of physically reasonable
Hamiltonians, Chen et al. made some important progress
by constructing a spin-5/2 resourceful state on a honey-
comb lattice, which is an unique ground state of a two-
body interacting Hamiltonian [15]. Later Cai et al. ap-

proached this issue by patching ground states of AKLT
chains (of mixed spin-3/2 and spin-1/2 entities) into an
effective 2D spin-3/2 state [16]. This construction re-
duced the local Hilbert-space dimension from 6 of Chen
et al. [15] to 4. However, both engineered Hamiltonians,
even though consisting of only two-body interaction, turn
out be complicated and possess less symmetry than the
original AKLT Hamiltonians.

It remains open whether any of the original 2D AKLT
states can be universal resources for MBQC. Here we
show that this is indeed the case. The ground state of the
AKLT model (of spin-3/2) on the 2D honeycomb lattice
can be reduced to a two-dimensional cluster state by local
operations. This transformation proceeds in two steps.
First, the AKLT state is mapped to a random encoded
graph state by a local POVM. Second, if this graph state
is sufficiently connected, it can be further transformed by
local measurements into a two-dimensional cluster state.
In a Monte Carlo simulation, we demonstrate that the
required connectivity properties hold for typical graphs.
Beyond honeycomb, our method applies to any trivalent
lattice.

II. AKLT STATES, GRAPH STATES AND THE
REDUCTION

In order to show that a state can be universal for
MBQC, there are two possible routes: (1) by constructing
an measurement scheme for universal gates, as was done
in the original one-way computer [2] or the valence-bond
approach [8, 9]; (2) by showing that the state can be con-
verted to any of the existing known resource states [17–
19] by local measurement, such as the cluster state [3].
We shall adopt the latter route and show that the AKLT
state can be reduced to a cluster state.

The AKLT state on the two-dimensional honeycomb L
can be described in the following way. First, each vertex
or site v of L contains three virtual spin-1/2 particles,
lying at the ends of the three incoming edges (or bonds).
The two virtual spins residing on the two ends of an edge
e = {u, v} linking the two nearest neighbors u and v
are in the singlet state: |φ〉e ≡ |01〉 − |10〉 (omitting the
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normalization). (Note that |0〉 ≡ | ↑〉 and |1〉 ≡ | ↓〉 are
the two basis states of spin-1/2.) Then at each lattice
site v, a projection is made on the three virtual spins
into the symmetric subspace

PS,v ≡ |000〉〈000|+ |W 〉〈W |+ |W 〉〈W |+ |111〉〈111|,(1)

|W 〉 ≡ 1√
3

(|001〉+ |010〉+ |100〉), (2)

|W 〉 ≡ 1√
3

(|110〉+ |101〉+ |011〉), (3)

where the four states |000〉, |111〉, |W 〉 and |W 〉 constitute
the basis states for the symmetric subspace of three spin-
1/2 particles and they can also be regarded as the four
basis states for a spin-3/2 particle |3/2, 3/2〉, |3/2,−3/2〉,
|3/2, 1/2〉 and |3/2,−1/2〉, respectively, via the standard
addition of angular momenta. Thus the AKLT state on
the honeycomb lattice can be viewed as one with three
virtual spin-1/2 particles per site, written as

|AKLT〉 :=
⊗

v∈V (L)

PS,v
⊗

e∈E(L)

|φ〉e, (4)

where we use V (L) and E(L) to denote the set of vertices
and edges, respectively, of graph L. This virtual spin-1/2
picture can also be described by a Schwinger boson rep-
resentation [20], and is particularly useful in construct-
ing a graph state via the stabilizer formalism, discussed
below. The AKLT state can also be regarded a state
of spin-3/2 particles via a further mapping at each site
Q ≡ |3/2, 3/2〉〈000|+ |3/2,−3/2〉〈111|+ |3/2, 1/2〉〈W |+
|3/2,−1/2〉〈W |). The resultant spin-3/2 AKLT state is
the unique ground state of a spin-3/2 isotropic two-body
Hamiltonian and has exponential decay in the correla-
tions, indicating a gap in the spectrum [10].

Next, we give the definition of a graph state |G〉 of
graph G, to which we shall prove that the AKLT state
can be locally converted. A graph state is defined via
the invariance under the action of a set of commuting
operators Kv (namely, the stabilizer generators) [3, 21]

Kv|G〉 = |G〉, ∀v ∈ V (G), (5)

Kv ≡ Xv

⊗
u∈nb(v)

Zu = Xv

⊗
u∈V (G)

(Zu)[A(G)]uv , (6)

where nb(v) denotes the neighbors of vertex v, i.e., the
subset of vertices that are connected to v via an edge
in the graph G, A(G) is the adjacency matrix of the
graph G [22] and X ≡ σx, Y ≡ σy and Z ≡ σz are
the three Pauli matrices. A cluster state is an example
of graph states with the underlying graph being a regular
lattice, such as the square lattice. Any 2D cluster state
is a universal resource for measurement-based quantum
computation [2, 17].

The main result of our paper is to show that the
2D AKLT state can be locally converted to a 2D
cluster state, therefore establishing the AKLT state as
a universal resource. We outline key steps to establish

this universality.
(1) We employ a positive-operator-value-measure
(POVM) or generalized measurement for all sites that
takes locally the three virtual spin-1/2 states (or equiv-
alently a spin-1 state) to an effective spin-1/2 state. To
be specific, on every site v ∈ V (L) the POVM consists
of three rank-two elements [23]

Fv,z =

√
2

3

I12 + Z1Z2

2

I23 + Z2Z3

2
,

Fv,x =

√
2

3

I12 +X1X2

2

I23 +X2X3

2
,

Fv,y =

√
2

3

I12 + Y1Y2
2

I23 + Y2Y3
2

.

(7)

Therein, {1, 2, 3} = v are the qubit locations at a
given vertex v ∈ V (L). Physically, Fv,a is actually
proportional to a projection operator onto Sa = ±3/2
states. The above POVM elements obey the relation∑
ν∈{x,y,z} F

†
v,νFv,ν = Iv,sym, i.e., project onto the sym-

metric subspace, as required. The outcome of POVM is
random and can be either x, y or z.
(2) The random outcome of the POVM gives rise to
a random graph and hence a random graph state, la-
beled by |G(A)〉. We establish the properties of a typical
random graph: (a) The size distribution of the clusters
(defined below) is microscopic, i.e., independent of the
lattice size, and (b) the existence of a path traversing
the graph from, e.g., the left-most side to the right-most
side, with close to unity probability. These properties
ensure the typical graph state is universal for measure-
ment based quantum computation. (3) Finally, we nu-
merically demonstrate these properties by Monte Carlo
simulations.

III. REDUCTION OF THE 2D HONEYCOMB
AKLT STATE TO A GRAPH STATE

To show that the 2D AKLT state is a resource for quan-
tum computation by local operations, we first show that
it can be mapped to a graph state by local POVMs. The
resulting graph state depends on the random (but short-
range correlated) POVM outcomes. We are interested in
the connectivity properties of resulting typical graphs.

After the POVM has been performed on every site,
the resulting state becomes (depending on the outcome
av ∈ {x, y, z} on vertex v)

|Ψ(A)〉 :=
⊗

v∈V (L)

Fv,av |AKLT〉 ∼
⊗

v∈V (L)

Fv,av
⊗

e∈E(L)

|φ〉e,

(8)
where A = {av, v ∈ V (L)} is the set of outcomes of the
local POVMs.

Reduction to a graph state. It turns out that, for any
A, the state |Ψ(A)〉 is local equivalent to an encoded

graph state |G(A)〉, with the graph G(A) constructed
as follows. An edge (v, w) ∈ E(L) is called internal iff
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FIG. 1: Graphical rules for transformation of an AKLT state
into an encoded graph state by the local POVMs Eq. (7). a)
AKLT state on a honeycomb lattice L, with a random pat-
tern A of local POVM outcomes x, y, z. b) Edges of L with
same-type endpoints are contracted. c) Edges of even mul-
tiplicity are deleted, edges of odd multiplicity are converted
into standard edges. The resulting graph is G(A). The vertex
labels now specify the encoding (9) of the graph state |G(A)〉.

at the sites v and w the local POVM has resulted in
the same outcome. The graph G(A) is obtained from
the lattice graph L by (1) contracting all internal edges,
and, in the resultant multi-graph, (2a) deleting all edges
of even multiplicity and (2b) converting all edges of odd
multiplicity into conventional edges of multiplicity 1. See
Fig. 1 for illustration.

In step (1) of the above procedure, several sites of L
are merged into a single composite object C ∈ V (G(A)).
Each such C is both a vertex in the graph G(A) and a con-
nected set of same-type sites of L, i.e., a domain. Physi-
cally, in a domain of type a, we have anti-ferromagnetic
order along the ±a-direction, because two neighboring
spins never have the same Sa = 3/2 (or -3/2) in the
AKLT state [10].

The outlined construction leads to

Theorem 1 For any A that specifies all outcomes of
POVMs on L, quantum computation by local spin-3/2
measurements on the state |Ψ(A)〉 can efficiently simu-
late quantum computation by local spin-1/2 measurement
on the graph state |G(A)〉.

Thus, the computational power of the AKLT state, as
harnessed by the POVMs Eq. (7), hinges on the connec-
tivity properties of G(A). If, for typical sets A of POVM
outcomes, the graph state |G(A)〉 is computationally uni-
versal then so is the AKLT state. Below we prove The-
orem 1, and subsequently display our numerical findings
on the connectedness of G(A).

Proof of Theorem 1. The proof proceeds in three steps.
First we show that every domain C ∈ V (G(A)) gives rise
to one encoded qubit. Second, we show that |Ψ(A)〉 is,
up to local encoded unitaries, equivalent to the encoded
graph state |G(A)〉. Third, we show that the encoding
can be unraveled by local spin-3/2 measurements.

Step 1: Encoding. Consider a domain C ⊂ V (L).
That is, on all sites v ∈ C the same POVM outcome
a ∈ {x, y, z} was obtained. C contains 3|C| qubits. The
projections Fv,a on all v ∈ C enforce 2|C| stabilizer gener-
ators, c.f. Eq. (7). Furthermore, choose a tree T among

the set of edges with both endpoints in the domain C.
Each edge (u, v) ∈ T contributes a stabilizer genera-

tor −σ(u)
a σ

(v)
a to the product of Bell states

⊗
e∈E(L) |φ〉e.

These stabilizers commute with the local POVMs (7) and
therefore are also stabilizer generators for |Ψ(A)〉, c.f.
Eq. (8). Since |T | = |C| − 1, in total there are 3|C| − 1
stabilizer generators with support only in C, acting on
3|C| qubits. They give rise to one encoded qubit.

While the stabilizer generators for our code follow from
the construction, there is freedom in choosing the en-
coded Pauli operators. We make the following choice:

POVM
outcome

z x y

stabilizer
generator

λiλi+1ZiZi+1, λiλi+1XiXi+1 λiλi+1YiYi+1

X
⊗3|C|

j=1Xj

⊗3|C|
j=1 Zj

⊗3|C|
j=1 Zj

Z λiZi λiXi λiYi
(9)

In the first line of Eq. (9), i = 1 .. 3|C| − 1, and in the
third line i = 1 .. 3|C|. L is bicolorable, V (L) = B ∪W .
Then, λi = 1 if i ∈ v ∈W and λi = −1 if i ∈ v′ ∈ B.

Step 2: We show that |Ψ(A)〉 is an encoded graph
state. Consider a central vertex Cc ∈ V (G(A)) and all its
neighboring vertices Cµ ∈ V (G(A)). Denote the POVM
outcome for all L-sites v ∈ Cc, Cµ by ac and aµ, respec-
tively. Denote by Eµ the set of L-edges that run be-
tween Cc and Cµ. Denote by Ec the set of L-edges in-
ternal to Cc. Denote by Cc the set of all qubits in Cc,
and by Cµ the set of all qubits in Cµ. (Recall that there
are 3 qubit locations per L-vertex v ∈ Cc, Cµ.) We first
consider the stabilizer of the state

⊗
e∈E(L) |φ〉e. For

any µ and any edge e ∈ Eµ, let u(e) [v(e)] be the end-
point of e in Cµ [Cc]. Then, for all µ and all e ∈ Eµ

the Pauli operators −σ(u(e))
aµ σ

(v(e))
aµ are in the stabilizer of⊗

e∈E(L) |φ〉e. Choose b ∈ {x, y, z} such that b 6= ac,

and let, for any edge e′ ∈ Ec, v1(e′), v2(e′) ∈ Cc be
qubit locations such that e′ = (v1(e′), v2(e′)). Then,

for all e′ ∈ Ec, −σ(v1(e
′))

b σ
(v2(e

′))
b is in the stabilizer of⊗

e∈E(L) |φ〉e. Therefore, the product of all these opera-
tors,

OCc = ±

⊗
µ

⊗
e∈Eµ

σ(u(e))
aµ σ(v(e))

aµ

(⊗
e′∈Ec

σ
(v1(e

′))
b σ

(v2(e
′))

b

)
(10)

is also in the stabilizer of
⊗

e∈E(L) |φ〉e.
We now show that OCc commutes with the local

POVMs and is therefore also in the stabilizer of |Ψ(A)〉.
First, consider the central domain Cc. The operator OCc
acts non-trivially on every qubit in Cc, OCc |l 6= Il for
all qubits l ∈ Cc. Furthermore, for all qubits l ∈ Cc,

OCc |l 6= σ
(l)
ac . Namely, if l ∈ Cc is connected by an edge

e ∈ Eµ to Cµ, for some µ, then OCc |l = σ
(l)
aµ 6= σ

(l)
ac

(for all µ, aµ 6= ac by construction of G(A)). Or, if
l ∈ Cc is the endpoint of an internal edge e′ ∈ Ec then

OCc |l = σ
(l)
b 6= σ

(l)
ac (ac 6= b by above choice). There-
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fore, for any i, j ∈ Cc, OCc anticommutes with σ
(i)
ac and

σ
(j)
ac , and thus commutes with all σ

(i)
ac σ

(j)
ac . Thus, OCc

commutes with the local POVMs Eq. (7) on all v ∈ Cc.
Second, consider the neighboring domains Cµ.

OCc
∣∣Cµ =

⊗
j σ

(j)
aµ by construction. OC0 thus commutes

with the local POVMs Fv,aµ for all v ∈ Cµ and for all µ.
Therefore, OCc is in the stabilizer of |Ψ(A)〉. There-

fore, OCc is an encoded operator w.r.t. the code Eq. (9),
and we need to figure out which one. (1) Central ver-
tex Cc: OCc |Cc is an encoded operator on Cc, OCc |Cc ∈
{±I,±X,±Y ,±Z}. Since OCc |l 6= σ

(l)
ac for any l ∈ Cc, by

Eq. (9), OCc |Cc 6= ±I,±Z. Thus, OCc |Cc ∈ {±X,±Y }.
(2) Neighboring vertices Cµ: By Eq. (9), σ

(l)
aµ = ±Z, for

any l ∈ Cµ. Thus, OCc |Cµ = ±Z |Eµ|. Now observe that

Z2 = I, and that, this justifies the above prescription in
constructing the graph G(A). Using the adjacency ma-
trix AG(A), we have |Eµ| mod 2 = [AG(A)]c,µ and hence

OCc |Cµ = ±Z [AG(A)]c,µ
.

Thus, finally, for all Cc ∈ V (G(A)),

OCc ∈

±RCc ⊗
Cµ∈V (G(A))

Z
[AG(A)]c,µ
Cµ , with R = X,Y


(11)

This is, up to conjugation by one of the local encoded
gates ICc , ZCc , exp

(
± iπ/4ZCc

)
[see Eq. (6)], a stabilizer

generator for the encoded graph state |G(A)〉. The code
stabilizers Eq. (9) and the stabilizer operators in Eq. (11)
together define the state |Ψ(A)〉 uniquely. |Ψ(A)〉 is, up
to the action of local encoded phase gates, an encoded
graph state |G(A)〉.

Step 3: Decoding of the code Eq. (9). We show that
any domain C ∈ V (G(A)) can be reduced to a single
elementary site w ∈ V (L) by local measurement on all
other sites v ∈ C, v 6= w. For any such v, choose the
measurement basis Ba, a ∈ {x, y, z}, as follows

Bx =
{

(|+ ++〉 ± | − −−〉)/
√

2
}
,

By =
{

(|i, i, i〉 ± | − i,−i,−i〉)/
√

2
}
,

Bz =
{

(|000〉 ± |111〉)/
√

2
}
.

(12)

These measurements map the symmetric subspace of the
three-qubit states into itself and they can therefore be
performed on the physical spin 3/2 systems.

Denote by SC and SC\v the code stabilizer on the do-
main C ∈ V (G(A)) and on the reduced domain C\v, re-
spectively. Using standard stabilizer techniques [21] it
can be shown that the measurement Eq. (12) has the
following effect on the encoding

SC −→ SC\v, XC −→ ±XC\v, ZC −→ ZC\v. (13)

The measurement (12) thus removes from C by one lattice
site v ∈ V (L). We repeat the procedure until only one
site, w, remains in C, for each C ∈ V (G(A)). In this
way, SC −→ S{w}, XC −→ ±X{w}, ZC −→ Z{w}. Thus,

|Ψ(A)〉 −→ U loc|G(A)〉 =: |G(A)〉, where Uloc is a local
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FIG. 2: (color online) Average domain size, average width of
domain size distribution, and average degree of a vertex in the
typical random graphs vs. L, where L2 is the total number
of sites in the honeycomb lattice. For better discernibility of
the two lower sets of data, we suppress the errorbars for one
of them.

unitary, and the encoding Eq. (9) has now shrunk to one
site of L per encoded qubit, i.e. to three auxiliary qubits.

To complete the computation, the remaining encoded
qubits are measured individually. Again, the measure-
ment of an encoded qubit on a site w ∈ L is an operation
on the symmetric subspace of three auxiliary qubits at
w, and can thus be realized as a measurement on the
equivalent physical spin 3/2. �

IV. RANDOM GRAPH G(A) CONTAINS 2D
LATTICE GRAPH ABOVE PERCOLATION

THRESHOLD

For a large initial lattice L the random graph state
|G(A)〉 can, with close to unit probability, be efficiently
reduced to a large two-dimensional cluster state if the
following two properties hold:

1. The size distribution of the domains is microscopic,
i.e., is independent of the size of the lattice L in the
limit of large L.

2. The probability of existence of a path through
G(A) from the left to the right approaches unity
in the limit of large L.

Condition 1 is related to the property of the AKLT
state having only short range antiferromagnetic order,
i.e., no long range Neél order. Hence, it implies that the
graph G(A) resulting from the contraction of internal
edges of L only has short-range edges. The connected-
ness of G(A) is thus a percolation problem. Then, Con-
dition 2 ensures that the system is above the percolation
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threshold, i.e., in the connected phase. A macroscopi-
cally extended connected component in G(A) is neces-
sary for universal measurement-based quantum compu-
tation with |G(A)〉. If no such component is present,
measurement-based QC on |G(A)〉 is essentially local and
can therefore be efficiently classically simulated; see also
Ref. [24].

More importantly, being above the percolation thresh-
old is also sufficient for the reduction of the random graph
state |G(A)〉 to a standard universal cluster state. This
has been shown in [24], where the reduction to a 2D clus-
ter state on a hexagonal lattice was demonstrated. In
Appendix A we present an alternative argument for the
reduction of a random graph state |G(A)〉 to a 2D clus-
ter state on a rectangular lattice, above the percolation
threshold.

We used Monte Carlo simulations to compute the prop-
erties of the typical random graphs resulting from the
POVM. The simulations utilize a generalized Hoshen-
Kopelman algorithm [25] to identify domains and a
Metropolis method to sample typical random graphs;
see Appendix B for details. The average degree of ver-
tices in the typical random graphs is about 3.52, when
extrapolated to an infinite system size. Furthermore,
the typical random graphs retain large number of ver-
tices, edges, and independent cycles, with |V̄ | ≈ 0.496L2,
|Ē| ≈ 0.872L2, and the Betti number [26] B̄ ≈ 0.377L2,
respectively, where we take the number of vertices on a
honeycomb lattice to be N ≡ L2.

We check by simulations that Condition 1 is satis-
fied. Maximal domain that contains the largest num-
ber of the original sites of identical POVM outcome is
indeed never macroscopic. The average number of the
original sites contained in a typical domain, when ex-
trapolated to the infinite system, is about 2.02 and the
width in the domain size distribution is extrapolated to
about 1.95; see Fig. 2. Next, to demonstrate that the
typical random graphs are well connected, we study their
percolation properties (i.e., the existence of a spanning
cluster). We investigate how robust it is upon, e.g., delet-
ing edges probabilistically, i.e., the bond percolation. As
shown in Fig. 3, it requires the probability of deleting
to be as high p∗delete ≈ 0.43 (i.e., percolation threshold
pth ≡ 1 − p∗delete ≈ 0.57) in order to destroy the span-
ning property of the graph. These results demonstrate
Conditions 1 and 2 are satisfied and the resultant typical
random graph states are therefore universal resources for
MBQC.

V. CONCLUDING REMARKS

We investigated the issue of whether any of the orig-
inally proposed 2D AKLT states can be universal re-
source states for measurement-based quantum computa-
tion. We demonstrated that the two-dimensional spin-
3/2 AKLT state on a honeycomb lattice is indeed a uni-
versal resource. In particular, we showed the AKLT state
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FIG. 3: (color online) Percolation study of the graph formed
by the domains: probability of a spanning cluster pcluster vs.
the probability to delete an edge pdelete. The threshold for
destroying the spanning cluster is around pdelete = 1− pth ≈
0.43. This shows that the graph is deep in the percolated (i.e.,
connected) phase.

can be locally reduced to a random graph state by an
appropriately devised POVM at each site. Our Monte
Carlo simulations showed that the underlying graphs for
such typical graph states possess connectivity properties
in the percolated phase, and therefore the resultant typ-
ical graph states can be further converted to 2D cluster
state locally, which is already known to be a universal
resource for quantum computation.

The Hamiltonian for the 2D AKLT is two-body in-
teracting and invariant under spin rotation. The AKLT
state is the unique ground state, and Neél states can-
not occur in the AKLT Hamiltonian. It is generally be-
lieved that there is a spectral Haldane gap, just like the
1D integer-spin chains. In line with a recent study by
Miyake [12], we end by raising the following question: as-
sume there is a Haldane-like phase around the 2D AKLT
state as is the case in the 1D bilinear-biquardratic model,
are all the ground states in such a 2D Haldane phase com-
putationally useful?

Acknowledgment. This work was supported by
NSERC, MITACS, and CIFAR.

Appendix A: Reduction of |G(A)〉 to a 2D cluster
state above the percolation threshold

Conditions 1, 2 in Sec. IV are also sufficient for compu-
tational universality. To see this, consider a large typical
graph G(A) obeying Condition 1, and regions α, β, A, B,
.. imposed on it as displayed in Fig. 4 a. The regions α,
β, .. are ring-shaped and spread upon G(A) as nodes of
a two-dimensional grid. The regions A, B, .. are of rect-
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FIG. 4: Transforming |G(A〉 into a 2D cluster state. (a)
Macroscopic view: Regions α, β, A etc imposed on the graph
G(A). (b) (Part of) the graph GN . (c) Decorated 2D grid.
(d) 2D grid for the cluster state.

angular shape and connect the ring-like regions. If Con-
dition 2 holds then, with probability approaching unity
in the limit of large-size α, there exists a loop-like path
Pα ⊂ α. An analogous path exists in the regions β, γ,
etc. Furthermore, if Condition 2 holds then in the region
A (which is overlapping with both α and β) exists a path
PA stretching from Pα ∩ A to Pβ ∩ A. Analogous paths
exist in the regions B, C, and so on. Wlog, all paths can
be taken free of self-intersections. The resulting net GN
of paths is displayed in Fig. 4b.

Now note that the graph state |GN 〉 can be obtained
from |G(A)〉 by local Z-measurements on all qubits in
G(A)\GN . In the present scenario, the graph states |GN 〉
and |G(A)〉 are encoded, and the encoded observable Z
[see Eq. (9)] needs to be measured. Now, using the rules
[27] for manipulation of graph states by local measure-
ments

Z =

X X
Y YY =

= , (A1)

the loops in the graph GN are contracted into single ver-
tices, and GN is thereby transformed into the decorated
two-dimensional grid displayed in Fig. 4c. Then, again
by using the local measurements according to the graph
rules Eq. (A1), the decorations in the 2D grid are re-
moved and the standard two-dimensional cluster state is
obtained; see Fig. 4d. The 2D cluster state is known to
be a universal resource for measurement-based quantum
computation [2]. �
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FIG. 5: (color online) Average vertex (or domain) number,
average edge number, and average Betti number in the typi-
cal random graphs original lattice site vs. L. This shows the
number of domains, the number of interdomain Ising inter-
action, and the number of independent loops in the resultant
graph all scale with the system size of the original honeycomb
lattice.

Appendix B: Monte Carlo simulations

We give the recipe for performing Monte Carlo
simulations and present some results.
(1) First, we randomly assign every site on the hon-
eycomb lattice to be either x, y or z-type with equal
probability.
(2) Second, we use the Metropolis method to sam-
ple typical configurations. For each site we attempt
to flip the type to one of the other two with equal
probability. Accept the flip with a probability

paccept = min
{

1, 2|V
′|−|E′|−|V |+|E|

}
, where |V | and

|E| denote the number of domains and inter domain
edges (before the contraction steps (2a) and (2b) in
Sec. III), respectively before the flip, and similarly
|V ′| and |E′| for the flipped configuration. The count-
ing of |V | and |E|, etc. is done via a generalized
Hoshen-Kopelman algorithm [25]. For the proof of the
probability ratio, see Appendix C.

(3) After many flipping events, we measure the prop-
erties regarding the graph structure for the domains
and study their percolation properties upon deleting
edges. For the percolation, we cut open the lattice and
investigate the percolation threshold for the typical
random graphs from the Metropolis sampling.

Figure 2 shows the average degree of a vertex vs. in-
verse system length 1/L for the random graphs, as well
as the average numbers of the original sites contained in a
typical domain and the width in the domain size distribu-
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tion. It extrapolates to d̄ ≈ 3.52 for the infinite system.
In Fig. 5 we show the size dependence of average vertex
number, average edge number, and average Betti number
B [26] of the graph for the graph state per original lat-
tice site for the graph formed by the domains. We have
|V̄ | ≈ 0.496L2, |Ē| ≈ 0.872L2, and B̄ ≈ 0.377L2. This
shows that the typical random graph of the graph state
retains large number of vertices, edges, and cycles, giv-
ing strong evidence that the state is a universal resource.
In order to show the stability of the random graph, we
investigate how robust it is upon, e.g., deleting edges
probabilistically, i.e., the bond percolation. As shown
in Fig. 3, it requires the probability of deleting to be as
high pdelete ≈ 0.43 (i.e., percolation threshold pth ≈ 0.57)
in order to destroy the spanning property of the graph.
Percolation argument was previously employed by Kiel-
ing, Rudolph, and Eisert in establishing the universality
of using nondeterministic gates to construct a universal
cluster state [28].

Appendix C: Evaluation of probability ratio

For convenience, we shall use spin-3/2 representation
of the AKLT state. The location projection operator is
hence

P̂v = |1〉〈000|+ |2〉〈111|+ |3〉〈W |+ |4〉〈W | (C1)

where we have simplified the notation for the spin-3/2
basis states: |1〉 ≡ |3/2, 3/2〉, |2〉 ≡ |3/2,−3/2〉, |3〉 ≡
|3/2, 1/2〉 and |4〉 ≡ |3/2,−1/2〉. The AKLT state can
then be expressed as

|ψ〉AKLT =
⊗
v

P̂v
∏

e=(u,v)∈E

|φ〉e, (C2)

where |φ〉e is the singlet state (|01〉 − |10〉)ui,vj for the
edge e = (u, v) and i, j specify the virtual qubit in the
respective vertex.

The POVM that reduces the spin-3/2 AKLT to a spin-
1/2 graph state consists of elements Eµ = F †µFµ such that
11 = Ex + Ey + Ez, with

F̂z = F̂ †z ≡
√

2

3
(|1〉〈1|+ |2〉〈2|) =

1√
6

(
S2
z −

1

4

)
, (C3)

F̂x = F̂ †x ≡
√

2

3
(|a〉〈a|+ |b〉〈b|) =

1√
6

(
S2
x −

1

4

)
, (C4)

F̂y = F̂ †y ≡
√

2

3
(|α〉〈α|+ |β〉〈β|) =

1√
6

(
S2
y −

1

4

)
,(C5)

where we have also expressed F̂ ’s in terms of the cor-
responding spin operators. The other four states other

than |1〉 and |2〉 are

|a〉 ≡ 1√
8

(|1〉+ |2〉+
√

3|3〉+
√

3|4〉) (C6)

|b〉 ≡ 1√
8

(|1〉 − |2〉 −
√

3|3〉+
√

3|4〉) (C7)

|α〉 ≡ 1√
8

(|1〉 − i|2〉+ i
√

3|3〉 −
√

3|4〉) (C8)

|β〉 ≡ 1√
8

(|1〉+ i|2〉 − i
√

3|3〉 −
√

3|4〉). (C9)

They correspond to the four virtual three-spin-1/2 states
(in addition to |000〉 and |111〉) | + ++〉, | − −−〉| i i i〉
and |−i,−i,−i〉.

While the outcome of POVM constructed above at
each site is random (either x, y or z), outcomes at dif-
ferent sites may be correlated. For a particular set of
outcomes {av} at sites {v}, the resultant state is trans-
formed to the following un-normalized state

|ψ′〉 =
⊗
v

F̂v,av |ψ〉AKLT, (C10)

with the probability being

p{av} = 〈ψ′|ψ′〉/〈ψ|ψ〉AKLT. (C11)

As F̂ ’s are proportional to projectors, in evaluating the
relative probability for two sets of outcome {av} and
{bv}, one has

p{av}/p{bv} = 〈ψ|
⊗
v

F̂v,av |ψ〉AKLT

/
〈ψ|
⊗
v

F̂v,bv |ψ〉AKLT.

(C12)
In order to evaluate the probability ratio for two different
sets of configuration, we first note that

F̂xP̂ ∼ |a〉〈+ + +|+ |b〉〈− − −| (C13)

F̂yP̂ ∼ |α〉〈i i i|+ |β〉〈−i− i− i| (C14)

F̂zP̂ ∼ |1〉〈000|+ |2〉〈111|. (C15)

The spin-3/2 state is transformed by
⊗

v Fv,av to an ef-
fective spin-1/2 one, with the two levels being labeled by

(a, b), (α, β), or (1, 2), depending on which F̂ is applied.
The probability p{av} is essentially obtained by summing
the square norm of the coefficients for all possible spin-
1/2 constituent basis states (e.g. |a b+ 0 i . . . 〉 is a basis
state). First we need to know how many different con-
stituent states, and the number is related to how many ef-
fective spin-1/2 particles we have. For the sites that have
same type of outcome (x, y or z), they basically form a
superposition of two Neél-like states, thereby correspond-
ing to an effective spin-1/2 particle. This can be seen
from the valence-bond picture that, e.g., for r, s ∈ {0, 1}
we have 〈rs|01 − 10〉 = ±δr,1−s. On the other hand,

for r ∈ {0, 1} and s ∈ {+,−}, 〈rs|01 − 10〉 = ±1/
√

2,

which is 1/
√

2 smaller than if r and s are the indices
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in the same basis. This means that all four combina-
tions {0+, 0−, 1+, 1−} occur with equal amplitude up to
a phase. (Similar consideration applies to other com-
binations of bases.) Therefore, the number of effective
spin-1/2 particles is given by the number of domains,
which we label by |V |. Notice that we have assumed
that any domain does not contain a cycle with odd num-
ber of original sites, as no Neél state can be supported
on such a cycle (or loop). Fortunately, the honeycomb
lattice is bi-partite and therefore any cycle must contain
even number of sites.

What about the amplitude for each spin configura-
tion? Furthermore, what is the probability of obtaining
a particular set of outcome {av}? We have seen that
for each inter-domain edge there is a contribution to a
factor of 1/

√
2 in the amplitude (as the end sites of the

edge correspond to different types). Thus, the amplitude
for each spin configuration gives an overall value (omit-
ting the phase factor) of 2−|E|/2 and hence an probabil-
ity weight 2−|E|, where |E| counts the number of inter-
domain edges. As there are 2|V | such configurations, we
have the norm square of the resultant spin-1/2 state be-
ing proportional to p ∼ 2|V |−|E|. For convenience, we
have assume the lattice is periodic. Moreover, for all sites
having the same type, we count |E| = 0 and |V | = 1.

Appendix D: Reducing 1D AKLT state to a 1D
cluster state

Chen et al. [19] have recently shown that the 1D AKLT
state can be locally reduced to a 1D cluster state with
a random length. We show that a similar POVM to our
2D case can also be used to give an alternative proof
of the reduction. Recall that the 1D AKLT state can
be obtained by making local projection on a underlying
singlet valence bond structure:

P̂i = |1〉〈00|+ | − 1〉〈11|+ |0〉〈ψ+|, (D1)

|ψ+〉 ≡ 1√
2

(|01〉+ |10〉). (D2)

To simplify the analysis, let us assume even number
of lattice sites and periodic boundary condition. The
POVM, 11 = Ex + Ey + Ez with Eµ = F †µFµ, is similar
to the spin-3/2 case,

Fz ≡
√

1

2
(|1〉〈1|+ | − 1〉〈−1|) =

√
1

2
S2
z , (D3)

Fx ≡
√

1

2
(|a〉〈a|+ |b〉〈b|) =

√
1

2
S2
x, (D4)

Fy ≡
√

1

2
(|α〉〈α|+ |β〉〈β|) =

√
1

2
S2
y , (D5)

where the other four states other than |1〉 and | − 1〉 are

|a〉 ≡ 1

2
(|1〉+ | − 1〉+

√
2|0〉) (D6)

|b〉 ≡ 1

2
(|1〉+ | − 1〉 −

√
2|0〉) (D7)

|α〉 ≡ 1

2
(|1〉 − | − 1〉+ i

√
2|0〉) (D8)

|β〉 ≡ 1

2
(|1〉 − | − 1〉 − i

√
2|0〉). (D9)

They correspond to the four virtual three-spin-1/2 states
(in addition to |00〉 and |11〉) | + +〉, | − −〉, | i i〉 and
| −i,−i〉. After the POVM is performed at all sites, each
physical site will become an effective spin-1/2 particle.

The proof of the encoded graph state in the honey-
comb lattice carries over to one-dimensional chain here,
and so does the reduction of a domain to a single site
by using appropriate local measurement (except we need
to pay attention to a cycle with odd number of sites).
The probability of a particular set of POVM outcome of
(x, y, z) is thus proportional to P ∼ 2|V |−|E|, carried over
from the 2D case, unless all local POVM outcomes are
the same, which has P ∼ 2 (note that this cannot oc-
cur in the case of odd number chain) with all other cases
having P ∼ 1, as |V | = |E| for a 1D cycle. The typical
graph will have a length roughly a constant fraction of
the original size, which is consistent with the results ob-
tained in Ref. [19]. The average length of the resultant
1D cluster in the large-system limit is 2/3 of the original
AKLT chain size. Hence, it can be used to implement an
arbitrary one-qubit unitary gate. This gives an alterna-
tive proof of the results in Ref. [19] for the reduction of
1D AKLT state to a 1D cluster state.

Appendix E: Calculation of probability of a
particular POVM outcome using AHH techniques

In this appendix we provide an alternative formulation
to the calculation of POVM outcome probability. This
formalism has the potential of being applicable to a more
general case. We give only the important ingredients
here.

Arovas, Auerbach and Haldane (AAH) [20] show how
to represent arbitrary AKLT states as Boltzmann weights
for nearest neighbour statistical mechanical models in
the same spatial dimension as the quantum problem and
how to represent calculations of equal time ground state
expectation values classically. We are interested in two
cases: the S = 1 one-dimensional case and the S = 3/2
honeycomb lattice case.

In both cases the operators of interest are projection
operators onto maximal |Sz|:

Fν ≡ (Sν)2, (S = 1) (E1)

≡ (1/2)[(Sν)2 − 1/4], (S = 3/2), (E2)

where ν = x, y or z and, for convenience, we have rescaled
the prefactor in the definition of F ’s. For general spin
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S the operators Sµ are represented first in terms of
Schwinger bosons, a, a†, b, b†, then in terms of co-

ordinates and derivatives u, v, ∂u, ∂v then in terms of
u, v, u∗, v∗. The operator (Sz)

2 is:

(Sz)
2 = (1/4)(a†a− b†b)2 = (1/4)a2(a†)2 + (1/4)b2(b†)2 − (1/4)(a†a+ b†b+ 2) (E3)

= (1/4)[∂2uu
2 + ∂2vv

2 − 2S − 2]→ (1/4)(2S + 2)(2S + 3)(|u|2 − |v|2)2 − (1/2)(S + 1). (E4)

Using u = cos(θ/2)eiφ/2, v = sin(θ/2)e−iφ/2, where θ and φ are the polar and azimuthal angles on the unit sphere,
this becomes:

(Sz)2 = (1/4)(2S + 2)(2S + 3)(Ωz)2 − (1/2)(S + 1) (E5)

where Ω̂ = (cos θ cosφ, sin θ sinφ, cos θ) is the unit vector.

A simple explicit calculation similar to this one shows
that, for ν = x, y or z:

(Sν)2 = (1/4)(2S+2)(2S+3)(Ων)2− (1/2)(S+1) (E6)

as expected by SO(3) symmetry. This is a somewhat
surprising formula in that the classical quantities are not
positive semi-definite. Note that this formula is valid
independent of the wave-function. The projection oper-
ators thus become:

Fν = 5(Ων)2 − 1, (S = 1) (E7)

= (3/4)[5(Ων)2 − 1], (S = 3/2). (E8)

Remarkably the projection operators are the same for
S = 1 and 3/2 up to an unimportant normalization fac-
tor.

The AKLT state can be written, in Schwinger boson
notation as:

|ψ〉AKLT =
∏
<i,j>

(a†i b
†
j−a

†
jb
†
i )|vacuum〉 →

∏
<i,j>

[1−Ω̂i·Ω̂j ].

(E9)

where the product is over all pairs of neighbouring sites
(i, j) . Actually, we need to be more precise about bound-
ary conditions here. These details will be discussed else-
where. Using the form of the AKLT state we wish to
calculate:

pa1a2...aN ≡ NS
1

Z

N∏
i=1

∫
dΩ̂i[5(Ωaii )2−1]

∏
<j,k>

[1−Ω̂j ·Ω̂j ]

(E10)
where Z is the same integral without the [5(Ωaii )2 − 1]
factors and NS = 1 for S = 1 and (3/4)N for S = 3/2.
In both cases we can evaluate this by multiplying out∏
<j,k>[1− Ω̂j · Ω̂k].

We remark that carrying out this we arrive at the same
conclusion of the probability expressions for 1D chain and
2D honeycomb cases as before.
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