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Abstract. Most of physical experiments are usually described as repeated measurements of some 
random variables. Experimental data registered by on-line computers form time series of outcomes. The 
frequencies of different outcomes are compared with the probabilities provided by the algorithms of 
quantum theory (QT). In spite of statistical predictions of QT a claim was made that it provided the 
most complete description of the data and of the underlying physical phenomena. This claim could be 
easily rejected if some fine structures, averaged out in the standard descriptive statistical analysis, were 
found in time series of experimental data. To search for these structures one has to use more subtle 
statistical tools which were developed to study time series produced by various stochastic processes. In 
this talk we review some of these tools. As an example we show how the standard descriptive statistical 
analysis of the data is unable to reveal a fine structure in a simulated sample of AR (2) stochastic 
process. We emphasize once again that the violation of Bell inequalities gives no information on the 
completeness or the non locality of QT.  The appropriate way to test the completeness of quantum 
theory is to search for fine structures in time series of the experimental data by means of the purity tests 
or by studying the autocorrelation and partial autocorrelation functions. 
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INTRODUCTION 

The algorithms provided by quantum theory (QT) allow finding the probability 
distributions of experimental data. In some experiments beams of “identical physical 
systems” are prepared and their interaction with a measuring apparatus produces 
various time series of outcomes. In other experiments a “single physical system” 
placed in a trap is probed by a laser beam and the measurements are made. The state 
of the system in the trap is reset to the initial state and the procedure is repeated.  Any 
single experimental outcome is not predictable only the statistical regularities are 
observed and compared with the predictions of QT.  

It is well known since the explanation of Bertrand’s paradox [1-3] that a probability 
distribution is neither a property of a coin nor a property of a flipping device. It is only 
the characteristic of the whole random experiment: “flipping this particular coin with 
that particular flipping device”. Therefore the claim that QT provides the complete 



description of individual physical systems can not be correct and by no means the 
quantum state vector can be treated as an attribute of an individual physical system. 

For Einstein and Blokhintsev QT was only a statistical theory. Bohr wisely insisted 
on the wholeness of physical experiments underlying the epistemological, algorithmic 
and contextual character of the theory. 

 A contemporary statistical interpretation of QT is contextual as it should be. The 
arguments in favor of this interpretation and many other references may be found in 
Balletine [4, 5], Accardi [6-8], Khrennikov [9-11] and in [3, 12-16].  

Statistical description provided by QT leaves open a question whether it is possible 
to find a deterministic sub-quantum description of the phenomena in which the 
uncertainty of the individual outcomes would result only from the lack of control of 
some “hidden parameters” describing the “physical systems” and the measuring 
devices.  

Even if personally I am not an advocate of hidden variable models because of their 
ad hoc character and restricted applicability I was impressed by the event based 
corpuscular model [17] presented during this conference by Hans de Raedt. This 
model gives a unified description of all interesting optical experiments. It is a nice 
example of a contextual model which event after event builds the statistical 
distribution of counts consistent with the predictions of QT without using the Maxwell 
theory or the quantum mechanics. It gives an additional justification for the search of 
fine structures in the physical data as well as for the search of new alternative more 
detailed and non standard models of physical phenomena.   

Many years ago we observed that if the hidden variables existed then all pure 
quantum ensembles would be mixed statistical ensembles with respect to these 
variables [18]. Since mixed statistical ensembles differ from pure statistical ensembles 
the difference could be discovered with help of the purity tests [19, 20].  

In couple of recent papers we went a step further and we noticed that even the 
predictable completeness of QT has not been tested carefully enough [3,14,21]. 
Namely we pointed out that any hypothetical fine structure in the time series of the 
experimental data, if it existed, it would be averaged out when empirical histograms 
were constructed from the data and compared with the probability distributions 
provided by QT. If some reproducible unexpected fine structures were discovered in 
the data it would be a significant discovery and a decisive proof of incompleteness of 
QT. In this paper which is a continuation of the paper [21] we review some statistical 
tools which are used to detect autoregressive structures in a time series of data [22]. 

TIME SERIES THEORY 

A time series it is a family of random variables { Zt } where t=0,1.. for simplicity. 
Time series is stationary if  E(Zt )=µ , var(Zt)=σ

2  and   auto covariance function γ(k) at 
lag k does not depend on t where   γ(k) = cov(Zt , Zt+k ) = E(Zt -µ, Zt+k -µ). 

A white noise it is a time series {at} where at are normal independent and 
identically distributed (i.i.d) random variables with zero mean and variance σ

2 . 
The autocorrelation function  ρ(k) at lag k  is defined as  ρ(k)= γ(k) / γ(0)  and it is 

easy to see that ρ(0)=1,  ρ(k) =ρ(-k)  and |ρ(k)≤|1  k=0,± 1, .. 



It is useful to introduce the following operators: B Zt  = Zt-1   and  ∇  = I-B. 
   The important models of time series, which were studied extensively [22], are so 
called autoregressive integrated moving average models ARIMA (p,d,q): 
Ф(B)(I-B)d Zt= Θ0 + Θ(B)at  where Ф(B)=I-Ф1B- Ф2B

2-…-ФpB
p and 

Θ(B)=I- Θ1 B-  Θ2B
2- …- ΘqBq. 

In this paper we concentrate on simple autoregressive models  
AR(p)= ARIMA(p,0,0) with µ=0 given by the equation: 
 tptpttt aZZZZ =Φ−−Φ−Φ− −−− ...2211   (1) 

A general solution of this difference equation is a sum of homogeneous and 
particular solutions: Zt= Zh (t) +Zp(t). Guessing  Zh (t) =Gt we find that allowed values 
Gi of G can be found as the roots of the following polynomial equation :  Ф(G-1)=0                                   

If |Gi|<1 then AR (p) is stationary and if the polynomial equation has p different 
complex roots Gi we find: 

 t
pp

tt
h GCGCGCtZ +++= ...)( 2211  (2) 

Thus Zh(t) decays to zero as a sum of exponentials  and/or damped sine functions 
and Zt≈ Zp(t) if t grows . 

Similar behavior has the autocorrelation function ρ(k) which is usually denoted in 
statistical packages as ACF. Since E(Zt+k,at)=0 we get for k>0 the following 
homogeneous difference equation similar  to Eq. 1: 
 0)(...)2()1()( 21 =−Φ−−−Φ−−Φ− pkkkk pρρρρ  (3) 

Thus the general solution of this equation is given by: 

 k
pp

kk GCGCGCk +++= ...)( 2211ρ  (4) 

and ρ(k)=ACF  is a quickly decaying function when k increases. 
From Eq, 3 one obtains so called Yule-Walker matrix equations: 
 
 
 
                                                                                                                             (5)                                      
 
 

which allow to find the coefficients Фi of AR(p) if ACF is known. 
Another important function is so called partial autocorrelation function PAC which 

measures the importance of the k-th lag in the model AR (p) . It is found by solving: 
 
  
                                 
                                                                                                                             (6) 
 

 
where kkφ  =PAC. From Eq. 5 we see that for   k=p   kiφ =Фi   and that PAC=0 for k>p. 

These two autocorrelation functions play an important role helping to find out whether 
a time series of some data is a sample of some ARIMA process and in particular of 
some stationary AR(p)  process. 
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EMPIRICAL AUTOCORRELATION FUNCTIONS. 

Let us consider a sample S= {z1,…, zn} of some time-series. The autocorrelation 
function ρk= ρ(k) can only be estimated from the data by rk : 

 
 

                                                                                                                                    (7)   
 
where z-bar is a standard sample mean. . 

If the unknown time series is a stationary AR(p) then empirical ACF= rk should 
decrease quickly when k grows . To find the value of p we have to study a family of 
AR(k) where  

  
 tktkktktkt aZZZZ =−−−− −−− ϕϕϕ ...2211   (8) 

 
where φki  are unknown and may be only estimated by using the Yule- Walker Eq. 6  
in which  ρi  are replaced by ri.  

 
 
                                                                                                                                (9) 
 
 
 
 

 The empirical PAC=kkφ
)

 and is not exactly zero for k>p but it should have a clear 

« cut off » at k=p. It means that it should be equal to zero within a standard error of 
the order of n-0.5 where n is a sample size. 

If we get a sample of some time series we cannot assume that it is a sample of some 
stationary AR (p). In order to discover which ARIMA model if any can fit the data we 
have to explore our sample with help of statistical software we have at our disposal. 
For a study of time series the recommended packages are S+ or R but even a popular 
Minitab can do. In particular we have to find: 

 
• Histogram.  
• Normal scores plot. 
• Simple time series plot (zt, t). 
• Lagged scatter plots ((zt, z t+k ). 
• Empirical ACF and PAC plots. 
• Residuals after fitting plots. 
 

If a time series is not a simple AR (p) it is not an easy task to determine exactly its 
structure but in many cases it can be done with high precision [22]. 

In the next section we will apply the empirical ACF and PAC function in order to 
detect a fine autocorrelation structure in some simulated data. 
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A STUDY OF AN EMPIRICAL TIME SERIES               

In order to prove our point that a standard data analysis makes impossible the 
discovery of a fine structure in time series of the data we simulated a sample of size 
500 of AR (2):  

                                   tttt aZZZ =−− −− 21 5.025.0                                    (10)                 

where at  were  normal i.i.d. with a unit variance. A standard descriptive analysis: 
summary, histogram, and normal scores showed that the data can be viewed as a 
sample drawn from some normally distributed population. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 1. A Histogram 

    

  
 

FIGURE 2.  Normal Scores Plot 



Only the detailed analysis allowed discovering the fine structure in the studied 
sample what can be seen from the figure below: 

 
                          

FIGURE  3.  Empirical PAC function 
 
The empirical ACF was decaying and the empirical PAC function had a clear  
<<cut off>> at lag 2 thus we could conclude that the  sample was drawn from a 

stationary AR(2). The statistical package S+ using the Eq. 6 estimated the coefficients 
in the Eq. 10 to be: 0.243 and 0.487 very close to the true values 0.25 and 0.5 
respectively. A more detailed study of different simulated time series will be published 
elsewhere.  

CONCLUSIONS 

Standard analysis of the data is unable to discover possible fine stochastic structures 
in the data. Subtle statistical analysis of the time series of the data using the tools 
described above and in [21, 22] is an appropriate method to test the completeness and 
the limitations of QT. The statements that the violation of Bell inequalities proves the 
non locality of QT and/or its completeness are simply not true [2,3,7,9,13,14,16,23-
25] and it is really strange how often they have been  repeated in the past and even 
during this conference. 
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