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Abstract. We extend the torus-based compression technique for cyclotomic subgroups and
show how the elements of certain subgroups in characteristic two and three fields can be
compressed by a factor of 4 and 6, respectively. Our compression and decompression functions
can be computed at a negligible cost. In particular, our techniques lead to very efficient
exponentiation algorithms that work with the compressed representations of elements and can
be easily incorporated into pairing-based protocols that require exponentiations or products
of pairings.

1. Introduction

It has been an attractive objective in cryptography to reduce bandwidth requirements while
not forfeiting security and efficiency. For example, Montgomery’s [11] scalar multiplication
algorithm for a certain class of elliptic curves defined over odd characteristic fields only involves
the x-coordinate of the input point P = (x, y). In addition to its advantage of being able to
discard the y-coordinate of P , the algorithm can be implemented based on Lucas chains and
provides a built-in resistance against certain side-channel attacks. Later on, Montgomery’s
idea was improved and generalized to any elliptic curve defined over odd characteristic fields
and also to elliptic curves defined over binary fields (see for example [1, 10]). Similarly, there
have been several proposals to compress the elements of certain subgroups of the multiplicative
groups of certain finite fields, and to compute with the compressed representation of elements
[16, 4, 2, 9, 3, 12, 20, 19, 15, 8]. The most notable of these proposals is the XTR cryptosystem
[9] which compresses the elements of the order-(p2 − p + 1) subgroup G of F∗p6 by a factor
of three, and at the same time achieves faster exponentiation in G compared to the previous
algorithms that work with the natural representation of elements in Fp6 .

The compression methods in the finite field setting fall into two category. They either use a
rational parameterization of an algebraic torus [12, 20, 19], or use the trace representation of
elements [16, 4, 2, 9, 3, 15, 8]. Even though there is a close relationship between these two
methods (see [12]), they have different properties. While the rational parametrization of a torus
enjoys the full functionality of the group structure, the trace function is not multiplicative and
hence novel techniques are required to adapt fast exponentiation algorithms to work with the
trace representation of elements (see for example [17, 7]).

Having briefly mentioned the two different compression approaches in finite fields it is natural
to ask the following two questions. First, what is the best possible compression ratio for the
elements of a subgroup G of the multiplicative group F∗ of a finite field F, where F is the
minimal field with G ⊂ F∗? One should of course require the corresponding compression and
decompression functions to be efficiently computable, and the decompression of an element to
be unique or almost unique. Second, how does the tori-compression method compare to the
trace-compression method?

The first question was partially answered in [13] for cyclotomic subgroups of finite fields. More
precisely, Rubin and Silverberg observed that for a positive integer k and a prime power q
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there is an algebraic torus Tq,k, a ϕ(k)-dimensional algebraic variety over Fq, and its group
Tq,k(Fq) of Fq-rational points is isomorphic to the order-Φk(q) (cyclotomic) subgroup of F∗

qk .
Here, Φk(q) is the kth-cyclotomic polynomial evaluated at q, and ϕ is Euler’s totient function.
Consequently, one would hope to use only ϕ(k) Fq-elements in order to (uniquely) represent
elements of Tq,k(Fq). For example, when k = 4 and k = 6, the elements of the order-(q2 + 1)
subgroup Gq,4 of F∗q4 and the elements of the order-(q2 − q + 1) subgroup Gq,6 of F∗q6 can
efficiently be compressed and decompressed by a factor 2 and 3, respectively, attaining the
best possible compression ratio k/ϕ(k) (see [12, 13]). Recently, it was shown in [15, 8] that it is
possible to further compress (and decompress) the elements of certain proper subgroups G` of
Gq,4 in characteristic-two fields, and Gq,6 in characteristic-three fields by an additional factor
2, thereby obtaining compression factors 4 and 6, respectively. These seem to be the optimal
compression factors as |G`| = q±

√
2q+1 and |G`| = q±

√
3q+1 in characteristic two and three,

respectively, whereby |G`| ≈ q. In general, it would be desirable to compress the elements of
any order-` subgroup G` ( Gq,k ⊂ F∗

qk by a factor (k log q)/ log ` in any characteristic.

In this paper, we look for answers to these questions. Our arguments suggest that, the
torus-compression techniques cannot, in general, be extended to achieve compression factor
(k log q)/ log ` for proper subgroups G` of Gq,k. At first glance our arguments might ap-
pear to contradict the aforementioned compression factors 4 and 6 achieved in the case of
Gq±

√
2q+1 ( Gq,4 where q is a power of 2, and Gq±

√
3q+1 ( Gq,6 where q is a power of 3. How-

ever, we explain why this discrepancy occurs, and how it helps to work in characteristic two and
three fields to compress the elements of certain subgroups G` by a factor k ≈ (k log q)/ log `,
when ` ≈ q. In particular, we present torus-based compression methods in characteristic two
and three fields that achieve factor-4 and 6 compression, respectively. We should emphasize
that previously the only method known to compress by a factor-4 and 6 was to use the trace
representation of elements [15, 8]. Our new approach gives us the opportunity to compare the
two compression methods and, in fact, has the advantage that computing the decompression
functions is essentially free. This yields more efficient exponentiation algorithms compared to
the trace-based exponentiation algorithms where decompression is quite costly.

The remainder of this paper is organized as follows. In Section 2, we recall some of the results
in the literature and set the notation for the paper. In Section 3, we construct our argument
to support the difficulty of obtaining the optimal compression factor k for the elements of
G` ( Gq,k ⊂ Fqk , where ` ≈ q. We analyze two particular cases in Sections 4 and 5 and show
that, in contrast to our pessimistic arguments in Section 3, one can obtain factor-4 and factor-6
compression using torus-based techniques. In Sections 6 and 7 we describe several exponentia-
tion algorithms based on our compression and decompression techniques. In Section 8 we give
a comparison of exponentiation algorithms and conclude in Section 9.

2. A review of torus-based compression

Let q be a prime power and Fq denote the finite field of order q. We denote the trace function
TrFqi/F

qj
: Fqi → Fqj by Trqi,qj .

Let ` be a positive integer such that gcd(`, q) = 1, and let k be the smallest positive integer
such that qk ≡ 1 (mod `). Then the order-` group G` is a subgroup of the cyclotomic subgroup
Gq,k ⊂ F∗

qk , where |Gq,k| = Φk(q).

Rubin and Silverberg proved that Gq,k is isomorphic to the Fq-rational points of an algebraic
torus Tq,k of dimension ϕ(k) over Fq. In particular, for k = 2 and k = 6 they presented explicit
compression and decompression algorithms for the elements of Tq,k(Fq) achieving compression
factors 2/ϕ(2) = 2 and 3 = 6/ϕ(6). The compression and decompression maps that correspond
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to the case k = 2 will be the building blocks in our arguments, so we explicitly state them here
for future reference (see [12, 13] for more details).

Let Fq2 = Fq[σ]/(f(σ)). If q is even, we set f(σ) = σ2 + σ + c with c ∈ Fq and Trq2,2(c) = 1. If
q is odd, we set f(σ) = σ2 − c where c ∈ Fq is a quadratic non-residue. Then

C : Gq,2 \ {±1} → Fq(2.1)

g0 + g1σ 7→ g0 + 1
g1

,

and

D : Fq → Gq,2(2.2)

α 7→
{ α+σ

α+1+σ if q is even,
α+σ
α−σ if q is odd,

define the compression and the decompression maps, respectively [13]. After observing that

Gq,2 = {g0 + g1σ : g0, g1 ∈ Fq and (g0 + g1σ)q+1 = 1}

=

{
{g0 + g1σ : g0, g1 ∈ Fq and g2

0 + cg2
1 + g0g1 = 1 if q is even;

{g0 + g1σ : g0, g1 ∈ Fq and g2
0 − cg2

1 = 1 if q is odd,

one can check that C and D are inverses of each other when they are defined, and that

D(α)D(β) = D
(

αβ + c

α + β + 1

)
if q is even,(2.3)

D(α)D(β) = D
(

αβ + c

α + β

)
if q is odd.(2.4)

We note that formulas (2.3) and (2.4) can be used to perform multiplication and exponentiation
in Gq,2 \ {±1} when working with the compressed representation of elements in Fq.

3. On the (im)possibility of optimal compression

In Section 2 we saw that one can at best hope to compress the elements of Gq,k ⊂ F∗
qk by a

factor k/ϕ(k) which seems to be the optimal compression factor as |Gq,k| ≈ qϕ(k). However, it
is also known that for k = 4 and k = 6, one can compress further by a factor of 2 and obtain
compression factor 2k/ϕ(k) = k for the elements of certain proper subgroups G` of Gq,k [15, 8].
In particular, for k = 4 we have q = 2m and ` = q ±

√
2q + 1, and for k = 6 we have q = 3m

and ` = q±
√

3q + 1; in both cases, m is odd. Note that, in both cases, G` ≈ q and so k is the
optimal compression factor. In general, it would be desirable to compress the elements of any
order-` subgroup G` ( Gq,k ⊆ F∗

qk by an optimal factor (k log q)/ log ` in any characteristic.

We first recall some details on how to achieve compression factor k = 4 in characteristic-two
fields using the trace representation of elements, and explain why this compression technique
does not seem to generalize to fields with characteristic different from two.

Let q = 2m, t =
√

2q and ` = q ± t + 1, where m is odd. We note that Φ4(q) = q2 + 1 =
(q + t − 1)(q − t + 1) and G` ⊂ Gq,4 ⊂ F∗q4 has embedding degree k = 4 with respect to q. In
[8], it was shown that if g ∈ G` then the minimal polynomial fg of g over Fq is

fg(x) = x4 − Trq4,q(g)x3 + Trq4,q(g)tx2 − Trq4,q(g)x + 1.

One readily deduces that g can be uniquely identified up to conjugation over Fq from Trq4,q(g),
thereby achieving factor-4 compression. A natural extension is to try to represent the elements
of G` with embedding degree 4 using their traces over Fq, where q is not even. We fix parameters
(q, `) such that q is a prime power, gcd(q, `) = 1, q2 + 1 ≡ 0 (mod `), and qi 6≡ 1 (mod `) for
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1 ≤ i < 4. It is shown in [8] that the minimal polynomial fg of g ∈ G` over Fq can be computed
as

fg(x) = x4 − Trq4,q(g)x3 + (Trq4,q(g
q+1) + 2)x2 − Trq4,q(g)x + 1.

Therefore, two Fq-elements (as opposed to only one) are generally required to identify g uniquely
up to its conjugates over Fq, unless one of Trq4,q(g) or Trq4,q(gq+1) can be obtained from the
other. In fact, one can find parameters (q, `), and elements g1, g2 ∈ G` ( Gq,4 such that g1 and
g2 are not conjugates over Fq but Trq4,q(g1) = Trq4,q(g2).

Next, we provide some evidence that, in general, compressing the elements of G` ( Gq,k ⊆ F∗
qk

by an optimal factor (k log q)/ log ` might not be possible using tori-like techniques. Again, we
consider the case k = 4 and ` ≈ q. Note that (k log q)/ log ` ≈ 4. Let Fq2 = Fq[w]/(g(w)) and
Fq4 = Fq2 [σ]/(f(σ)) for some suitable f and g. Let g = g0 +g1σ ∈ G` and recall from Section 2
that if g 6= ±1 then it can be uniquely identified with an element α ∈ Fq2 if f(σ) is of the form
σ2−c or σ2 +σ+c; see (2.1) and (2.2). More precisely, if g = g0 +g1σ then α = (g0 +1)/g1 and
g = D(α), where D(α) = (α+σ)/(α−σ) if q is even, and D(α) = (α+σ)/(α+1+σ) if q is odd.
Let α = a + bw for some a, b ∈ Fq. Note that the compression of g into (a, b) does not utilize
the fact that g lies in a proper subgroup G` of Gq,4. Therefore, one might try to compress g

further into b (or a), by using the relation g` = 1 to obtain an expression for one of a and b in
terms of the other. For example, the most naive way would be to use the relation g` = 1 and
obtain a polynomial P (x, y) ∈ Fq[x, y] such that P (a, b) = 0. Then we would hope to find a
among the roots of P (x, b) = 0. Since we also want the corresponding decompression function
to be efficiently computable and almost one-to-one we might ask the following question.

Question: What is the minimum expected degree and sparsity of a polynomial P (x, y) ∈
F̄q[x, y] such that (i) for (almost) all b ∈ Fq there exists an (almost) unique solution a ∈ Fq to
P (x, b) = 0; and (ii) for α = a + bw we have D(α) ∈ G`.

Remark 3.1. Given
(
n+m

n

)
pairs (Xi, zi) ∈ Fm

q ×Fq, an nth degree polynomial P in m variables
can be constructed such that P (Xi) = zi. Note that

(
n+m

n

)
is the number of ways of choosing n

elements from a set of m+1 elements with repetitions allowed, which is therefore the maximum
number of monomials in P . Hence, when m = 2 we would expect deg(P (x, y)) ≤

√
` ≈ √q.

We would even expect, in general, that deg(P (x, y)) ≈ √q unless the relation g` = 1 can
be manipulated towards obtaining a polynomial P (x, y) of a rather special form. This shows
that tori-like techniques described above will likely fail to produce efficient compression and
decompression functions.

4. Factor-4 compression in characteristic two

Let q = 2m, m odd, t =
√

2q, ` = q + 1− t and ¯̀= q + 1 + t. Then

q4 − 1 = (q2 − 1)(q2 + 1)
= (q2 − 1)(q + 1− t)(q + 1 + t).

Let G` ⊂ Gq,4 ⊂ F∗q4 and G¯̀⊂ Gq,4 ⊂ F∗q4 be subgroups such that |Gq,4| = q2 + 1, |G`| = ` and
|G¯̀| = ¯̀. In this section, we set Fq2 = Fq[w]/(w2 + w + c0) and Fq4 = Fq2 [σ]/(σ2 + σ + c1). We
must have Trq,2(c0) = Trq2,2(c1) = 1.

Lemma 4.1. Let Fq2 = Fq[w]/(w2 + w + c0) and Fq4 = Fq2 [σ]/(σ2 + σ + c1) with Trq,2(c0) =
Trq2,2(c1) = 1. Then

σq + σ =
m−1∑
i=0

c2i

1 = u0 + u1w,(4.1)
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σt + σ =
(m−1)/2∑

i=0

c2i

1 = u2 + u3w,(4.2)

wq + w = 1,(4.3)

wt + w =
(m−1)/2∑

i=0

c2i

0 = u4,(4.4)

for some ui ∈ Fq. In particular, u1 = 1.

Proof. The equalities can be proven by repeatedly squaring the equations σ2 + σ = c1 and
w2 + w = c0. We have u1 = 1 since

1 = Trq2,2(c1) = (σ + σq) + (σ + σq)q = u1(w + wq) = u1.

�

We furthermore assume throughout this section that σ2+σ = c1 = u5+u6w, where u5, u6 ∈ Fq.

Let g = g0 + g1σ ∈ Gq,4. We already know from Section 2 that if g 6= 1 then g can be
compressed to an element α = (g0 + 1)/g1 ∈ Fq2 , and that a compressed element α ∈ Fq2 can
be decompressed to obtain g = (α + σ)/(α + 1 + σ) ∈ Gq,4 \ {1}. Our objective is to show that
g ∈ {G`, G¯̀} \ {1} can further be compressed to b ∈ Fq, and that a compressed b ∈ Fq can be
decompressed to obtain g ∈ {G`, G¯̀} \ {1}. The following theorem plays a key role.

Theorem 4.2. Let g = (α + σ)/(α + 1 + σ) ∈ Gq,4 \ {1} where α = a + bw ∈ Fq2 for some
a, b ∈ Fq. If g ∈ G` then a is a root of the polynomial

P1(x, b) = xt + x + bt+1 + (u0 + u4)bt + (u0 + u3 + 1)b + (u0u3 + u2 + u6),

where the ui’s are as specified in Lemma 4.1. If g ∈ G¯̀ then a is a root of the polynomial

P1(x, b) = xt + x + bt+1 + (u0 + u4)bt + (u0 + u3 + 1)b + (u0u3 + u2 + u6 + 1).

Proof. Let g = (α + σ)/(α + 1 + σ) ∈ G` \ {1}. After expanding and simplifying gq+1−t = 1,
we find that α + σ is a root of

P (x) = xq+t + xq+1 + xt+1 + xt.

Now, writing α = a + bw for some a, b ∈ Fq and simplifying P (α + σ) = 0 gives us

P (α) = a2 + ab + (σq + σ)a + (w2 + w)b2 + bat + wtbt+1

+(w(σq + σ) + σt + σ)b + (σq + σ + 1)at

+(wt(σq + σ + 1))bt + (σq(σt + σ) + σt(σ + 1))
= a2 + ab + (u0 + w)a + c0b

2 + bat + (u4 + w)bt+1

+((u0 + u3 + 1)w + (c0 + u2))b + (u0 + 1 + w)at

+((u0 + u4)w + (c0 + u0u4 + u4))bt + (u0u3 + u2 + u6)w
+(c0u3 + u0u2 + u2 + u5)

= P0(a, b) + P1(a, b)w = 0,

where

P0(a, b) = atb + (u0 + 1)at + a2 + ab + u0a + u4b
t+1

+(c0 + u0u4 + u4)bt + c0b
2 + (c0 + u2)b

+(c0u3 + u0u2 + u2 + u5),
P1(a, b) = at + a + bt+1 + (u0 + u4)bt + (u0 + u3 + 1)b

+(u0u3 + u2 + u6).
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Hence, if g = α+σ
α+1+σ ∈ G` for some α = a + bw ∈ Fq2 with a, b ∈ Fq, we must have P0(a, b) =

P1(a, b) = 0. In particular, a must be a root of the polynomial

P1(x) = P1(x, b) = xt + x + bt+1 + (u0 + u4)bt + (u0 + u3 + 1)b + (u0u3 + u2 + u6).

The case when g ∈ G¯̀\ {1} can be proved similarly. �

Lemma 4.3. Let P1(x) = xt + x + u ∈ Fq[x]. Then P1(x) = 0 has a solution in Fq if and
only if Trq,2(u) = 0. If Trq,2(u) = 0 then P1(x) = 0 has exactly two solutions a0, a1 in Fq, and
a1 = a0 + 1.

Proof. We first prove that P1(x) = 0 has a solution in Fq if and only if Trq,2(u) = 0. Suppose
that P1(x) = xt + x + u = 0 has a solution, say a ∈ Fq. Then

Trq,2(u) = Trq,2(at + a) = Trq,2(a)t + Trq,2(a) = 0.(4.5)

Now, define a half-trace function H : Fq → Fq as follows1

H(u) =
(m−1)/2∑

i=0

u2i
.(4.6)

Then H(u)t + H(u) = u + Trq,2(u), and so H(u) ∈ Fq is a solution to P1(x) = 0 when
Trq,2(u) = 0.

Next we prove that if Trq,2(u) = 0 then P1(x) = 0 has exactly two solutions, namely H(u) and
H(u) + 1. We first consider the case m = 4i + 3. Note that q = 2m and t =

√
2q = 22i+2.

Let us fix a normal basis to represent Fq as an m-dimensional vector space over F2. In this
representation, we may set

x = (x0, x1, . . . , x2i, x2i+1, x2i+2, x2i+3, . . . , x4i+1, x4i+2),
xt = (x2i+1, x2i+2, . . . , x4i+1, x4i+2, x0, x1, . . . , x2i−1, x2i),
u = (u0, u1, . . . , u2i, u2i+1, u2i+2, u2i+3, . . . , u4i+1, u4i+2).

Then P1(x) = 0 has a solution if and only if the linear system of equations determined by

xj + x2i+2+j = u2i+2+j , 0 ≤ j ≤ 2i,(4.7)
x2i+1+j + xj = uj , 1 ≤ j ≤ 2i + 1,(4.8)

x2i+2 + x0 = u0(4.9)

has a solution X = (x0, x1, . . . , x4i+2) ∈ Fm
2 . We can see from (4.7) and (4.8) that a choice of

x0 ∈ {0, 1} fixes xj for all 1 ≤ j ≤ 4i + 2, and hence fixes two vectors X0 and X1 in Fm
2 . Now,

it follows from (4.9) that P1(x) = 0 has a solution if and only if x0 + x2i+1 = u0. Therefore,
P1(x) = 0 has at most two solutions in Fq. In particular, when P1(x) = 0 has a solution a0

then there are exactly two solutions and the other solution is a1 = a0 + 1 since

P1(a0 + 1) = (a0 + 1)t + (a0 + 1) + u = at
0 + a0 + u = 0.

The case m = 4i + 1 can be similarly proven. �

Now, we are ready to describe our compression/decompression maps that achieve factor-
(4 log q/(1 + log q)) compression.

Theorem 4.4. For some fixed representation of Fq as an m-dimensional vector space over F2,
let j be a coordinate position such that the vector representations of β and β + 1 differ in the
jth coordinate position for all β ∈ Fq. Let G ∈ {G`, G¯̀}. Define a compression map

C : G \ {1} → {0, 1} × Fq(4.10)
g 7→ (i, b),

1The definition is similar to the one in [6, Section 3.6.2]
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where g = g0 + g1σ, (g0 + 1)/g1 = a + bw, and i is the jth bit in the vector representation of
a. And define a decompression map

D : {0, 1} × Fq → G \ {1}(4.11)
(i, b) 7→ (α + σ)/(α + 1 + σ),

where α = a + bw, and a is one of the two roots of P1(x, b) (see Theorem 4.2) whose jth bit
when represented as a vector over F2 is equal to i. Then C and D are inverses of each other
when they are defined. Moreover, if D(0, b) ∈ G then D(1, b) ∈ G and D(0, b)D(1, b) = 1.

Proof. It follows from Theorem 4.2 and Lemma 4.3 that C and D are inverses of each other
when they are defined. Now, by Lemma 4.3, P1(x, b) has exactly 2 solutions a0 and a1 in Fq,
and a1 = a0 + 1. Note that since g = α+σ

α+1+σ ∈ G with α = a + bw corresponding to (a0, b),
the element h = α+1+σ

α+σ corresponds to (a1, b) and is in fact the multiplicative inverse of g. It
follows that D(0, b)D(1, b) = 1. �

Remark 4.5. The polynomials P0(x, y) and P1(x, y) are both of degree (t + 1) ≈ √q which is
in accordance with Remark 3.1. However, P1(x, b) is very sparse and moreover it is easy to find
a root a ∈ Fq, in contrast to what one would expect in general for high-degree polynomials.

5. Factor-6 compression in characteristic three

Let q = 3m, m ≡ 5 (mod 12), t =
√

3q and ` = q + 1− t. Then

q6 − 1 = (q3 − 1)(q3 + 1)
= (q3 − 1)(q + 1)(q2 − q + 1)
= (q3 − 1)(q + 1)(q + 1− t)(q + 1 + t).

Let G` ⊂ Gq,6 ⊂ F∗q6 be subgroups such that |Gq,6| = q2 − q + 1 and |G`| = `. Since f(w) =
w3 − w − 1 has splitting field F33 and gcd(3,m) = 1, f is irreducible over Fq and we set
Fq3 = Fq[w]/(w3 − w − 1). We also let c0 ∈ Fq3 be a quadratic non-residue and set Fq6 =
Fq3 [σ]/(σ2 − c0).

Lemma 5.1. Let Fq3 = Fq[w]/(w3 − w − 1) and Fq6 = Fq3 [σ]/(σ2 − c0) where c0 ∈ Fq3 is a
quadratic non-residue. Then

σt = c1σ,

σq = c2σ,

σq2
= c3σ,

wt = w,

w2t = w2,

wq = w + 2,

w2q = w2 + w + 1,

wq2
= w + 1,

for some c1, c2, c3 ∈ Fq3.

Proof. The equalities can be proven by using the defining equations of σ and w, and noting
that w32k

= w + 2k and w32k+1
= w + 1 + 2k. �
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We furthermore assume throughout this section that ci = u3i+u3i+1w+u3i+2w
2 for i = 0, 1, 2, 3,

where uj ∈ Fq.

Let g = g0 + g1σ ∈ Gq,6. We already know from Section 2 that if g 6= ±1 then g can be
compressed to an element α = (g0 + 1)/g1 ∈ Fq3 , and that a compressed α ∈ Fq3 can be
decompressed to obtain g = (α + σ)/(α − σ) ∈ Gq,6 \ {±1}. Our objective is to show that
g ∈ G` can be compressed to c ∈ Fq, and that a compressed c ∈ Fq can be decompressed to
obtain g ∈ G` \ {±1}. The following theorem plays a key role.

Theorem 5.2. Let g = (α+σ)/(α−σ) ∈ G`\{±1} where α = a+bw+cw2 for some a, b, c ∈ Fq.
Then (x1, x2, x3, x4, x5, x6) = (a, at, b, bt, c, ct) is a root of each fi and gi for i = 0, 1, 2, where

f0 = u0u3u6 + u0u4u8 + u0u5u7 + u1u3u8 + u1u4u7 + u1u5u6

+u1u5u8 + u2u3u7 + u2u4u6 + u2u4u8 + u2u5u7 + u2u5u8

+u3x
2
1 + (u4 + 2u5)x2

3 + (u3 + 2u4 + 2u5)x2
5 + (2u6 + 2)x1x2

+(2u7 + 2u8 + 2)x5x6 + (2u6 + 2u8 + 2)x3x6 + (2u8 + 1)x2x3

+(2u7 + 2)x2x5 + (2u6 + 2u8 + 2)x4x5 + (2u3 + 2u5)x1x3

+(u3 + 2u4 + u5)x1x5 + 2u3x3x5 + 2u7x3x4 + 2u7x1x6

+2u8x1x4,

f1 = u0u3u7 + u0u4u6 + u0u4u8 + u0u5u7 + u0u5u8 + u1u3u6

+u1u3u8 + u1u4u7 + u1u4u8 + u1u5u6 + u1u5u7 + u1u5u8

+u2u3u7 + u2u3u8 + u2u4u6 + u2u4u7 + u2u4u8 + u2u5u6

+u2u5u7 + 2u2u5u8 + u4x
2
1 + (2u3 + u4)x2

3 + (2u3 + u5)x2
5

+(2u6 + 2u7 + u8 + 1)x5x6 + (2u7 + 2u8 + 1)x3x4

+(2u6 + 2u7 + 2u8 + 2)x3x6 + (2u6 + 2u8 + 2)x2x3

+(2u7 + 2u8 + 2)x2x5 + (2u6 + 2u7 + 2u8 + 1)x4x5

+(2u7 + 2u8)x1x6 + (2u6 + 2u8 + 2)x1x4 + u3x1x5

+(2u3 + 2u4 + 2u5)x1x3 + 2u4x3x5 + 2u7x1x2,

f2 = u0u3u8 + u0u4u7 + u0u5u6 + u0u5u8 + u1u3u7 + u1u4u6

+u1u4u8 + u1u5u7 + u1u5u8 + u2u3u6 + u2u3u8 + u2u4u7

+u2u4u8 + u2u5u6 + u2u5u7 + u2u5u8 + 2u7x2x3 + u5x
2
1

+(u3 + 2u4 + u5)x2
3 + (2u3 + 2u4)x2

5 + (2u4 + 2u5)x1x3

+(2u3 + u4)x1x5 + 2u8x1x2 + 2u5x3x5 + 2u7x1x4

+(2u6 + 2u7 + 2u8 + 1)x5x6 + (2u6 + 2u8 + 2)x3x4

+(2u7 + 2u8 + 1)x3x6 + (2u6 + 2u8 + 2)x2x5

+(2u7 + 2u8 + 2)x4x5 + (2u6 + 2u8 + 2)x1x6,

g0 = u2u7u11 + u2u8u10 + u2u8u11 + u0u6u9 + u1u7u10 + u0u7u11

+u0u8u10 + u1u6u11 + u2u7u9 + u1u8u9 + u1u8u11 + u2u6u10

+(2u9 + 2 + u6)x2
1 + (u9 + u6 + 2u8 + u11)x3x1

+(2u9 + 1 + 2u8 + u10 + 2u11 + 2u7 + u6)x1x5

+(u7 + u8 + 2u10 + u11 + 1)x2
3
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+(2u6 + 2u7 + 2u9 + u10 + u11 + 2)x2
5 + (2u6 + u9 + 1)x3x5

g1 = u0u6u10 + u0u7u9 + u0u7u11 + u0u8u10 + u0u8u11 + u1u6u9

+u1u6u11 + u1u7u10 + u1u7u11 + u1u8u9 + u1u8u10 + u1u8u11

+u2u6u10 + u2u6u11 + u2u7u9 + u2u7u10 + u2u7u11 + u2u8u9

+u2u8u10 + 2u2u8u11 + (u7 + 2u10)x2
1

+(u6 + u7 + 2u8 + u9 + 2u10)x2
3

+(u7 + 2u8 + u9 + 2u11 + 2)x2
5

+(2u6 + u7 + 2u8 + u9 + u10 + u11 + 1)x1x3

+(2u6 + u8 + 2u9)x1x5 + (2u7 + u10)x3x5,

g2 = u1u6u10 + u1u7u9 + u1u7u11 + u1u8u10 + u1u8u11 + u2u6u9

+u2u6u11 + u2u7u10 + u2u7u11 + u0u6u11 + u0u7u10 + u0u8u9

+u0u8u11 + u2u8u9 + u2u8u10 + u2u8u11 + (u8 + 2u11)x2
1

+(2u7 + u8 + u10 + u11)x1x3

+(2u6 + 2u7 + u9 + 2u10 + 1)x1x5

+(u6 + u7 + u8 + 2u9 + u10 + 2u11 + 2)x2
3

+(2u6 + u8 + u9 + u10 + 1)x2
5 + (2u8 + u11)x3x5,

and where ci = u3i + u3i+1w + u3i+2w
2, for i = 0, 1, 2, 3, are as specified in Lemma 5.1.

Proof. Let g = (α + σ)/(α − σ) ∈ G` \ {±1}. Expanding the equations gq2−q+1 = 1 and
gq+1−t = 1 and simplifying using Lemma 5.1 yields the polynomials fi, gi ∈ Fq[x1, x2, . . . , x6]
for i = 0, 1, 2 such that (x1, x2, x3, x4, x5, x6) = (a, at, b, bt, c, ct) is a root of each fi and gi, as
required. �

Theorem 5.2 suggests that one can compress an element g ∈ G` \ {±1} to an element c ∈ Fq.
Given a compressed representation c of an element g, one might reconstruct g by finding
a common root (a, at, b, bt, c, ct) of the fi and gi. This may be achieved by constructing a
Groebner basis of the ideal in Fq[x1, x2, . . . , x6] generated by fi and gi evaluated at x5 = c,
x6 = ct for i = 0, 1, 2. The next corollary shows that this is indeed possible in the case that
c0 = −1.

Corollary 5.3. Let Fq3 = Fq[w]/(w3 − w − 1) and Fq6 = Fq3 [σ]/(σ2 + 1). Let fi, gi be as in
Theorem 5.2. Then a Groebner basis of the ideal 〈f0, f1, f2, g0, g1, g2〉 in Fq[x1, x2, . . . , x6] is

P1 = x1 + 2x2
3x4 + 2x3x4x5 + x3 + x2

5x6 + 2x5,

P2 = x2 + 2x3
3x

2
4 + 2x2

4x
3
5 + x4x

3
5x6 + x3

5x
2
6 + 2x6,

P3 = x2
3x4x5 + 2x2

3 + x3x4x
2
5 + 2x3x5 + 2x3

5x6 + 2x2
5 + 2,

P4 = x3x
2
4x

2
5 + x3x4x5 + x3 + 2x2

4x
3
5 + 2x4x

3
5x6 + 2x4x

2
5

+2x3
5x

2
6 + 2x5 + 2x6,

P5 = x3x6 + 2x4x5 + 2x5x6 + 1,

P6 = x3
4x

3
5 + 2x4x

3
5x

2
6 + 2x3

5x
3
6 + 2x2

6 + 2.

Proof. If one sets c0 = −1 in Theorem 5.2 then g1 = g2 = 0, and the polynomials fi and g0

simplify to

f0 = 2x2
1 + x1x3 + 2x1x5 + x2x3 + 2x2x5 + x3x5 + 2x2

5 + 2x5x6 + 2,
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f1 = x1x3 + 2x1x5 + 2x2x5 + x2
3 + x3x4 + 2x4x5 + x2

5 + 2x5x6,

f2 = x1x5 + 2x2
3 + x3x6 + 2x4x5 + x2

5 + 2x5x6,

g0 = 2x1x5 + x2
3 + 2x2

5 + 1.

It can be verified using Magma with the commands

R < x1, x2, x3, x4, x5, x6 >:= PolynomialRing(FiniteField(3), 6);
B := [R!f0,R!f1,R!f2,R!g0];
I := ideal < R|B >;
GroebnerBasis(I);

that a Groebner basis of the ideal 〈f0, f1, f2, g0〉 in Fq[x1, x2, . . . , x6] is determined by the Pi’s,
as required. �

5.1. Decompression procedure. Let Fq3 = Fq[w]/(w3 − w − 1) and Fq6 = Fq3 [σ]/(σ2 + 1).
Let g = (α + σ)/(α − σ) ∈ G` \ {±1} where α = a + bw + cw2 for some a, b, c ∈ Fq. By
Theorem 5.2 and Corollary 5.3, bt must be a root of

P6(x4) = c3x3
4 + 2c2t+3x4 + 2(c3(t+1) + c2t + 1).(5.1)

In fact, there are exactly three roots of P6(x4) in Fq, and if r is a root then the other two roots
are given by r ± ct. Therefore, if c is given, bt can be determined uniquely up to 3 elements,
that is, bt ∈ {r, r−ct, r+ct}. Once bt is fixed, one can solve for b uniquely by using P5(x3) = 0,
where P5(x3) is obtained by evaluating P5 at x4 = bt, x5 = c, x6 = ct (see Corollary 5.3),
or by using the fact that b 7→ bt is a Frobenius map. Having determined b, bt, c and ct we
can use P2(x2) = 0, where P2(x2) is obtained by evaluating P2 at x3 = b, x4 = bt, x5 = c,
x6 = ct (see Corollary 5.3), to solve for at uniquely. Finally, a can be determined either by
using P1(x1) = 0, where P1(x1) is obtained by evaluating P1 at x3 = b, x4 = bt, x5 = c, x6 = ct

(see Corollary 5.3), or by using the fact that a 7→ at is a Frobenius map.

To summarize, suppose that g ∈ G` \ {±1} and g = (α + σ)/(α − σ) with α = a + bw + cw2.
If c is given, then the three pairs (x1h, x3h), h = 1, 2, 3 can be efficiently determined such that
(a, b, c) ∈ {(x1h, x3h, c) : h = 1, 2, 3}. In fact, one can check that c 6= 0 and

{(x1h, x3h, c) : h = 1, 2, 3} = {(a, b, c), (a− b + c, b + c, c), (a + b + c, b− c, c)}.

Suppose now that we have fixed some representation of Fq as an m-dimensional vector space
over F3. Then there must exist a smallest index j such that exactly one of x3h’s j’th trit is equal
to b’s j’th trit, say i ∈ {0, 1, 2}, when they are represented as vectors over F3. This yields one-
to-one compression/decompression maps that achieve factor-(6 log q)/(2 + log q) compression.

Theorem 5.4. Define a compression map

C : G` \ {±1} → {0, 1, 2} × Fq(5.2)
g 7→ (i, c),

where g = g0 + g1σ, (g0 +1)/g1 = a+ bw + cw2, and i is defined above. Define a decompression
map

D : {0, 1, 2} × Fq → G` \ {±1}(5.3)
(i, c) 7→ (α + σ)/(α− σ),

where α = a + bw + cw2, and a, b can be constructed as described above. Then C and D
are inverses of each other when they are defined. Moreover, if D(0, c) ∈ G` \ {±1} then
D(i, b) ∈ G` \ {±1} for i = 1, 2, and D(0, c)D(1, c)D(2, c) = 1.
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Proof. It is clear from our arguments above that C and D are inverses of each other when
they are defined. Now, let c ∈ F∗q be such that g = (α + σ)/(α − σ) ∈ G` \ {±1}, where α =
a+bw+cw2. Let i1 be the jth trit of b, where j is the smallest index such that if (b+c)’s j’th trit
is i2 and (b−c)’s j’th trit is i3, then i1, i2, i3 are pairwise different. It follows from our arguments
above that the decompression function satisfies D(ih, c) = gh, where gh = (αh − σ)/(αh + σ),
and α1 = a + bw + cw2, α2 = (a− b + c) + (b + c)w + cw2, α3 = (a + b + c) + (b− c)w + cw2.
Moreover, one can check that g1 = g, g2 = g−q = gq4

, and g3 = gq2
, that is g1g2g3 = 1, as

required. �

Remark 5.5. It would be interesting to prove similar results for q = 3m where m 6≡ 5
(mod 12), and for any quadratic non-residue c0 ∈ Fq3 , c0 6= −1. The main difficulty when
c0 6= −1 seems to be that the polynomials fi, gi are defined strictly over Fq rather than over
F3 which is the case when c0 = −1.

6. Factor-4 compression and exponentiation algorithms

In this section, we analyze the efficiency of the compression and decompression methods pro-
posed in Section 4. The efficiency of these methods matters because given a compressed
representation of an element, one can consider a variety of exponentiation algorithms that can
work directly with that compressed representation, or with partially or fully decompressed
representations of the element.

We first show that compression and decompression can be achieved at a negligible cost. Then
we describe two exponentiation algorithms and provide a performance comparison.

6.1. Compression/decompression costs. Let q = 2m, m odd, t =
√

2q and ` = q + 1 − t.
Let G` ⊂ F∗q4 be the subgroup with |G`| = `. Let Fq2 = Fq[w]/(w2 + w + c0) and Fq4 =
Fq2 [σ]/(σ2+σ+c1), where Trq,2(c0) = Trq2,2(c1) = 1. We further assume that Fq is represented
as an m-dimensional vector space over F2 via a polynomial basis {1, z, . . . , zm−1}.
We first show that the compression and decompression maps described in Theorem 4.4 are very
efficiently computable.

Lemma 6.1. Let P1(x) = xt + x + u ∈ Fq[x]. If P1(x) = 0 has a solution in Fq then it can
be computed at a cost of (m− 1)/2 squarings and (m− 1)/2 additions in Fq. If storage for m
Fq-elements is available then finding the Fq-solutions of P1(x) = 0 in Fq requires on average
m/2 additions in Fq.

Proof. Let u =
∑m−1

i=0 uiz
i and suppose that P1(x) = xt + x + u = 0 has a solution in Fq.

It follows from Lemma 4.3 that the solutions in Fq are given by H(u) and H(u) + 1, where
H(u) =

∑(m−1)/2
i=0 u2i

, which can be computed at a cost of (m− 1)/2 squarings and (m− 1)/2
additions in Fq. If one can store H(zi) for 0 ≤ i < m then

H(u) =
m−1∑
i=0

uiH(zi)

can be computed at a cost of m/2 additions on average. �

Theorem 6.2. Let C and D be compression and decompression maps, respectively, as described
in Theorem 4.4. Then compression via C requires 1 division in Fq2 and decompression via D
requires (m− 1)/2 squarings and (m− 1)/2 additions in Fq, and 1 division in Fq4. If storage
for m Fq-elements is available then decompression requires on average m/2 additions in Fq and
1 division in Fq4.

Proof. The proof follows from Theorem 4.4 and Lemma 6.1. �
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6.2. Exponentiation algorithms. Recall that in our compression method, given g = g0 +
g1σ ∈ G` \ {1}, we first compress g to α = (g0 + 1)/g1 = a + bw, and then compress α to (i, b)
where i ∈ {0, 1}. By Theorem 6.2, compressing g to (i, b) and decompressing (i, b) to α (and
to g) can be achieved at a negligible cost. In this context, we call α a half-compressed element.

We present two exponentiation algorithms to compute ge given C(g) = (i, b) and e ∈ Z. The
first exponentiation algorithm, which we call HCTBE (Half-Compressed Torus-Based Expo-
nentiation), partially decompresses (i, b) to α and then uses a multiplication formula for half-
compressed elements. The output is then compressed to obtain C(ge). The second algorithm,
which we call FDDE (Fully-Decompressed Direct Exponentiation Algorithm), fully decom-
presses (i, b) to g and uses a conventional square-and-multiply exponentiation algorithm in
Fq4 .

6.2.1. The HCTBE algorithm. The algorithm makes use of the multiplication formula (2.3)
to compute C(ge). The formula requires an inversion in Fq2 that makes the exponentiation
algorithm quite costly if one tries to use (2.3) directly. However, the problem can be overcome
as follows. If g = g0 + g1σ, h = h0 + h1σ ∈ G` \ {1} are represented by α = (g0 + 1)/g1,
β = (h0 + 1)/h1 ∈ Fq2 , respectively, then we have

g · h =
(

α + σ

α + 1 + σ

) (
β + σ

β + 1 + σ

)
=

αβ + c1 + (α + β + 1)σ
αβ + c1 + α + β + 1 + (α + β + 1)σ

.

In other words, if the product of any two elements in G` is computed by this formula then the
result will be of the form

x + yσ

x + y + yσ
, for some x, y ∈ Fq2 .(6.1)

In particular, given C(g) = (i, b) and e ∈ Z, one can first decompress (i, b) to α, and then
perform an exponentiation to compute C(ge) by using the formulas(

x + yσ

x + y + yσ

)2

=
x2 + y2c1 + y2σ

x2 + y2c1 + y2 + y2σ
,(

α + σ

α + 1 + σ

) (
x + yσ

x + y + yσ

)
=

αx + yc1 + (αy + x + y)σ
αx + yc1 + αy + x + y + (αy + x + y)σ

,

in the square and multiply steps of the exponentiation algorithm. Note that by (6.1) it suffices
to only keep track of the numerator during the computations, and to do a single division in
Fq4 to obtain ge and finally its compressed value C(ge). Our discussion yields Algorithm 1.

Assuming that c1 ∈ Fq2 is chosen so that the cost of multiplying an element by c1 is negligible,
the cost of the squaring step (step 5), and the cost of the multiplication step (step 7) in
Algorithm 1 is approximately 2 squarings in Fq2 and 2 multiplications in Fq2 , respectively.

6.2.2. The FDDE algorithm. After decompressing C(g) = (i, b) to g = g0 + g1σ, we use a
conventional square-and-multiply exponentiation algorithm as described in Algorithm 2. Since

(x + yσ)2 = x2 + y2c + y2σ,

(g0 + g1σ)(x + yσ) = g0x + g1yc + (g0y + g1x + g1yc)σ,

each squaring step (step 5) in Algorithm 2 requires 2 squarings in Fq2 . Using Karatsuba’s
technique, each multiplication step (steps 7-8) requires 3 multiplications in Fq2 . We assume
that c1 ∈ Fq2 is chosen appropriately so that the cost of multiplying an element by c1 is
negligible.
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Algorithm 1 The HCTBE exponentiation algorithm
Input: C(g) and e
Output: C(ge)

1: Write e =
∑s−1

i=0 bi2i where bi ∈ {0, 1} and bs−1 = 1
2: Decompress C(g) to α by using Theorem 4.4
3: x← α, y ← 1
4: for i from s− 2 down to 0 do
5: y′ ← y2, x′ ← x2 + y′c1

6: if bi = 1 then
7: x′ ← αx + yc1, y′ ← αy + x + y
8: end if
9: x← x′, y ← y′

10: end for
11: g′ ← (x + yσ)/(x + y + yσ)
12: Compress (g′) to C(g′) = (i′, b′), by using Theorem 4.4
13: Output (i′, b′)

Algorithm 2 The FDDE exponentiation algorithm
Input: C(g) and e
Output: C(ge)

1: Write e =
∑s−1

i=0 bi2i where bi ∈ {0, 1} and bs−1 = 1
2: Decompress C(g) to g = g0 + g1σ by using Theorem 4.4
3: x← g0, y ← g1

4: for i from s− 2 down to 0 do
5: y′ ← y2, x′ ← x2 + y′c1

6: if bi = 1 then
7: u0 ← (g0 + g1)(x′ + y′), u1 ← g0x

′, u2 ← g1y
′, u3 ← u2c1

8: x′ ← u1 + u3, y′ ← x′ + u0 + u2

9: end if
10: x← x′, y ← y′

11: end for
12: g′ ← (x + yσ)
13: Compress (g′) to C(g′) = (i′, b′), by using Theorem 4.4
14: Output (i′, b′)

6.2.3. A comparison with trace-based exponentiation. In [8], it was shown that it is possible to
compress elements of G` by a factor 4 by identifying an element g ∈ G` with its trace Trq4,q(g).
Given Trq4,q(g) and an integer e, five exponentiation algorithms were proposed and analyzed
in [8] to compute Trq4,q(ge). The algorithms are based on the following ideas:

(1) Use Trq4,q(g) directly and perform computations in Fq (Algorithm 1 in [8]).
(2) First decompress Trq4,q(g) to Trq4,q2(g). Then use Trq4,q2(g) directly and perform com-

putations in Fq2 (Algorithm 2 in [8]).
(3) First decompress Trq4,q(g) to g and perform computations in Fq4 (Algorithm DDE in

[8]).
(4) First decompress Trq4,q(g) to Trq4,q2(g). Then use Trq4,q2(g) to construct a copy of

Fq4 based on the minimal polynomial of g over Fq2 , and perform computations in Fq4

(Algorithm BPV-I in [8]).
(5) Use Trq4,q(g) to construct a copy of Fq4 based on the minimal polynomial of g over Fq,

and perform computations in Fq4 (Algorithm BPV-II in [8]).
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If a decompression is performed then it is the most expensive step in these algorithms. There-
fore, the algorithms based on (1) and (5) are overall faster than the algorithms based on (2),
(3) and (4). In particular, Algorithm 1 in [8] was reported to be the fastest exponentiation al-
gorithm in the case of using a general base Trq4,q(g), and its performance was further improved
in [7] (see Algorithm 3 in [7]). However, once decompression can be performed in advance, such
as in the case of using a fixed base Trq4,q(g), then the algorithm based on (3) is the fastest.

Note that by Theorem 6.2, given C(g) for some g ∈ G` \ {1}, one can recover g (and also
Trq4,q(g) and Trq4,q2(g)) at a negligible cost. Hence, it is more advantageous to use C(g) instead
of Trq4,q(g). For example, using C(g), we can obtain faster exponentiation algorithms than
the trace-based exponentiation algorithms in the case of a general base by simply computing
Trq4,q(g) from C(g) and adapting an algorithm based on (3).

7. Factor-6 compression and exponentiation algorithms

This section is analogous to Section 6. We analyze the efficiency of the compression and decom-
pression methods proposed in Section 5. We first show that compression and decompression
can be achieved at a negligible cost, and then describe two exponentiation algorithms and
provide a performance comparison.

7.1. Compression/decompression costs. Let q = 3m, m odd, t =
√

3q and ` = q+1−t. Let
G` ⊂ F∗q6 be the subgroup with |G`| = `. Let Fq3 = Fq[w]/(w3−w−1) and Fq6 = Fq3 [σ]/(σ2−c0)
where c0 is a quadratic non-residue in Fq3 . We further assume that Fq is represented as an
m-dimensional vector space over F3 via a polynomial basis {1, z, . . . , zm−1}.

Lemma 7.1. Let P6(x) = c3x3 + 2c2t+3x + 2(c3(t+1) + c2t + 1) ∈ Fq[x] for some c ∈ Fq. If
P6(x) = 0 has a solution in Fq and storage of m Fq-elements is available, then finding the
Fq-solutions requires on average 2m/3 additions, 2 multiplications, 1 squaring and 1 division
in Fq.

Proof. First observe that if B ∈ Fq is a quadratic non-residue and x3 + Bx + C = 0 has a
solution in Fq then all solutions are given by

{r1, r2, r3} = {(−B)1/2R(D), (−B)1/2(R(D) + 1), (−B)1/2(R(D) + 2)},
where D = C/(−B)3/2 and R(D) is a root of

x3 − x + D.

Clearly, if x3 − x + D = 0 has a solution R(D) ∈ Fq then it can be found trit-wise when a
normal basis {θ, θ3, . . . , θ3m−1} is used to represent Fq as an m-dimensional vector space over
F3. Let us suppose that R(D) =

∑m−1
i=0 Riθ

3i
and the m Fq-elements

θ3i
=

m−1∑
j=0

θijz
j , 0 ≤ i < m

are precomputed and stored. Then a solution

R(D) =
m−1∑
i=0

Ri

m−1∑
j=0

θijz
j

to x3 − x + D = 0 is obtained in Fq, at an average cost of 2m/3 additions in Fq.

Now, in order to find a solution of P6(x) = c3x3 + 2c2t+3x + 2(c3(t+1) + c2t + 1) = 0 in Fq, we
first compute B = 2c2t+3/c3 = 2c2t and C = 2(c3(t+1) + c2t + 1)/c3. Then

D = C/(−B)3/2 = (2(c3(t+1) + c2t + 1)/c3t+3)
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can be computed at a cost of 1 multiplication, 1 squaring and 1 division in Fq (we ignore the
cost of addition in Fq and Frobenius operations). From our argument above we can find a
solution of x3 − x + D = 0 in Fq at an average cost of 2m/3 additions in Fq. Hence, the
solutions of P6(x) = 0 are given by

{r1, r2, r3} = {ctR(D), ct(R(D) + 1), ct(R(D) + 2)},
and can be obtained at an average cost of 2m/3 additions, 2 multiplications, 1 squaring and 1
division in Fq. �

From now on, we shall assume that m ≡ 5 (mod 12) and c0 = −1.

Theorem 7.2. Let C and D be compression and decompression maps, respectively, as described
in Theorem 5.4. Then compression via C requires 1 division in Fq3 and decompression via D
requires on average 2m/3 additions, 2 multiplications, 1 squaring, 1 division in Fq, and 1
division in Fq6, with a storage of m Fq-elements.

Proof. The proof follows from Theorem 5.4 and Lemma 7.1. �

7.2. Exponentiation algorithms. Recall that in our compression method, given g = g0 +
g1σ ∈ G` \{±1}, we first compress g to α = (g0 +1/g1) = a+ bw+ cw2, by a factor 2, and then
compress α to (i, c), i ∈ {0, 1, 2} by a factor of 3. By Theorem 7.2, compressing g to (i, c), and
decompressing (i, c) to α (and to g) can be achieved at a negligible cost. In this context, we
call α a half-compressed element.

We present two exponentiation algorithms to compute ge given C(g) = (i, c) and e ∈ Z. The first
exponentiation algorithm, which we call HCTBE (Half-Compressed Torus-Based Exponentia-
tion), partially decompresses (i, c) to α and uses a multiplication formula for half-compressed
elements. The output is then compressed to obtain C(ge). The second algorithm, which we call
FDDE (Fully-Decompressed Direct Exponentiation Algorithm), fully decompresses (i, c) to g
and uses a conventional cube-and-multiply exponentiation algorithm in Fq6 .

7.2.1. The HCTBE algorithm. The algorithm makes use of the multiplication formula (2.4)
to compute C(ge). If g = g0 + g1σ, h = h0 + h1σ ∈ G` \ {±1} are represented by α =
(g0 + 1)/g1, β = (h0 + 1)/h1 ∈ Fq3 , respectively, then we have

g · h =
(

α + σ

α− σ

) (
β + σ

β − σ

)
=

αβ + c0 + (α + β)σ
αβ + c0 − (α + β)σ

.

In other words, if the product of any two elements in G` is computed by this formula then the
result will be of the form

x + yσ

x− yσ
, for some x, y ∈ Fq3 .(7.1)

In particular, given C(g) = (i, c) and e ∈ Z, one can first decompress (i, c) to α, and then
perform an exponentiation to compute C(ge) by using the formulas(

x + yσ

x− yσ

)3

=
x3 + y3c0σ

x3 − y3c0σ
,(

α + σ

α− σ

) (
x + yσ

x− yσ

)
=

αx + yc0 + (αy + x)σ
αx + yc0 − (αy + x)σ

,(
α− σ

α + σ

) (
x + yσ

x− yσ

)
=

αx− yc0 + (αy − x)σ
αx− yc0 − (αy − x)σ
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in the cube and multiply steps of the exponentiation algorithm. Note that by (7.1) it suffices
to only keep track of the numerator during the computations, and to do a single division in
Fq6 to obtain ge and finally its compressed value C(ge). Our discussion yields Algorithm 3.

Algorithm 3 The HCTBE exponentiation algorithm
Input: C(g) and e
Output: C(ge)

1: Write e =
∑s−1

i=0 bi3i where bi ∈ {−1, 0, 1} and bs−1 = 1
2: Decompress C(g) to α by using Theorem 5.4
3: x← α, y ← 1
4: for i from s− 2 down to 0 do
5: x′ ← x3, y′ ← y3c0

6: if bi = 1 then
7: x′ ← αx + yc0, y′ ← (αy + x)
8: else if bi = −1 then
9: x′ ← αx− yc0, y′ ← (αy − x)

10: end if
11: x← x′, y ← y′

12: end for
13: g′ ← (x + yσ)/(x− yσ)
14: Compress (g′) to C(g′) = (i′, c′), by using Theorem 5.4
15: Output (i′, c′)

Since c0 = −1, the cost of the cubing step (step 5) and the cost of the multiplication step (step
7 or step 9) in Algorithm 3 is approximately 2 cubings in Fq3 and 2 multiplications in Fq3 ,
respectively.

Remark 7.3. Granger, Page and Stam [5, Section 3.2] proposed an exponentiation algorithm
that works in the quotient group F∗q6/F∗q3 where q = 3m, m is odd, and mimics the mixed addi-
tion method for point multiplication on elliptic curves. Algorithm 1 can be seen as analogous
to their algorithm. The main difference is that they identify g = g0 + g1σ with α = g0/g1

instead of α = (g0 + 1)/g1 and therefore their method cannot be directly adapted to obtain a
fast exponentiation algorithm in G` ⊂ F∗q6 . In particular, it was reported in [5, Table 3] that
exponentiation in F∗q6/F∗q3 is more efficient than exponentiation in G`. The HCTBE algorithm
equalizes the efficiency of exponentiation algorithms in G` and F∗q6/F∗q3 .

7.2.2. The FDDE algorithm. After decompressing C(g) = (i, b) to g = g0 + g1σ, we use a
conventional cube-and-multiply exponentiation algorithm as described in Algorithm 4. Since

(x + yσ)3 = x3 + y3c0σ,

(g0 + g1σ)(x + yσ) = g0x + g1yc0 + (g0y + g1x)σ,

(g0 − g1σ)(x + yσ) = g0x− g1yc0 + (g0y − g1x)σ,

each cubing step (step 5) in Algorithm 4 requires 2 cubings in Fq3 . Using Karatsuba’s technique,
each multiplication step (steps 7-8 or steps 10-11) requires 3 multiplications in Fq3 (note that
c0 = −1).

7.2.3. A comparison with trace-based exponentiation. In [15], it was shown that it is possible to
compress elements of G` by a factor 6 by identifying an element g ∈ G` with its trace Trq6,q(g).
Given Trq6,q(g) and an integer e, six exponentiation algorithms were proposed and analyzed in
[8] to compute Trq6,q(ge). The performance of these six algorithms were also compared with
a previously-known exponentiation algorithm XTR3 in [15]. The algorithms are based on the
following ideas:
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Algorithm 4 The FDDE exponentiation algorithm
Input: C(g) and e
Output: C(ge)

1: Write e =
∑s−1

i=0 bi3i where bi ∈ {−1, 0, 1} and bs−1 = 1
2: Decompress C(g) to g = g0 + g1σ by using Theorem 5.4
3: x← g0, y ← g1

4: for i from s− 2 down to 0 do
5: x′ ← x3, y′ ← y3c0

6: if bi = 1 then
7: u0 ← (g0 + g1)(x′ + y′), u1 ← g0x

′, u2 ← g1y
′, u3 ← u2c0

8: x′ ← u1 + u3, y′ ← u0 − (u1 + u2)
9: else if bi = −1 then

10: u0 ← (g0 − g1)(x′ + y′), u1 ← g0x
′, u2 ← −g1y

′, u3 ← u2c0

11: x′ ← u1 + u3, y′ ← u0 − (u1 + u2)
12: end if
13: x← x′, y ← y′

14: end for
15: g′ ← (x + yσ)
16: Compress (g′) to C(g′) = (i′, c′), by using Theorem 5.4
17: Output (i′, c′)

(1) Use Trq6,q(g) directly and perform computations in Fq (Algorithm 3 in [8]).
(2) First decompress Trq6,q(g) to Trq6,q3(g). Then use Trq6,q3(g) directly and perform com-

putations in Fq3 (Algorithm 4 in [8]).
(3) First decompress Trq6,q(g) to g and perform computations in Fq6 (Algorithm DDE in

[8]).
(4) First decompress Trq6,q(g) to Trq6,q2(g). Then use Trq6,q2(g) to construct a copy of

Fq6 based on the minimal polynomial of g over Fq2 , and perform computations in Fq6

(Algorithm BPV-I in [8]).
(5) First decompress Trq6,q(g) to Trq6,q3(g). Then use Trq6,q3(g) to construct a copy of

Fq6 based on the minimal polynomial of g over Fq3 , and perform computations in Fq6

(Algorithm BPV-II in [8]).
(6) Use Trq6,q(g) to construct a copy of Fq6 based on the minimal polynomial of g over Fq,

and perform computations in Fq6 (Algorithm BPV-III in [8]).
(7) First decompress Trq6,q(g) to Trq6,q2(g). Then use Trq6,q2(g) directly and perform com-

putations in Fq2 (Algorithm XTR3 in [15]).

The algorithms based on (1), (4), (6) and (7) are overall faster than the algorithms based
on (2), (3) and (5) because of the expensive decompression operations required in the latter
algorithms. In particular, it was reported in [8] that XTR3 in [15] can be further sped up and
it is the fastest exponentiation algorithm for general bases. However, if decompression can be
precomputed, for example when the base is fixed, then the algorithm based on (3) is the fastest.

Note that by Theorem 7.2, given C(g) for some g ∈ G` \ {±1}, one can recover g (and also
Trq6,q(g), Trq6,q2(g) and Trq6,q3(g)) at a negligible cost. Hence, it is more advantageous to use
C(g) instead of Trq6,q(g). For example, using C(g), we can obtain faster exponentiation algo-
rithms than the trace-based exponentiation algorithms in the case of a general base Trq6,q(g),
by simply computing Trq6,q(g) from C(g) and adapting an algorithm based on (3).
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8. A comparison of exponentiation algorithms

In this section, we estimate the running times of the exponentiation algorithms discussed in
Sections 6.2 and 7.2, and compare them with the fastest previously-known exponentiation
algorithms. We consider the case of a general base, C(g) or Trqk,q(g), which is the most
interesting case because when the base is fixed we may ignore the cost of obtaining one of C(g)
and Trqk,q(g) from the other, and hence obtain an equivalent performance in torus-based and
trace-based exponentiation algorithms.

We denote by Ci,Mi, and Si the operations of cubing, multiplication, and squaring in Fqi for
i = 1, 2, 3. We assume that S2 = 2S1 for characteristic two, C3 = 3C1 for characteristic three,
and also assume, using Karatsuba’s technique, that M2 = 3M1 and M3 = 6M1.

Note that the HCTBE and FDDE algorithms can easily be modified to work with window NAF
techniques. In particular, we assume that the width-w radix-2 and radix-3 NAF representation
of the exponent e are used in for the characteristic-two and the characteristic-three cases,
respectively. Note that width-w radix-2 and radix-3 NAF representations of e contain on
average log2 e/(w + 1) and 2 log3 e/(2w + 1) nonzero digits, respectively; see for example [18].

The estimated costs of the exponentiation algorithms are presented in Table 1. In our analysis,
we ignore the compression/decompression costs and also the precomputation costs required for
window NAF methods as they are negligible comparing to the overall cost of algorithms.

Table 1. Comparison of exponentiation algorithms for factor-4 and factor-6
compression in the case of a general base. The exponent is e.

Algorithms Main Loop
Characteristic-two fields
Algorithm 3 in [7] (3.19M1) log2 e

FDDE (4S1 + 9
(w+1)M1) log2 e

HCTBE (4S1 + 6
(w+1)M1) log2 e

Characteristic-three fields
XTR3 in [15] (3M1) log2 e

FDDE (6C1 + 36
(2w+1)M1) log3 e

HCTBE (6C1 + 24
(2w+1)M1) log3 e

Assuming that S1 and C1 are essentially free in characteristic-two and characteristic-three
fields, respectively, and setting w = 3, we can estimate the cost of FDDE as (2.25M1) log2 e,
and the cost of HCTBE as (1.5M1) log2 e in characteristic-two fields. Similarly, the cost of
FDDE and HCTBE in characteristic-three fields can be approximated as (3.24M1) log2 e and
(2.16M1) log2 e, respectively.

Therefore, if we require that the input to an exponentiation algorithm and the output of the
algorithm are the compressed representation of g and ge, it seems best to compress g to C(g)
by a factor of 4 or 6, and to use the HCTBE algorithms to compute the factor-4 or factor-6
compressed representation C(ge) of ge. It also seems that the HCTBE algorithms outperform
the fastest previously-known exponentiation algorithms in G`. The reason is that compres-
sion/decompression costs in the HCTBE algorithms are negligible and that each multiplication
step in the HCTBE algorithm in characteristic-two requires 6M1 whereas it would require
9M1 in a conventional exponentiation algorithm adapting Karatsuba’s method. Similarly, each
multiplication step in the HCTBE algorithm in characteristic-three requires 12M1 whereas it
would require 18M1 in a conventional exponentiation algorithm adapting Karatsuba’s method
(see also Remark 7.3).
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To be more concrete, we list the expected running times of the six exponentiation algorithms
in a particular setting in Table 2 based on the estimates given in Table 1. For the 128-bit
security level, in the characteristic-two case we let q = 21223 and t = 2612. Then q + 1 + t = 5`
where ` is a 1221-bit prime. We will ignore the cost S1. In the characteristic-three case, we let
q = 3509 and t = 3255. Then q + 1− t = 7` where ` is an 804-bit prime. We will ignore the cost
C1. In both cases, we choose w = 3.

Table 2. Comparison of exponentiation algorithms for factor-4 and factor-6
compression in the case of a general base at the 128-bit security level. The
exponent is an 1221-bit integer in the characteristic-two case, and an 804-bit
integer in the characteristic-three case.

Algorithms Main Loop
A characteristic-two field
Algorithm 3 in [7] 3895M1

FDDE 2747M1

HCTBE 1831M1

A characteristic-three field
XTR3 in [15] 2412M1

FDDE 2609M1

HCTBE 1739M1

9. Concluding remarks

We showed that by building on torus-based compression techniques, it is possible to compress
elements in G` by a factor of 4 when |G`| = ` = q + 1 ± t, q = 2m and t =

√
2q; and by

a factor of 6 when |G`| = ` = q + 1 − t, q = 3m and t =
√

3q. Our methods achieve the
best possible compression ratio in G`, and moreover have the feature that the compression and
decompression maps are computable at a negligible cost. We discussed several exponentiation
algorithms and, in particular, showed that HCTBE outperforms the fastest exponentiation
algorithms in both the characteristic-two and the characteristic-three cases.

We note that the pairing values of bilinear pairings derived from supersingular elliptic curves
of embedding degrees 4 and 6 over finite fields of characteristic two and three, and derived from
supersingular hyperelliptic curves of embedding degrees 12 over finite fields of characteristic
two, lie in G` for a suitable choice of parameters. Therefore, our techniques can be easily
incorporated into pairing-based protocols that require exponentiations or products of pairings;
examples of such protocols include Scott’s identity-based key agreement protocol [14] and
Waters signature scheme [21].

Our compression method compresses g ∈ G` to an element C(g) in Fq. However, given C(g)
and e ∈ Z, all the exponentiation algorithms to compute C(ge) first decompresses C(g) (at least
partially), and then exponentiate. It is natural to ask if one can devise a multiplication formula
for g, h ∈ G` which computes C(g) ∗ C(h) = C(gh) directly in Fq.
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