
ar
X

iv
:1

00
9.

29
16

v1
  [

qu
an

t-
ph

] 
 1

5 
Se

p 
20

10

Cavity-enhanced atom detection with cooperative noise reduction
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An optical microcavity with small mode radius is used to measure the local density of a cold
atom cloud. Atom densities below 1 per cavity mode volume are measured with signals near the
photon shot-noise limit. Atom detection is fast and efficient, reaching fidelities in excess of 97% after
10µs and 99.9% after 30µs. Notably, the fluctuations of the detected photon counts are smaller
than expected for Poissonian distributions of atoms probed with Poissonian light fields. This noise
suppression is attributed to multi-atom effects on the collective atomic dipole interacting with the
cavity field. Our measurements confirm a decade-old theory of atomic beams in cavity quantum
electrodynamics.

High finesse optical resonators can improve the sen-
sitivity of atom detection by increasing the lifetime of
photons and confining them to a small volume [1]. Long
photon lifetime, controlled by cavity length and mirror
reflectivity, increases the effective optical thickness of an
intra-cavity sample by a factor on the order of the finesse
F ≫ 1. Small mode volume, which depends only on the
geometry of the resonator, increases the energy density
per photon and therefore the Einstein coefficients describ-
ing transition rates. Thus the spontaneous emission rate
of an atom is increased by coupling it to a resonant cavity
[2]. Importantly, all the additional photons are emitted
into the cavity mode, making it possible to detect fluo-
rescence even at very low atom density. For sufficiently
small mode volumes, a single cavity photon becomes in-
tense enough to saturate the atomic transition. In this
regime vacuum fluctuations modify the spectral proper-
ties of the coupled atom-cavity system [3] in such a way
as to allow detection at the single-atom level [4, 5].

Recently there has been growing interest in cold atom
experiments with atomic density distributions extending
throughout or beyond the range of the cavity field [6, 7].
For multiple atoms, the radiative behavior is collective
[8]. Although the gas may be dilute, the common cou-
pling to the electromagnetic field produces effective long-
range interactions between the atoms that can lead to
self-organization [9] and collective motion [10], as well as
super-radiant Rayleigh scattering and collective atomic
recoil lasing [11]. Recently experimenters have exploited
these effects to realize a quantum phase transition from
a Bose-Einstein condensate to a supersolid [12].

A central parameter in describing cavity-enhanced de-
tection is the dimensionless single-atom cooperativity
[13], C1 = g2/(2κγ), where 2 g is the single-photon Rabi
frequency at the peak of the cavity intensity distribution,
2 κ is the cavity linewidth (full-width at half maximum),
and 2 γ the natural atomic linewidth. The cooperativity
determines both the effect of a single atom on the cavity
spectrum, and the rate of fluorescence into the cavity.

In the case of multiple atoms, the cooperativity is gen-
eralized by defining CN = C1 Neff where the effective

atom number is [14]

Neff =

L
∫

0

∞
∫

−∞

∞
∫

−∞

|χ(r)|2̺(r) d3r (1)

with ̺(r) being the atomic density, L the cavity length,
and χ(r) = sin(2π z/λ) exp[−(x2 + y2)/w2] the cavity
field mode function (λ is the wavelength). When the
atom cloud is much larger than the cavity mode volume
Vcav = πw2L/4, the atom density is approximately uni-
form over the interaction region, and 〈Neff〉 ≈ ̺(0)Vcav.
At low densities, single-atom physics dominates, while
at higher densities multi-atom effects become important
[14]. In this Letter we perform local density measure-
ments on large dilute clouds of atoms in the crossover
regime, paying particular attention to fluctuations. We
show that even at densities on the order of one atom
per cavity mode volume, the atomic shot noise is heavily
suppressed by collective effects.
Our apparatus has been described in detail in Refs. [5,

15]. We work with 87Rb, near the D2 resonance at
λ = 780 nm. Our optical microcavity is formed be-
tween the end of a single-mode optical fiber and a spher-
ical surface microfabricated in silicon, both being coated
with dielectric mirrors. The resulting plano-concave cav-
ity mode has a length of L = 139(1)µm and a waist
whose e−1 field radius is w = 4.46(7)µm. To our knowl-
edge the only Fabry-Perot cavity with a smaller mode
waist is the all-fibre design of Ref. [7] (w = 3.9µm).
Since C1 ∝ F/w2, a small waist makes it possible to
detect single atoms using a cavity of relatively modest
finesse. This relaxes the usual need for very high mirror
quality and reduces the sensitivity to noise in the cavity
length. For this work we have g = 2π × 98.4(1.6)MHz,
κ = 2π × 5200(100)MHz, and γ = 2π × 3MHz, giving
C1 = 0.307(11). We begin each experimental sequence by
cooling and trapping ∼ 2×107 87Rb atoms in a magneto-
optical trap formed above a mirror [16], followed by sub-
Doppler cooling to 16µK in optical molasses. We then
release the atoms, which fall through a hole in the mirror
and pass through a cavity mounted immediately below.

http://arxiv.org/abs/1009.2916v1


2

e
x
p

e
ri
m

e
n

t 
#

m
e

a
n

 c
o

u
n

t 
p

e
r
µ

s

v
a

r/
m

e
a

n

time (ms)

time (ms) time (ms) a
to

m
 d

e
n

s
it
y
 (

1
0

8
c
m

-3
)

200

300

100

1

(a) (b)

(c)

0.4

0.3

0.2

0.1

8

6

4

2

0

1.02

50

50 70 9050 70 90

60 80 9070

1.00

0.98

FIG. 1: Reflection measurements. (a) Detected photon counts
for 300 identical experiments. The atoms are released at
39.5ms. Counts increase from blue to red. Data were taken
with 2µs resolution, and the image was then re-binned to
1 ms. (b) The data in red are averages over the 300 drops
shown in (a), while the white curve is a fit to Eq. (2) assum-
ing a Gaussian dependence of CN on time; the dashed blue
line gives the value expected from a single atom maximally
coupled to the cavity mode. (c) Ratio of ensemble variance to
mean versus time. The red curve is calculated from the raw
data in (a) for each 2µs time bin, and then a 100µs running
average is applied to smooth the result; the white line is the
photon shot-noise level.

As described in [5], we detect atoms either by (i) mea-
suring changes in the intensity of a probe beam reflected
from the cavity; or (ii) detecting fluorescence when excit-
ing the atoms uniformly with a laser beam propagating
transverse to the cavity axis. We refer to these simply as
reflection and fluorescence measurements, respectively. If
atoms are present and the cavity and lasers are resonant
with the free-space atomic transition, then one can show
[17] that the steady-state rate of photons travelling from
the cavity to the detector is

Jout =



















Jin

(

b+ 2CN

1 + 2CN

)2

, reflection

2C′

N γ ξ
s

(1 + 2C′

N)2 + s
, fluorescence

(2)

where Jin is the number of incident probe photons per
second and b2 characterizes the reflection fringe contrast
in the absence of atoms. The cooperativities in reflec-
tion (CN ) and fluorescence (C′

N ) are not generally the
same since they depend on the polarization of the probe
light and the excitation light respectively. In fluores-
cence, s = 1

2 (Ω/γ)
2 is the free-space saturation parame-

ter for excitation driven at a Rabi frequency Ω, while ξ
is the probability for an intracavity photon to pass from
the cavity into the fiber [18]. Finally we have used the
facts that (g/κ)4 ≪ 1, and that the atomic excited state
fraction is small in our reflection measurements.

Figure 1(a) shows the results of repeated reflection
measurements as the cloud falls through the cavity. A
circularly-polarized probe drives the atomic cycling tran-
sition, maximizing the atom-field coupling strength. At
early and late times, there are no atoms in the cavity, so
the reflected light is at its minimum value, determined by
the incident probe power and the empty cavity fringe con-
trast. The reflected intensity rises when there are atoms
in the cavity. These experimental runs are averaged in
Figure 1(b), which also shows a fit to the evolution ex-
pected from Eq. (2) with a peak 〈Neff〉 = 1.06(4), corre-
sponding to only 4.9(2)×108 atoms cm−3. For reference,
the dashed line shows the expected reflection with a sin-
gle atom maximally coupled to the cavity mode. Note
that the 10ms width of the curve reflects the size of the
cloud, which is determined by its temperature. By con-
trast, the typical transit time for a single atom passing
through the width of the cavity mode is ∼ 14µs, so the
cloud is very large compared with the extent of the cav-
ity field. In Fig. 1(c) we plot as a function of time the
variance of the photon counts divided by the mean, eval-
uated over the 300 repetitions of the experiment. This
ratio is strikingly close to 1, indicating that the noise is
dominated by photon shot-noise, regardless of whether
the atoms are present or not. This is surprising as one
might have expected relatively large atomic shot noise
at such low effective atom number, as in Ref. [19]. We
will return to this below, when we see a similar noise
suppression in our fluorescence measurements.

Figure 2(a) shows the fluorescence signal. As the cloud
falls through the cavity we switch on a resonant excita-
tion beam whose (downward) propagation direction and
polarization are both perpendicular to the cavity axis.
The photon count rate immediately jumps to a high level
as a result of the laser-induced fluorescence. Indepen-
dent reflection measurements determine that the initial
〈Neff〉 = 1.24(5). Although the atom number is nearly
constant over several ms during the reflection measure-
ments, the signal here decays roughly exponentially with
a time constant of order 100µs. This is because the atoms
are heated and pushed out of the cavity by the excitation
light [17], which is much more intense than the probe
light used in reflection measurements. In Fig. 2(b) we
plot how the variance of the fluorescence count over 250
repetitions varies with the mean number of counts. Once
again, we see that the fluctuations are very near the pho-
ton shot-noise limit, which is indicated by the solid line.

To calculate the expected noise level for our fluores-
cence signal, let us first apply the methods of Ref. [20].
Atomic motion is negligible over the 1µs time bin of a
single measurement, so we consider each measurement to
have a fixed number of atoms N , producing a Poissonian
photon count k with mean αN (the background is negli-
gible). Since N fluctuates over repeated experiments, the
photon counts obey Var(k)/〈k〉 = 1 + αVar(N)/〈N〉. If
atoms are positioned randomly with a uniform probabil-
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FIG. 2: Fluorescence measurements. (a) Fluorescence pulse,
averaged over 250 drops. The exciting laser is pulsed on after
the peak atomic density has passed through the cavity. At
the start of the pulse, shown in detail in the inset, 〈Neff〉 =
1.24(5). This is slightly larger than in Fig. 1 due to a higher
atom number in the initial MOT. (b) Variance of fluorescence
counts as a function of mean. Red circles are from the data
used in (a), and blue triangles are from a set where the drive
beam is pulsed on at a later time in the drop, with initial
〈Neff〉 = 0.50(2). The green line is the photon shot-noise
limit. The grey box corresponds to the inset in (a).

ity distribution, the number of atoms in a given volume
follows a Poisson distribution, and Var(N) = 〈N〉. If
we simply replace N with Neff , then we would expect
Var(k)/〈k〉 = 1.40(3) for our experiment, which is well
above the observed value of 1.09(3).

However when dealing with noise, N and Neff are not
interchangeable. The correct description of our fluctua-
tions requires the full multi-atom probability distribu-

tion for N
1/2
eff , which has been derived by Carmichael

and Sanders [14]. From their work we find that
Var(Neff)/〈Neff〉 = 3/8 in the limits of low and high atom
density; numerically this appears to remain true for in-
termediate densities. Furthermore, CN should be treated
as a random variable proportional to Neff , rather than a
constant proportional to 〈Neff〉, making α dependent on
Neff . In practice this has only a small effect on 〈k〉, but
is important for Var(k) because Jout saturates with large
instantaneous values ofNeff . When these effects are prop-
erly accounted for, we calculate Var(k)/〈k〉 = 1.095(8),
in excellent agreement with our observed value. Further-
more, we note that a similar treatment of the reflection
measurements in Fig. (1) gives Var(k)/〈k〉 = 1.005(2),
consistent with the value 1.002(4) from the data. We
therefore conclude that the full distribution of Neff must
be taken into account, and that the statistical nature of
the collective atomic dipole leads to strong noise suppres-
sion in our experiments.

The signal-to-noise ratio (SNR) is (〈k〉 −
〈kbg〉)/[Var(k) + Var(kbg)]

1/2, where k (kbg) is the
number of photon counts with (without) atoms. Since
the mean number of counts increases linearly with
the duration τ of the photon-counting time bin we
expect SNR ∝ τ1/2 for our nearly Poissonian signal.
In Fig. 3(a) we bin the fluorescence data to produce
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FIG. 3: Signal-to-noise ratio (SNR) and detection fidelity.
Points are derived from the same data that were used to make
Fig. 2(a). (a) Fluorescence SNR versus integration time. The

solid curve is 〈k〉1/2. The dashed curve shows 〈k〉1/2 for con-
stant 〈Neff 〉. (b) Detection fidelity FK(τ ) for K = 1, 2, and 3
counts (◦, △, and �). Points are from 500 measurements with
p = 1/2 and curves show Eq. (3), assuming Poisson distribu-
tions with mean signal and background count rates obtained
from the data at the beginning of the pulse.

increasingly long measurement times and plot the result.
At short times, this exhibits the expected behavior,
with SNR ≈ (0.50 τ/µs)1/2. At longer times the SNR is
reduced as 〈Neff〉 decreases due to scattering from the
excitation laser.
It is also useful to discuss the discrete problem of de-

tecting the presence (logical 1) or absence (logical 0) of an
atom cloud. Because the fluctuations are dominated by
noise in the photon number (as opposed to the atom num-
ber), this is equivalent in the case when 〈Neff〉 = 1 to the
problem of determining whether a single trapped atom
fluoresces (logical 1) or not (logical 0), which is relevant
for quantum information processing [21]. Our measure-
ments at 〈Neff〉 = 1.24(5) imply a mean photon count
rate at 〈Neff〉 = 1 of S(1) = 420(20)ms−1. Table I shows
that this is high in comparison with other atom detection
experiments. Following [20], we could define the single-
atom efficiency of the detector as η = 1 − exp[−S(1)τ ],
which is the probability of counting ≥ 1 photon during
the measurement time τ , assuming an atom is present
and Poisson statistics with negligible background. This
rises rapidly with our high count rate, reaching 98.5(3)%
in only 10µs.

Ref. S(1) B F1max, τ1max F2max

[20] 5.6 0.28 90.9, 544 97.5

[19] 36 0.311 97.6, 132 99.8

[22] 54.5 2.18 92.2, 60 98.1

[23] 0.13 0.05 72.1, 9853 80.5

This work 420(20) 3.84(6) 97.46(13), 11.2(4) 99.79(2)

TABLE I: Comparison with other experiments. Rates are
in cts/ms, fidelities in percent, and τ1max in µs. Note that
τKmax = K τ1max for p = 1/2. References [20, 22] use cavities,
while Refs. [19, 23] use optical waveguides without cavities.
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For most applications, however, it is not enough to de-
tect logical 1 efficiently; the detector must also be able to
identify logical 0 correctly. A more useful figure of merit
is thus the fidelity, i.e. the probability of a correct mea-
surement result. Let us take the detection of ≥ K pho-
tons as indicating logical 1, and < K as logical 0. Then
for Poissonian distributions the single-photon fidelity is
FK=1 = (1 − p) e−Bτ + p [1 − e−(S+B)τ ], where B is the
background photon counting rate and p is the probabil-
ity that the state being measured is logical 1. The first
(second) term is the probability of having logical 0 (1)
and identifying it correctly. The blue curve in Fig. 3(b)
shows the expected value of F1 in our experiment over
a data set for which 〈Neff〉 = 1.24 and p = 1/2. The
fidelity rises quickly as the detection of logical 1 becomes
increasingly successful, but eventually falls due to false
positives from the background. Superimposed on this
curve are our measured values of the fidelity versus de-
tection time, which agree well with our expectations. In
general the maximum fidelity F1max increases with S/B,
reaching its peak at a time τ1max proportional to 1/S for
fixed S/B. Table I compares our values of F1max and
τ1max with those for other atom detection experiments.
Our detection reaches the best previous fidelity [19] and
does so ten times more quickly.
A simple way to improve the fidelity is to increase the

coincidence threshold K. This leads to the general result

FK = (1− p)
Γ[K,Bτ ]

(K − 1)!
+ p

[

1−
Γ[K, (B + S)τ ]

(K − 1)!

]

(3)

where Γ[K, a] is the incomplete gamma function. These
fidelities are plotted in Fig. 3(b) versus measurement
time τ for the cases of K = 2 and 3. They peak at
99.79% and 99.98% when τ = 22.4µs and 33.6µs respec-
tively. The data points again show that our measure-
ments are consistent with expectations. Similar methods
were exploited in [22], where two photons were required
within a short time window in order to register a logical
1 result. With a 1µs detection window they found that
99.719(6)% of observed 2-photon coincidences were due
to atoms, and described this percentage as the fidelity. In
that experiment however, there was only a 0.2% chance
that the logical 1 state would produce a 2-photon count
in the detection window. Thus, although their detection
was very confident it was also very inefficient, having a
low fidelity in the usual sense that we adopt here.
In conclusion we have characterized a new cavity-

enhanced atom detector with low noise and high trans-
verse spatial resolution. We have shown that the multi-
atom nature of the collective atomic dipole results in a
strong suppression of the atomic shot noise in approxi-
mately uniform systems. Our detector is fast and effi-
cient, and suitable for detecting dilute samples below the
level of a single atom per mode volume. Although we
have focused here on measurements of low atomic densi-
ties, the dynamic range can be extended upwards simply

by detuning the cavity and/or the probe field. We en-
vision a variety of applications for making local density
measurements on quantum gases. For example, there is
sustained interest in studying the shell structure of Mott
insulators in the Bose-Hubbard model [24], and our sys-
tem would be ideal for studies of quantum transport of
small impurities such as the recent work in Ref. [25].
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