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For quantum computation, we investigate the conjecture that superposition of macroscopically
distinct states is necessary for large quantum speedup. Although this conjecture was supported for a
circuit-based quantum computer performing Shor’s factoring algorithm (A. Ukena and A. Shimizu,
Phys. Rev. A 69, 022301 (2004)), it needs to be generalized in order to apply to wide classes of
algorithms and/or other models (such as measurement-based quantum computers). To treat such
general cases, we first generalize the indices for superposition of macroscopically distinct states. We
then generalize the conjecture, using the generalized indices, in such a way that it is applicable
unambiguously to general models if a quantum algorithm achieves exponential speedup. Based on
this generalized conjecture, we further extend the conjecture to Grover’s quantum search algorithm,
whose speedup is large but quadratic. It is shown that this extended conjecture is also correct
for Grover’s algorithm. Since Grover’s algorithm is a representative algorithm for unstructured
problems, the present result further supports the conjecture.

PACS numbers: 03.67.Lx, 03.67.Mn

I. INTRODUCTION

We consider quantum speedup for solving computational problems of size L bits, such as the factoring problem (for
which L is the size of the number to be factored) and the search problem (L is the size of the solution space). In
the well-known quantum algorithms of Shor [1, 2] and Grover [3], such problems are solved using quantum computers
whose number of qubits L ≥ L [1–4]. Since quantum speedup becomes relevant for large L, such quantum computers
are many-body quantum systems with a large number of qubits L. Since there are many types (and correspond-
ing measures or indices) of entanglement for many-body systems [5–13], it is interesting to explore which types of
entanglement are relevant to large quantum speedup over classical computations [14–21].
This issue has been studied extensively, particularly on Shor’s factoring algorithm [1, 2] and Grover’s quantum

search algorithm [3]. For example, Parker and Plenio demonstrated that the bipartite entanglement as measured by
the logarithmic negativity is an intrinsic part of Shor’s algorithm [14]. Shimoni, Shapiro and Biham showed that
highly entangled states are generated in both algorithms [15, 16]. Orús and Latorre studied scaling of entanglement
in three algorithms including Shor’s and Grover’s [17].
For general algorithms, a few necessary conditions were derived for computational speedup over classical compu-

tations. Jozsa and Linden showed that for exponential speedup a state is necessary which cannot be factored into
a direct product of states of at most a constant number of qubits [18]. Vidal showed that a necessary condition for
exponential speedup is that the amount of the bipartite entanglement between one part and the rest of the qubits
increases with L [19].
We note that one can get a stricter condition by taking the product of these and other necessary conditions,

which may be obtained by studying other types of entanglement. Such a stricter condition would lead to deeper
understanding of quantum computations. Hence, it is important to seek for more conditions which are necessary for
quantum computational speedup.
As a possible necessary condition, one of the authors conjectured that superposition of macroscopically distinct

states would be necessary for quantum computational speedup (Ref. [20] and Sec. III). Although ‘superposition of
macroscopically distinct states’ was only ambiguously defined until recently, clear definition and the corresponding
index p (1 ≤ p ≤ 2) for pure states were proposed in Refs. [11, 12], according to which a pure state has superposition
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of macroscopically distinct states if and only if p = 2. The generalization to mixed states was made in Ref. [22], in
which p is generalized to an index q (1 ≤ q ≤ 2) ; a mixed state has superposition of macroscopically distinct states
if and only if q = 2. For pure states, p = 2 implies q = 2 and vice versa [22]. [For mixed states, p is undefined.]
The entanglement possessed by superposition of macroscopically distinct states is totally different from bipartite

entanglement which was studied in the previous works [18, 19]. [Hence, it was called ’macroscopic entanglement’ in
Refs [12, 13, 22, 23]. However, we do not use this term in this paper because the same term is used in other senses
by other authors.] For example, some pure states with p = 2 (such as the GHZ state) have very small bipartite
entanglement whereas some other states with p = 1 (such as energy eigenstates of many-body chaotic systems) have
very large bipartite entanglement [12, 13]. Therefore, simultaneous requirement (for quantum computational speedup)
of the superposition of macroscopically distinct states and large bipartite entanglement is much stronger than the
requirement of either one of them.
For a circuit-based quantum computer performing Shor’s factoring algorithm [1, 2], we obtained results that support

the above conjecture in the previous paper [21]. It is interesting to study the correctness of the conjecture in other
algorithms and/or other models (such as measurement-based quantum computers). To explore such general cases
unambiguously, however, the conjecture needs to be generalized. For example, quantum states in quantum computers
are not only inhomogeneous but also dependent on instances (i.e., different for different questions of a given problem).
Since the indices p and q assumed a family of similar states that are spatially homogeneous, the conjecture (which
was based on p or q) is not strictly applicable to such a general family of states, in its original form.
Furthermore, since Shor’s algorithm is a representative quantum algorithm for solving structured problems [4], it is

very interesting to study whether the conjecture is correct in the case of quantum algorithms for solving unstructured
problems. However, the quantum speedup achieved by Grover’s quantum search algorithm [3], which is a representative
algorithm for unstructured problems [4], is not exponential but quadratic. The conjecture, in its original form, did
not assume speedup of such a degree.
In this paper, we first generalize the indices p and q to treat general algorithms and models. We then generalize

the conjecture, using the generalized indices, in such a way that it is applicable unambiguously to general models
if a quantum algorithm achieves exponential speedup. Based on this generalized conjecture, we further extend the
conjecture to the quadratic speedup of Grover’s quantum search algorithm. It is shown that this extended conjecture
is also correct for Grover’s algorithm. To show details of evolution of superposition of macroscopically distinct states,
we also perform numerical simulations of a quantum computer that performs Grover’s quantum search algorithm.
This paper is organized as follows. In Sec. II, we generalize the indices p and q. Section III is devoted to generalize

and further extend the conjecture. Analytic results for Grover’s quantum search algorithm are given in Sec. IV,
where we will prove that the extended conjecture is correct for Grover’s algorithm. We present results of numerical
simulations of a quantum computer that performs Grover’s quantum search algorithm in Sec. V. Discussions and
summary are given in Sec. VI.

II. INDICES OF SUPERPOSITION OF MACROSCOPICALLY DISTINCT STATES

The indices of superposition of macroscopically distinct states were proposed and studied for pure states in Refs. [11,
12, 23], and for mixed states in Ref. [22]. To study these indices for states in quantum computers, we here generalize
their definitions, because, as will be illustrated explicitly in Secs. IV and V, quantum states in quantum computers
are not only inhomogeneous but also dependent on instances. Here, an instance is a particular question of a given
problem. The physical meanings and implications of the indices will also be described briefly in this section.

A. Index for a family of pure states

Let |ψν(L)〉’s be pure states of a system of size L, which are labeled by an index ν, e.g., as
|ψ1(L)〉, |ψ2(L)〉, |ψ3(L)〉, · · · . For each value of L, the range of ν is given, for example as ν = 1, 2, . . . , 2L. In a
quantum computer which solves a decision problem, L corresponds to the size of a certain register, which is usually
proportional to the size of the input of the problem, and ν labels various inputs (see later sections). We do not assume
that 〈ψν(L)|ψν′(L)〉 = 0 for ν 6= ν′. We consider a family F of |ψν(L)〉’s,

F ≡ {|ψν(L)〉 | all ν’s, all L}, (1)

which we abbreviate to {|ψν(L)〉}L,ν.
In general, a quantum computer consists of a large number of small quantum systems, such as qubits, which are

distributed spatially. We call each small quantum system a site, and an operator acting on a single site a local operator.



3

To avoid mathematical complexities, we limit ourselves to the case where every local operator is bounded (i.e., its
norm is finite).
Let â(l) be a local operator on site l. We normalize it as ‖â(l)‖ = 1. Although this normalization condition might

look too restrictive at first sight, it actually imposes only a weak restriction that makes the maximization operation
in Eq. (5) well-defined [24], as discussed in Appendix A.
Note that we can use either ‖â‖E or ‖â‖H as the operator norm ‖â‖, where

‖â‖E ≡ sup
‖|ψ〉‖=1

‖â|ψ〉‖, (2)

‖â‖H ≡
√

(â, â), (3)

and (â, b̂) ≡ Tr(â†b̂) denotes the inner product of operators â and b̂. In fact, both definitions give the same value of

the index p, because ‖â(l)‖E ≤ ‖â(l)‖H ≤
√
d‖â(l)‖E and ‖â(l)‖H/

√
d ≤ ‖â(l)‖E ≤ ‖â(l)‖H , where d is the dimension

of the Hilbert space of a single site.

By the same symbol â(l) we also denote â(l)⊗
⊗

l′( 6=l)
1̂(l′), which is an operator on the Hilbert space H of the total

system, where 1̂(l′) is the identity operator acting on site l′. Using this notation, we define an additive operator Â(L)
as the sum of local operators [11, 22];

Â(L) =

L
∑

l=1

â(l) (‖â(l)‖ = 1). (4)

Here, we do not assume that â(l′) (l′ 6= l) is a spatial translation of â(l).
To simplify notation, we express the expectation value in |ψν(L)〉 as 〈·〉Lν . We also use the symbols O,Ω,Θ to

describe asymptotic behaviors according to Ref. [4], as summarized in Appendix B. Furthermore, as described in
Appendix B, a family {fν(L)}L,ν of non-negative functions of L is said to be Θ(g(L)) if fν(L) is Θ(g(L)) for almost
every ν, i.e., apart from possible exceptional ν’s whose measure (i.e., the number of such ν’s divided by the total
number of ν’s) vanishes as L goes to infinity.

For each state |ψν(L)〉, consider fluctuation 〈∆Â(L)†∆Â(L)〉Lν , where ∆Â(L) ≡ Â(L) − 〈Â(L)〉Lν . Its magnitude

depends on Â(L), i.e., on the choice of â(l)’s. Since ‖Â(L)‖ is upper-bounded, there exists the maximum value,

maxÂ(L)〈∆Â(L)†∆Â(L)〉Lν . The maximum value is taken for some additive operator Âmax(L), which we call the

most fluctuating additive operator. Using the maximum value, which depends on L and ν, we define the index p of
the family F (= {|ψν(L)〉}L,ν) as the positive number (if it exists) that satisfies

max
Â(L)

〈ψν(L)|∆Â(L)†∆Â(L)|ψν(L)〉 = Θ(Lp). (5)

Note that p does not necessarily exist for a general family. If p exists for a given family, we can show (see Appendix
C) that

1 ≤ p ≤ 2. (6)

When a family {|ψν(L)〉}L,ν has p = 2 (or p = 1, etc), we also say simply that ‘almost every state |ψν(L)〉 has p = 2
(or p = 1, etc).’
The present definition of p contains those of the previous works, Refs. [11–13, 23], as special cases. In fact,

Refs. [11, 12, 23] treated homogeneous states, for which |ψ(L+1)〉 was simply defined as the enlarged state of |ψ(L)〉.
For example, when |ψ(L)〉 = |00 · · ·0〉+ |11 · · · 1〉 with L sites, then |ψ(L + 1)〉 = |000 · · ·0〉+ |111 · · ·1〉 with (L+ 1)
sites. According to the present general definition of p, such a case corresponds to a family whose members for each L
are identical, i.e., |ψν(L)〉 = |ψ(L)〉 for all ν. Moreover, Ref. [13] treated energy eigenstates of homogeneous chaotic
systems. Since each energy eigenstate is inhomogeneous spatially, this case is different from the case of homogeneous
states. According to the present definition of p, it corresponds to a family composed of all energy eigenstates in a
certain energy interval. Therefore, p defined here is a natural generalization of p of the previous works, Refs. [11–
13, 23].
The physical meaning of the present p is basically the same as the p of these previous works. That is, almost

every state of a family with p = 2 contains superposition of states with macroscopically distinct values of some
additive operator(s) [11–13, 23]. We call such an additive operator(s) a macroscopically-fluctuating additive operator(s)
of the state (or family). For example, when |ψν(L)〉 = |00 · · · 0〉 + |11 · · · 1〉 for all ν then its macroscopically-
fluctuating additive operator is

∑

l σ̂z(l), which corresponds to the z component of the total magnetization of a



4

magnetic substance. Since additive operators are macroscopic dynamical variables [11, 22], two (or more) states
are macroscopically distinct from each other if they have macroscopically distinct values of an additive operator.
Therefore, one can state definitely that a state with p = 2 contains superposition of macroscopically distinct states.
To illustrate how p is useful and necessary for identifying such superposition, we give a few simple examples in

Appendix D.
In the present general definition of p, a macroscopically-fluctuating additive operator(s) of a given family can be

different for different L and ν, unlike the case of homogeneous states treated in Refs. [11, 12, 23]. Therefore, we can
say the following: For a given family of pure states, if there exists a family of additive operators

{Âν(L) | all ν’s, all L} (7)

such that

〈∆Âν(L)†∆Âν(L)〉Lν = Θ(L2), (8)

then the family has p = 2. This means that almost all states of the family contain superposition of states that have
macroscopically distinct values of some additive operator(s).
It is worth mentioning that there often exist two or more families of such operators, even for a family of homogeneous

states [12, 23].

B. Index for a family of mixed states

The index p, which is defined only for pure states, is sufficient for the concrete analyses in Secs. IV and V. However,
to state our conjecture in a general form, we need a more general index which is applicable to mixed states. For
example, measurement-based quantum computers [25, 26] often have a larger number of qubits than corresponding
circuit-based computers. Hence, in such computers, superposition of macroscopically distinct states might appear as
a mixed state of a subset of qubits [27]. Fortunately, generalization of p to mixed states has been made in Ref. [22],
in which a generalized index q was proposed for homogeneous mixed states. We here generalize it to families of more
general mixed states in order to apply q to wide classes of quantum computers.
For an additive operator Â(L), as given by Eq. (4), and a projection operator η̂ on H, satisfying η̂2 = η̂, we define

the following Hermitian operator;

ĈÂη̂ ≡ [Â, [Â, η̂]] = Â2η̂ − 2Âη̂Â+ η̂Â2. (9)

For a family {ρ̂ν(L)}L,ν of mixed states, which are not necessarily homogeneous spatially, we define the index q as
the positive number (if it exists) that satisfies

max

{

L, max
Â,η̂

〈C〉Lν
}

= Θ(Lq), (10)

where maxÂ,η̂ is taken over all possible choices of Â and η̂. If this q exists for a given family we can show (by slightly

generalizing the proof in Ref. [22]) that

1 ≤ q ≤ 2. (11)

We say a family {ρ̂ν(L)}L,ν of mixed states contains superposition of macroscopically distinct states if and only if
q exists and q = 2. We also say that almost every ρ̂ν(L) of such a family contains superposition of macroscopically
distinct states. For pure states, this is consistent with the corresponding statement based on p, because we can show
(following the proof in Ref. [22]) that for pure states p = 2 implies q = 2 and vice versa.
The case of Ref. [22] corresponds to the special case where ρ̂ν(L)’s are homogeneous and independent of ν and

ρ̂ν(L+ 1) is simply the enlarged state of ρ̂ν(L). In such a case, q defined here reduces to q of Ref. [22].

C. Properties of states with p = 2 or q = 2

As application of general theory of Ref. [11], the index p was studied for many-magnon states in Ref. [12], for energy
eigenstates of many-body chaotic systems in Ref. [13], and for typical many-body states in Ref. [23]. Comparison
with a measure of bipartite entanglement were also made in these references. Most importantly, many states were
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found (such as energy eigenstates of a chaotic system) such that they are almost maximally entangled in the bipartite
measure but their p is minimum, p = 1. Many other states (such as the GHZ state) are also found such that their p is
maximum, p = 2, but their bipartite entanglement is small. Therefore, the aspect of entanglement which is detected
by p or q is completely different from that detected by the bipartite measure. Furthermore, it has been shown in
Ref. [22] that a family of states with q = 2 has a strong L-point correlation, which is Θ(L) times larger than that of
any separable states. Note that any measure of bipartite entanglement cannot detect such a strong L-point correlation
for mixed states. On the other hand, the index q does not detect entanglement generated by a small number of Bell
pairs, whereas measures of bipartite entanglement do. These facts demonstrate that the index q is complementary to
the measures of bipartite entanglement.
Note that p is calculated from two-point correlations because fluctuation of an additive operator is the sum of

two-point correlations;

〈∆Â(L)†∆Â(L)〉Lν =

L
∑

l=1

L
∑

l′=1

〈∆â(l)†∆â(l′)〉Lν . (12)

However, this does not mean that p is related only to two-point correlations, because, as mentioned above, pure states
with p = 2 have q = 2, which means a strong L-point correlation. That is, given the knowledge that a family consists
of pure states one can say that if the family has p = 2 then it has a strong L-point correlation.
It was shown in Ref. [11] that p is directly related to fundamental stabilities of many-body states against decoherence

and local measurements. Regarding decoherence by weak noises, it was shown that for any state with p = 1 its
decoherence rate Γ by any noises never exceeds O(L). For a state with p = 2, on the other hand, it is possible in
principle to construct a noise or environment that makes Γ of the state Θ(L2). However, this does not necessarily
mean that such a fatal noise or environment does exist in real physical systems; it depends on physical situations
[11]. A more fundamental stability is the stability against local measurements, which was proposed and defined
in Refs. [11, 28]. From the theorem proved there, we can say that a state with p = 2 is unstable against local
measurements, i.e., there exists a local observable by measurement of which the state changes drastically [29].
Furthermore, a quite singular property was proved rigorously in Ref. [11]; any pure state with p = 2 in a finite

system of size L does not approach a pure state in an infinite system as L → ∞. For readers who are not familiar
with quantum theory of infinite systems [30], we give a brief explanation for this fact in Appendix E.
These observations indicate that states with p = 2 or q = 2 are quite anomalous many-body states. This led to the

conjecture of Ref. [20], which will be generalized in Sec. III of the present paper.

D. Efficient method of identifying superposition of macroscopically distinct states

Evaluation of a measure or index of entanglement often becomes intractable for large L. Fortunately, this is not the
case for p because there is an efficient method of calculating p [12, 13, 23]. Since this method assumed homogeneous
states, we here generalize it to study general families of pure states.
In this subsection, the dimension d of the local Hilbert space is arbitrary, and we employ ‖â‖H defined by Eq. (3)

as the operator norm ‖â‖.
Let {b̂0(l), b̂1(l), · · · , b̂D(l)} be a complete orthonormal basis set of operators on site l, where b̂0(l) = 1̂(l)/

√
d and

D ≡ d2 − 1. We expand â(l) as

â(l) =

D
∑

α=0

clαb̂α(l),

D
∑

α=0

|clα|2 = 1, (13)

where the latter equality comes from ‖â(l)‖H = 1. Let ∆â(l) ≡ â(l)−〈â(l)〉Lν and ∆b̂α(l) ≡ b̂α(L)−〈b̂α(L)〉Lν . Note
that ∆b̂α(l)’s, unlike b̂α(l)’s, are not necessarily orthogonal to each other.

Since ∆b̂0(l) = 0, terms with α = 0 do not contribute to ∆Â(L) =
∑

l

∆â(l), i.e., it can be expanded as

∆Â(L) =

L
∑

l=1

D
∑

α=1

clα∆b̂α(l),

D
∑

α=1

|clα|2 ≤ 1. (14)

As a result,
∑

l

∑D
α=1 |clα|2 ≤ L. Since this normalization is not convenient, we temporarily consider another operator
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∆Â′ whose expansion coefficients are normalized;

∆Â′(L) =
L
∑

l=1

D
∑

α=1

c′lα∆b̂α(l),
L
∑

l=1

D
∑

α=1

|c′lα|2 = L. (15)

Here, we do not require that
∑D
α=1 |c′lα|2 = 1 for every l. The fluctuation of such an operator is calculated as

〈∆Â′(L)†∆Â′(L)〉Lν =

L
∑

l=1

D
∑

α=1

L
∑

l′=1

D
∑

α′=1

c′∗lαc
′
l′α′Vlα,l′α′(L, ν) (16)

for each |ψν(L)〉. Here, for α, α′ = 1, 2, · · · , D and l, l′ = 1, 2, · · · , L, we have defined

Vlα,l′α′(L, ν) ≡ 〈∆b̂†α(l)∆b̂α′(l′)〉Lν , (17)

which can be regarded as elements of a DL × DL Hermitian matrix, which we call the variance-covariance matrix
(VCM). Therefore, for each |ψν(L)〉,

max
Â′(L)

〈∆Â′(L)†∆Â′(L)〉Lν = emax(L, ν)L, (18)

where emax(L, ν) is the maximum eigenvalue of the VCM. This and Eq. (5) suggest that the following index pe should
be useful:

emax(L, ν) = Θ(Lpe−1). (19)

In fact, we can show (see Appendix F) that if pe = 2 then p = 2 and vice versa. For a family of homogeneous states,
in particular, we can show that p = pe for every value of p (see the last paragraph of Appendix F). Hence, one can
identify states with p = 2 by calculating emax(L, ν). This can be done in time Poly(L) because the VCM is a DL×DL
matrix.
Furthermore, if pe = 2 we can find a macroscopically-fluctuating additive operator from the eigenvector(s)

{c′ νlαmax(L)} of the VCM corresponding to emax(L, ν), as follows. If we normalize {c′ νlαmax(L)} as

L
∑

l=1

D
∑

α=1

|c′ νlαmax(L)|2 = L, (20)

then the operator

∆Â′ν
max(L) ≡

L
∑

l=1

D
∑

α=1

c′ νlαmax(L)∆b̂α(l) (21)

takes the form of Eq. (15), and it fluctuates macroscopically;

〈∆Â′ν†
max(L)∆Â

′ν
max(L)〉Lν = emax(L, ν)L = Θ(L2). (22)

As shown in Appendix F, if we put

Cν(L) ≡ max
l

(

D
∑

α=1

|c′ νlαmax(L)|
2

)

, (23)

then Cν(L) = Ω(L0) if pe = 2. Therefore, the following operator (which clearly takes the form of Eq. (14))

∆Âνmax(L) ≡
L
∑

l=1

D
∑

α=1

cνlαmax(L)∆b̂α(l), cνlαmax(L) ≡
c′ νlαmax(L)
√

Cν(L)
, (24)

also fluctuates macroscopically;

〈∆Âν†max(L)∆Â
ν
max(L)〉Lν = emax(L, ν)L/Cν(L) = Θ(L2). (25)

We can then construct an additive operator Âνmax(L) easily from ∆Âνmax(L), by going from Eq. (14) back to Eq. (13).

Although Âνmax(L) is not uniquely determined from ∆Âνmax(L) (as discussed in Appendix A), this non-uniqueness
does not cause any difficulty because p is defined only through the fluctuation.
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III. CONJECTURE ON QUANTUM COMPUTATION

The conjecture of Ref. [20] is roughly that superposition of macroscopically distinct states should be necessary for
large quantum speedup. We now generalize it to treat wide classes of algorithms and models.
We consider decision problems because most computational problems can be reduced, with polynomial overheads,

to some decision problems. The number of bits or qubits in a computer is allowed to be Poly(L), where L denotes the
size of the input measured in bits. To be definite, we assume that a quantum computer is composed of qubits (i.e.,
two-level quantum systems) which are separated spatially to each other. That is, if we use the terms of the general
discussions of the previous section, each qubit is located on its own site.
We consider the time complexity of problems, allowing both quantum and classical algorithms to have a bounded

probability of error. In doing so, we assume a classical probabilistic Turing machine as a counterpart of a quantum
computer.

A. Exponential Speedup

To establish notation and to exclude possible ambiguity, we first define exponential speedup, according to convention,
as follows.
We consider problems which are not in BPP (Bounded-error Probabilistic Polynomial time). For a given (decision)

problem, we denote an instance (input) by i(L, ν), where ν labels different instances (inputs) of size L. The computa-
tional time depends not only on L but also on ν. For a given classical computer C and for a given quantum computer
Q, let TC(L, ν) and TQ(L, ν), respectively, be computational time for an instance i(L, ν), with a bounded probability
of error being allowed.
Since we are considering a decision problem which is not in BPP, for any classical computer C there exists a set of

infinitely many instances that cannot be solved in polynomial time. That is,

TC(L, ν) > Poly(L) for some infinitely many instances. (26)

Here, TC(L, ν) > Poly(L) means that TC(L, ν) = Ω(P (L)) for any polynomial P (L). For a quantum computer Q
solving such a problem, we say Q achieves exponential speedup if

TQ(L, ν) = Poly(L) for all ν. (27)

According to this definition, Shor’s algorithm [1] achieves exponential speedup (if the factoring is not in BPP). On
the other hand, the Deutsch-Jozsa algorithm [31] does not achieve exponential speedup because the Deutsch’s problem
is in BPP.

B. Extra qubits and redefinition of local sites

In a quantum computer there can exist many qubits (such as ancilla qubits) which are not directly related to
quantum computational speedup. For example, one can replace a classical circuit that assists a quantum computer
with a quantum circuit. Then, the size of the quantum computer becomes larger than the original one. It is clear
that in the enlarged quantum computer only the original part is relevant to quantum computational speedup.
Therefore, we allow looking only at a subsystem of a quantum computer in order to find out a relevant part, whose

state (according to our conjecture) would have q = 2.
Furthermore, one can add extra qubits and circuits to a quantum computer without increasing TQ(L, ν) more than

a Poly(L) factor. For example, to implement quantum error correction [32, 33] one can replace each qubit with a
logical qubit, which is composed of n qubits, where, e.g., n = 9 for the Shor code [32]. In such a case, correlation
between two qubits is turned into correlation between two logical qubits, i.e., correlation among 2n qubits. As a result,
it is possible that a state with q = 2 of the original computer is changed into another state with q < 2. However, such
nonessential decrease of q may be recovered by regarding each logical qubit as a ‘local site’.
Generally, in systems which are composed of discrete sites, a local site (which may be, say, a quantum dot) physically

has a finite spatial dimension. A set of several neighboring sites also has a finite dimension. Hence, the definition of
a ‘local site’ is to a great extent arbitrary. It is therefore possible and reasonable to redefine a set of neighboring sites
as a new single site [29].
In quantum computers, there is further arbitrariness because it is possible to swap the states of two distant qubits,

paying only polynomial overhead.
From these observations, we allow all possible redefinition of local sites (accordingly, the number of local sites is

changed) by regarding two or more qubits, however distant they are, as a local site.
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C. Generalized conjecture

In order to apply to wide classes of algorithms and models, we generalize the conjecture of Ref. [20] as follows.
For a decision problem which is not in BPP, consider a quantum computer solving it. If the quantum computer

achieves exponential speedup, then states having q = 2, whose size is Ω(L), appear during computation, for some set
H of infinitely many instances;

H ≡ {i(L, ν) | some infinitely many (L, ν)’s} (28)

if ‘local sites’ of the quantum computer are appropriately defined.
This generalized conjecture can be rephrased as follows. After defining local sites appropriately, look at a certain

subsystem which is composed of Ω(L) local sites of the quantum computer. Let ρ̂k(L, ν) be the reduced density operator
of such a subsystem at the k-th step of the quantum computation. Take some function k∗(L, ν), which takes positive
integral values, of L and ν. For some set H of infinitely many instances (Eq. (28)), consider the following family of
states;

Fk∗(H) ≡ {ρ̂k∗(L, ν) | all ν and L such that i(L, ν) ∈ H}. (29)

If the quantum computer achieves exponential speedup, one can find an appropriate definition of local sites, a function
k∗(L, ν), and a set H, such that q = 2 for the family Fk∗(H).
We will explain physical meaning of the set H in the next subsection.

D. Physical meaning of the set H

If the above conjecture is correct, we can show that H contains some infinitely many instances which cannot be
solved in polynomial time by any classical computer. That is, H contains infinitely many ‘hard’ instances. This can
be seen using reduction to absurdity as follows.
Suppose that the conjecture is correct but H did not contain infinitely many instances which satisfy inequality

(26). Then, there would exist a classical computer that solves all instances in H in time Poly(L). By attaching this
classical computer to Q as a pre-processor, one could obtain another fast quantum computer Q′. However, states
having q = 2 would not appear in Q′ at all, in contradiction to the conjecture. Therefore, H must contain infinitely
many instances which satisfy inequality (26), if our conjecture is correct.
Note that H is not uniquely determined for a given problem because an appropriate subset of H can be another

H . To confirm the above conjecture, it is sufficient to find one of many possible H ’s.
The set H is closely related to a ‘complexity core’ [34–37]. A complexity core (or, polynomial complexity core) C

was defined by Lynch [34] as an infinite collection of instances such that every algorithm solving the problem using a
deterministic Turing machine needs more than polynomial time almost everywhere on C. [Note that C is not uniquely
determined for a given problem because an appropriate subset of C is also a complexity core [34–37].] His idea has
been generalized to complexity classes other than P in Refs. [35–37]. Intuitively, a complexity core is a set of ‘hard’
instances. The above-mentioned fact shows that H includes a complexity core as a subset. Hence, our conjecture
claims roughly that states with q = 2 appear for infinitely many instances in a complex core.

E. Remarks on the conjecture

Before going further, we make a few remarks.
The conjecture does not claim that states with q = 2 would be sufficient for exponential speedup; it rather claims

that they are necessary. Hence, if states with q = 2 appear in some quantum algorithm, it does not necessarily mean
that the algorithm achieves exponential speedup.
Moreover, even when a quantum computer does achieve exponential speedup, the conjecture does not claim that

all states with q = 2 appearing in the computer would be relevant to exponential speedup. In fact, we already showed
in Ref. [21] that although the final state |ψDFT〉 of the computation (before the final measurement) has p = 2 (hence
q = 2) it is irrelevant to exponential speedup.
Furthermore, for some states with q = 2 of size L (such as the GHZ state), one can construct a quantum circuit

that converts a product state into such a state only in Θ(L) steps if the target state with q = 2 is known beforehand
(i.e., when one constructs the circuit). This fact has nothing to do with our conjecture. The point is that in quantum
computation the state that appears at, e.g., the middle point of the computation is unknown when the circuit is
constructed, because the state varies considerably according to the instances.
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Finally, we note that the results of Ref. [21] can be understood more clearly according to the present generalized
conjecture. For example, it was shown in Ref. [21] that states with p = 2 does not appear when r = 2n, where
n = 1, 2, 3, · · · and r is the least positive integer which satisfies xr ≡ 1 (mod N). [N is a positive integer to be factored,
and x a random integer co-prime to N which satisfies 0 < x < N [1, 2, 21].] This fact does not conflict with the
conjecture. In fact, according to the generalized conjecture, one can exclude the instances with r = 2n from H , or,
even if one includes such instances in H , such rare instances do not affect the generalized index p of Sec. II A because
it is defined not by Θ but by Θ.

F. Further extention to Grover’s quantum search algorithm

Shor’s factoring algorithm [1] is a representative algorithm for structured problems [4]. For this algorithm, Ref. [21]
supported the above conjecture.
On the other hand, a representative algorithm for unstructured problems is Grover’s quantum search algorithm

[3, 4]. Hence, it is tempting to examine the conjecture in Grover’s algorithm. However, we cannot apply the conjecture
(even in the above generalized form) directly to Grover’s algorithm because Eq. (27) is not satisfied, i.e., it does not
achieve exponential speedup. Nevertheless, it is often argued that the quadratic speedup of Grover’s algorithm is
significant [4]. Furthermore, Grover’s algorithm is known to be optimal, i.e., no quantum algorithm is faster than
Grover’s algorithm by more than a Poly(L) factor in solving the search problem [4]. It is therefore very interesting to
examine the conjecture, if possible, for Grover’s algorithm. To make it possible, we here extend the conjecture further
to Grover’s algorithm. Its correctness for Grover’s algorithm will be proved in the next section.
Grover’s search problem is the problem of finding a solution to the equation fL(x) = 1 among N = 2L possibilities,

where fL(x) is a function, fL : {0, 1}L 7→ {0, 1}. Let M be the number of solutions, and x1, · · · , xM be the solutions.
For each L, the solutions specify an instance. That is, (x1, · · · , xM ) corresponds to ν, which labels instances as i(L, ν).
According to convention, we regard the number of oracle calls as the computational time.
In extending the conjecture, we note that the degree of quantum speedup depends on the magnitude of M [see

Sec. IVB]. We here consider the case where

M = O(2mL) (0 < m < 1), (30)

where m is a constant, independent of L. In this case, the degree of quantum speedup is similar to the case of M = 1
[see Sec. IVB], and hence seems significant.
We extend the conjecture of Sec. III C simply by replacing the condition ‘if the quantum computer achieves ex-

ponential speedup’ with the relaxed condition ‘if the quantum computer achieves exponential speedup or it solves the
quantum search problem using Grover’s algorithm for the case of Eq. (30)’.

IV. ANALYTIC RESULTS FOR GROVER’S QUANTUM SEARCH ALGORITHM

In this section, we show that the extended conjecture of Sec. III F is correct for Grover’s algorithm.

A. Notation

We first introduce notation. We assume that N(= 2L) ≫M (the number of solutions), because otherwise classical
computers could solve the problem quickly.
It seems obvious that an index register, composed of L qubits, is relevant to Grover’s algorithm. We therefore look

only at the index register, although additional quantum circuits would be present in real quantum computers (see
discussions in Sec. III C). For each instance i(L, ν), where ν = (x1, · · · , xM ) (see Sec. III F), we put

|α(L, ν)〉 ≡ 1√
N −M

∑

x ( 6=x1,··· ,xM )

|x〉, (31)

|β(L, ν)〉 ≡ 1√
M

∑

x (=x1,··· ,xM)

|x〉. (32)
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Then the state |ψ0(L)〉 just after the first Hadamard transformation (HT) (see Sec. VA) is represented as [4]

|ψ0(L)〉 = | →→ · · · →〉

= cos
θ

2
|α(L, ν)〉 + sin

θ

2
|β(L, ν)〉, (33)

where | →〉 ≡ (|0〉+ |1〉)/
√
2, and the angle θ is given by

cos
θ

2
=

√

N −M

N
. (34)

Let Ô(L, ν) be the oracle operator;

Ô(L, ν)|x〉 =
{

−|x〉 (x = x1, · · · , xM ),

|x〉 (otherwise).
(35)

The Grover iteration

Ĝ(L, ν) =
[

2|ψ0(L)〉〈ψ0(L)| − Î(L)
]

Ô(L, ν) (36)

performs the rotation by angle θ in the direction |α(L, ν)〉 → |β(L, ν)〉 in the two-dimensional subspace spanned by
|α(L, ν)〉 and |β(L, ν)〉. The state |ψk(L, ν)〉 after k (= 0, 1, 2, · · · ) iterations is therefore given by [4]

|ψk(L, ν)〉 = Ĝ(L, ν)k|ψ0(L)〉

= cos

(

2k + 1

2
θ

)

|α(L, ν)〉+ sin

(

2k + 1

2
θ

)

|β(L, ν)〉. (37)

Hence, by repeating the Grover iteration

R(L) ≡
⌈(

arccos
√

M/N
)

/θ
⌉

≃
⌈

π

4

√

N

M

⌉

(38)

times, the state evolves into |ψR(L)(L, ν)〉 ≃ |β(L, ν)〉. Here, ⌈a⌉ denotes the smallest integer among those larger than
or equal to a. By observing this state in the computational basis, one can find a solution to the search problem with
probability & 1/2. The range of k is thus

0 ≤ k ≤ R. (39)

B. M dependence of degree of speedup

According to convention, we regard the number of oracle calls as the computational time. Then, apart from Poly(L)
factors,

TQ(L, ν) = R(L) = Θ
(

√

N/M
)

(40)

for all instances. In contrast, for classical computers there exist infinitely many instances (as L→ ∞) such that

TC(L, ν) = Θ(N/M). (41)

The quadratic speedup of TQ(L, ν) over TC(L, ν) is significant when M is small enough (such as M = Poly(L)). On
the other hand, no quantum speedup is achieved when M is too large such as M = N/Poly(L) because then classical
computers can solve the problem efficiently.
To be specific, we limit ourselves to the case of Eq. (30), i.e., where M = O(2mL) [m is independent of L and

0 < m < 1], because almost all interesting applications of Grover’s algorithm would belong to this case. For example,
this includes the case of M = Poly(L), whereas the uninteresting case of M = N/Poly(L) is excluded.
When M = O(2mL), we find

TC(L, ν) = Θ
(

2(1−m)L
)

(42)

for some infinitely many instances, and

TQ(L, ν) = Θ
(
√

2(1−m)L
)

(43)

for all instances. This quadratic speedup seems to be as significant as that of M = 1.
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C. Family of states to evaluate q or p

As discussed above, the degree of speedup depends on how the number of solutions M behaves asymptotically as
a function of L. For clarity, we treat different asymptotic forms of M separately when investigating our extended
conjecture.
Suppose that we are given a functional form of M , which asymptotically satisfies inequality (30), such as M = L2.

Then, it will turn out that the set of all instances is an appropriate choice of H of Sec. III C;

H = {i(L, ν) | all L, all ν}. (44)

To construct a family of states Fk∗(H), Eq. (29), we specify the number k∗ as follows. Since Grover’s algorithm simply
repeats the Grover iteration R(L) times, it seems natural to take k∗ = ⌈R(L)/2⌉. More generally, it seems reasonable
to take

k∗ = ⌈R(L)/s⌉, (45)

where s is a positive constant independent of L. It will turn out that this choice of k∗ is indeed appropriate. A family
of states Fk∗(H) is thus constructed, for a given k∗, as

Fk∗(H) = {|ψk∗(L, ν)〉 | all L, all ν}. (46)

Since all states of this family are pure states, we will evaluate the index p rather than q.

D. When M = 1

When M = 1, Eq. (31) reduces to |α(L, ν)〉 = |ψ0(L)〉 + O(1/
√
N) = |ψ0(L)〉 + O(1/2L/2), whereas Eq. (32)

reduces to |β(L, ν)〉 = |x1〉. Since |ψ0(L)〉 and |x1〉 are product states, we find that p = 1 for (the families composed,
respectively, of) |ψ0(L)〉, |α(L, ν)〉 and |β(L, ν)〉. Hence, p = 1 for (the families of) the initial and final states.

For intermediate states |ψk(L, ν)〉’s of interest, it is convenient to investigate M̂x ≡
∑

l σ̂x(l) (which corresponds to
the x component of the total magnetization of magnetic substances). Note here that in order to show that p = 2 it is

sufficient to find one additive observable (which in this case is M̂x) which fluctuates macroscopically. From Eq. (37),
we find

〈ψk(L, ν)|M̂x|ψk(L, ν)〉 = cos2
(

2k + 1

2
θ

)

L+O(1), (47)

〈ψk(L, ν)|M̂2
x |ψk(L, ν)〉 = cos2

(

2k + 1

2
θ

)

L2 +O(L). (48)

Hence,

〈ψk(L, ν)|(∆M̂x)
2|ψk(L, ν)〉 =

1

4
sin2 ((2k + 1)θ)L2 +O(L). (49)

For all states in the family Fk∗(H) of Eq. (46), we thus find

〈ψk∗(L, ν)|(∆M̂x)
2|ψk∗(L, ν)〉 ≃

1

4
sin2

(π

s

)

L2 +O(L). (50)

Since s is independent of L, the right-hand side is Θ(L2), and thus p = 2 for this family.

E. When M = Poly(L)

We now consider the case where M ≥ 2. In this case, unlike the case of M = 1, |β(L, ν)〉 has p = 2 for some
instances.
For example, suppose that M = 2 and the two solutions for some instance ν are x0 ≡ 1010 · · ·10 and

x1 ≡ 0101 · · ·01. Then, p = 2 for |β(L, ν)〉 = (|x0〉 + |x1〉)/
√
2 (i.e., for the family {|β(L, ν)〉 | all L}), because

〈β(L, ν)|(∆M̂ st
z )2|β(L, ν)〉 = Ω(L2). Here, M̂ st

z ≡ ∑l(−1)lσ̂z(l), which corresponds to the z component of the stag-
gered magnetization of antiferromagnets. On the other hand, if x0 ≡ 0000 · · ·00 and x1 ≡ 0000 · · ·01 for another
instance ν′ then p = 1 for |β(L, ν′)〉 = (|x0〉+ |x1〉)/

√
2.
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Therefore, when M ≥ 2, p of the final state depends on the instance, i.e., on the nature of the solutions. (On the
other hand, it is clear that p = 1 for the initial state.)
To compute p of states in intermediate stages of computation for M > 2, we first consider the case where M =

Poly(L). In this case, Eq. (49) still holds for |ψk(L, ν)〉 with k ≥ 1, and thus the discussion following Eq. (49) also
holds. Therefore, we again find that p = 2 for the family Fk∗(H) of Eq. (46).
We can obtain the same conclusion when M = O(2L

κ

), where κ is a constant independent of L and 0 < κ < 1.
Instead of showing this, we shall derive the same conclusion when M is even larger in the next subsection.

F. When M = Θ(2mL)

We now study the case where

M = Θ(2mL) (0 < m < 1), (51)

where m is independent of L. This is the upper limit of M that satisfies condition (30).
As mentioned above, p of the final state depends on the nature of the solutions (whereas p = 1 for the initial state).

Since this might not be trivial when M is as large as Θ(2mL), we give an example for M = 2L/2 =
√
N . Suppose

that the solutions for some instance ν are as follows; xj = j for j = 1, 2, . . . , 12
√
N whereas xj ’s for j ≥ 1

2

√
N + 1 are

multiples of 2
√
N (less than N). Then

|β(L, ν)〉 =
1√
2M

1

2

√
N

∑

y=1

|00 · · · 0y〉+ 1√
2M

1

2

√
N−1
∑

z=0

|z0 · · · 00〉

=
1√
2
|00 · · ·0 →→ · · · →〉+ 1√

2
| →→ · · · → 00 · · · 0〉+O(1/

√
N). (52)

Since 〈β(L, ν)|(∆M̂ ′
x)

2|β(L, ν)〉 = O(L2), where M̂ ′
x ≡∑L/2

l=1 σ̂x(l)+
∑L

l=L/2+1 1̂(l), we find that p = 2 for this state.

By contrast, if xj = j for all j for another instance ν′, then |β(L, ν′)〉 = |00 · · · →→ · · · →〉, for which p = 1.

To compute p of states in intermediate stages of computation, we note that |α(L, ν)〉 = |ψ0(L)〉 + O(2−(1−m)L/2)
when M = Θ(2mL). Hence, abbreviating |ψk(L, ν)〉, |α(L, ν)〉, |β(L, ν)〉 to |ψk〉, |α〉, |β〉, respectively, we find

〈ψk|M̂x|ψk〉 = cos2
(

2k + 1

2
θ

)

〈α|M̂x|α〉+ sin2
(

2k + 1

2
θ

)

〈β|M̂x|β〉+O(1), (53)

〈ψk|M̂2
x |ψk〉 = cos2

(

2k + 1

2
θ

)

〈α|M̂2
x |α〉 + sin2

(

2k + 1

2
θ

)

〈β|M̂2
x |β〉+O(1), (54)

which yield

〈ψk|(∆M̂x)
2|ψk〉 = cos2

(

2k + 1

2
θ

)

〈α|(∆M̂x)
2|α〉 + sin2

(

2k + 1

2
θ

)

〈β|(∆M̂x)
2|β〉

+
1

4
sin2((2k + 1)θ)

(

〈α|M̂x|α〉 − 〈β|M̂x|β〉
)2

+O(L). (55)

As shown in Appendix G, 〈α|M̂x|α〉 = L +O(1) and 〈β|M̂x|β〉 = KL, where K is independent of L and 0 < K < 1.

Hence, for k∗ of Eq. (45), we find 〈ψk∗ |(∆M̂x)
2|ψk∗〉 = O(L2). Therefore, p = 2 for the family Fk∗(H) of Eq. (46).

We have thus proved that the extended conjecture of Sec. III F is correct for Grover’s algorithm.

G. Intermediate values of p

As the quantum computation proceeds (i.e., as k is increased), p increases from 1 for the initial state |ψ0(L)〉 to 2
for |ψk∗(L, ν)〉. In the transient steps, p takes intermediate values between 1 and 2.
Such intermediate values are taken also, e.g., by states of quantum many-body systems at critical points of continu-

ous phase transitions, where two-point correlation functions decay according to power laws as a function of the distance
between two points. Hence, one might expect some universal properties of p, as critical exponents in continuous phase
transitions have.
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For states of quantum computers in the transient steps, however, the intermediate values of p are not universal;
they depend on details such as the nature of the solutions. Since we are not interested in such non-universal values
of p in this paper, we have focused on the universal result, which is directly related to our conjecture, that p = 2 for
the family composed of |ψk∗(L, ν)〉’s.

V. EVOLUTION OF QUANTUM CORRELATIONS IN GROVER’S QUANTUM SEARCH ALGORITHM

As summarized in Sec. II, the index p is calculated from two-point correlations of local operators. For pure states,
p = 2 if they have two-point correlations of Θ(1) between Θ(L2) pairs of sites. [As discussed in Sec. II C, for pure
states such strong two-point correlations imply a strong L-point correlation.] As discussed in Sec. II D, the existence
of such correlations can be detected by the asymptotic behavior (as L→ ∞) of the maximum eigenvalue emax of the
VCM, because, roughly speaking, Lemax is proportional to the number of pairs of sites whose correlation is of Θ(1)
[38].
Although p is simpler and more convenient for stating the conjecture, emax has more detailed information about two-

point correlations. [For example, a state with emax = L has stronger two-point correlations than one with emax = L/10,
whereas both states have p = 2.] It is therefore interesting to study how emax evolves as the computation proceeds
from a small value (corresponding to p = 1) at the initial state to larger values. It describes how two-point correlations
evolves (until a strong L-point correlation develops for p = 2, as discussed in Sec. II C).
In this section, to investigate the evolution of emax, we simulate numerically a quantum computer that performs

Grover’s algorithm. In the simulation, we study more states than those studied in the previous section, where we have
studied |ψk(L, ν)〉 = Ĝk(L, ν)|ψ0(L)〉 (k = 0, 1, 2, · · · , R(L)). In actual quantum computations, the Grover iteration

Ĝ(L, ν) may be realized, e.g., as a series of local and pair-wise operations [4]. Hence, many intermediate states
appear between the computational steps corresponding to |ψk(L, ν)〉 and |ψk+1(L, ν)〉. Although it was sufficient to
investigate |ψk(L, ν)’s for confirming the conjecture, we also study such intermediate states to see more details.
We simulate two cases, M = 1 and M = 2, because these cases are most fundamental. The solution(s) x1 (and x2)

is chosen randomly. We have confirmed that this random choice of a solution(s) makes no significant difference on
the results of the numerical simulations presented below.

A. Formulation of simulation

We explain our simulation for the case of M = 1. Simulation for M = 2 has also been performed similarly.
Since M = 1, we can simply take ν = x1. As in the previous section, we consider the index register composed of L

qubits. The register is initially set to be in the following product state;

|ψinit(L)〉 = |00 · · · 0〉. (56)

Firstly, the HT is performed by successive applications of the Hadamard gate on individual qubits, and the quantum
state evolves into |ψ0(L)〉 of Eq. (33). Then we apply the Grover iteration Ĝ(L, ν), which consists of two HTs, an

oracle operation Ô(L, ν), and a conditional phase shift P̂ (L) [4];

P̂ (L)|x〉 =
{

|00 · · ·0〉 (x = 0),

−|x〉 (x > 0).
(57)

Each HT requires L operations of the Hadamard gate. The oracle Ô(L, ν) requires its own workspace qubits
and computational time. However, since the oracle is not a proper part of the Grover’s algorithm, we simulate the
operation of Ô(L, ν) as a one-step operation, and its workspace is not included in the simulation. The execution of

P̂ (L) requires Ω(L) pairwise unitary operations. For simplicity, however, we simulate P̂ (L) as a one-step operation.
Hence, each Grover iteration is simulated by 2L+ 2 steps of operations.
After application of the Grover iterations R(L) times, the state |ψ0(L)〉 evolves into

ĜR(L)(L, ν)|ψ0(L)〉 = |ψR(L)(L, ν)〉 ≃ |β(L, ν)〉 = |x1〉. (58)

Finally, by observing this state one can obtain the solution x1 with a sufficiently high probability. We do not simulate
this measurement process. The total computational time (steps) TQ(L, ν) in our simulation is thus

TQ(L, ν) = L+ (2L+ 2)R(L) = Θ(L
√
2L) (59)
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for all ν. This is larger than TQ(L, ν) of Sec. IV only by a polynomial factor. For each instance ν, TQ(L, ν) different
states, including |ψk(L, ν)〉’s of Sec. IV, appear during computation.
In our conjecture, we have allowed (i) looking only at a subsystem and (ii) all possible redefinition of local sites. For

the present model of a quantum computer, however, we have confirmed (from the following results and the results of
the previous section) that they are unnecessary. That is, in the present model, we can confirm the extended conjecture
by simply calculating the index p of states of the index register.
To find states with p = 2, we calculate emax(L, ν) of Sec. II D. By plotting the L dependence of emax(L, ν), we can

determine the value of pe through Eq. (19). When states with pe = 2 are found, they have p = 2 because, as discussed
in Sec. II D, if pe = 2 then p = 2 (and vice versa). We will also plot how emax(L, ν) (for fixed L) grows and decays as
the quantum computation proceeds because it is instructive and impressive.

In defining the VCM of Eq. (17), we take b̂α(l) = σ̂α(l) (Pauli operator on site l and α = 1, 2, 3), i.e,

Vlα,l′α′(L, ν) ≡ 〈∆σ̂α(l)∆σ̂α′(l′)〉Lν . (60)

In the following, for the sake of conciseness, we will often denote emax(L, ν), Vlα,l′α′(L, ν), and so on simply by emax,
Vlα,l′α′ , and so on.

B. Results of simulation for M = 1

Figure 1 plots evolution of emax for L = 8, 9, 10, 12, 14 and M = 1, when x1 = 19, 388, 799, 1332, 9875, respectively.
It is seen that on the whole the curves are exponentially expanded along the horizontal axis as L is increased.
Figure 2 is a magnification from the 1st to 40th steps for L = 8, whereas a magnification from the 1005th to 1155th

steps for L = 14 is shown in Fig. 3.
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FIG. 1: The maximum eigenvalue emax of the VCM of quantum states appearing in Grover’s quantum search algorithm for
L = 8, 9, 10, 12, 14 when x1 = 19, 388, 799, 1332, 9875, respectively, as functions of the step of the algorithm. The horizontal
line represents the value of emax for product states, emax = 2.

It is seen that emax = 2.00 for all states from |ψinit〉 to |ψ0〉, i.e., during the initial HT (from the 1st to 8th steps
in Fig. 2, denoted as ‘HT’). This is because all these states are product states, for which we can easily show that
emax = 2 (Appendix H). When the stage of Grover iterations begins, emax grows gradually, as seen from Figs. 1 and 2.

In each Grover iteration, Figs. 2 and 3 show that emax changes when the oracle operator Ô is operated, whereas it is
kept constant during the subsequent HT. Then, it changes again when P̂ is operated, whereas it is kept constant again
during the subsequent HT. As the Grover iterations are repeated, emax (hence, quantum correlation) continues to

increase as a whole, until it takes the maximum value after about R(L)/2 times applications of Ĝ. Further applications
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FIG. 2: A magnification of Fig. 1, from the 1st to 40th steps for L = 8. Here, Ô and P̂ represent the oracle operation and
conditional phase shift, respectively, in a single Grover iteration Ĝ.
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FIG. 3: A magnification of Fig. 1, from the 1005th to 1155th steps for L = 14. Here, Ô and P̂ represent the oracle operation
and conditional phase shift, respectively, in a single Grover iteration Ĝ.

of Ĝ reduce emax, as seen from Fig. 1, toward emax ≃ 2.00 for |ψR(L)〉, which is approximately a product state as seen
from Eq. (58).
These results indicate that our construction of the family of states, Eqs. (45) and (46), is natural. Although we

have already shown in Sec. IV that p = 2 for such a family, it is instructive to plot emax(L, ν) of |ψk∗(L, ν)〉 as a
function of L when the solution x1 is randomly chosen (i.e., an instance ν is randomly chosen) for each L. Figure
4 plots emax’s of |ψ⌈R/2⌉〉, |ψ⌈R/3⌉〉 and |ψ⌈R/4⌉〉 for such randomly-chosen x1 as functions of L. [We have confirmed
that almost identical curves are obtained for other choices of x1 as well.] Since emax’s tend to be proportional to L
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for large L, we can confirm that p = pe = 2.
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FIG. 4: emax’s of |ψ⌈R/2⌉〉 (diamonds), |ψ⌈R/3⌉〉 (crosses) and |ψ⌈R/4⌉〉 (squares), as functions of L. They all show that
p = pe = 2. The dotted lines are the guides to the eyes, whereas the horizontal line represents the value of emax for product
states, emax = 2.

C. Results of simulation for M = 2

When M = 2, the result of Sec. IVE indicates that p = 2 for most states in the Grover iteration processes whereas
p of the final state depends on the nature of the solutions. Figure 5 illustrates this clearly, where we have plotted
evolution of emax for two cases, p = 2 (profile 1) and p = 1 (profile 2) for the final state. For |ψ⌈R/2⌉〉, |ψ⌈R/3⌉〉 and
|ψ⌈R/4⌉〉, on the other hand, we obtain results similar to Fig. 4 for both cases. Hence, p = 2 for these states. This
result visualizes how our extended conjecture holds when M ≥ 2.

VI. DISCUSSIONS AND SUMMARY

We have studied the conjecture that superposition of macroscopically distinct states would be necessary for sig-
nificant speedup of quantum computers over classical computers. This conjecture was previously supported for a
circuit-based quantum computer performing Shor’s factoring algorithm. To treat general algorithms and models, we
have generalized the indices p and q for superposition of macroscopically distinct states. We then generalize the
conjecture in such a way that it is applicable unambiguously to general models if a quantum algorithm achieves an
exponential speedup. We further extend the conjecture to the speedup achieved by Grover’s quantum search algo-
rithm. This extended conjecture is proved to be correct for Grover’s algorithm. Since Grover’s and Shor’s algorithms
are representative ones for unstructured and structured problems, respectively, the present results and the results
of Ref. [21] support strongly the conjecture. To see details, we have also presented, by numerical simulation, how
quantum correlation evolves and the superposition of macroscopically distinct states develops as the computation
proceeds.
Jozsa and Linden previously showed that entanglement over a cluster whose size is larger than O(1) is necessary

for an exponential speedup [18]. For p = 2, on the other hand, entanglement over a cluster whose size is larger than
O(L) is necessary [11, 12]. The present conjecture imposes a stronger condition in this sense.
Moreover, Vidal showed that a necessary condition for an exponential speedup is that the amount of the bipartite

entanglement between one part and the rest of the qubits increases with L [19]. The bipartite entanglement which was
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FIG. 5: The maximum eigenvalue emax of the VCM of quantum states appearing in Grover’s quantum search algorithm for
L = 10 and M = 2, when x1 = 2, x2 = 1023 (profile 1) and when x1 = 511, x2 = 512 (profile 2), as functions of the step of the
algorithm. The horizontal line represents the value of emax for product states, emax = 2.

studied by him is totally different from the entanglement possessed by superposition of macroscopically distinct states.
Therefore, the simultaneous requirement (for speedup over classical computations) of Vidal’s condition and and the
present conjecture is much stronger than the requirement of either one of them. That is, for quantum speedups both
superposition of macroscopically distinct states and a sufficient amount of the bipartite entanglement are necessary.
It is also interesting to explore relation between our results and the problem of time-optimal quantum evolution

[39, 40]. In the latter case the optimal evolution requires large fluctuation of Hamiltonian, while in the former fast
quantum computations require states with large fluctuations of additive operators. This suggests a possible relation
between the quantum speedup and the optimal evolution [40].
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Appendix A: On the restriction that ‖â(l)‖ = 1

Suppose that Â =
∑

l â(l) is an additive operator. In the present paper, we have required that ‖â(l)‖ = 1. To
understand technical details about this, the following examples would be helpful.

ex.1 The operator Â′′
1 ≡

∑

l â(l)/2 is not an additive operator according to the present definition, because the norm

of the local operators is not unity. However, by simply multiplying Â′′
1 by 2, we can obtain an additive operator

Â1 ≡ 2Â′′
1 (= Â). Fluctuations of Â1 and Â′′

1 differ only by a constant factor.

ex.2 The operator Â′′
2 ≡ ∑

l=odd â(l) is not an additive operator according to the present definition, because the
norm of the local operators for even l vanishes. However, this operator has the same fluctuation as the additive
operator Â2 ≡∑l=odd â(l) +

∑

l=even 1̂(l).

ex.3 The operator Â′′
3 ≡∑l

(

1 + (−1)l

2

)

â(l) is not an additive operator according to the present definition. However,

there always exist real numbers α, β(l) such that â3(l) ≡ α
(

1 + (−1)l

2

)

â(l) + β(l)1̂(l) has unit norm for every l.

Then, Â3 ≡∑l â3(l) is an additive operator, and fluctuations of Â3 and Â′′
3 differ only by a constant factor.
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Therefore, operators like Â′′
1 , Â

′′
2 , Â

′′
3 are essentially included (as Â1, Â2, Â3, respectively) when taking maxÂ(L) in

Eq. (5).

The point is that one can modify Â′′
1 , Â

′′
2 , Â

′′
3 in such a way that fluctuations of the modified operators Â1, Â2, Â3

(which are additive operators) have the same order of magnitude as those of Â′′
1 , Â

′′
2 , Â

′′
3 . Note that this modification

is not unique. For example, from Â′′
1 one can also construct an additive operator 2Â′′

1 − â(1)+1̂(1) = 1̂(1)+
∑

l≥2 â(l),

which has the same order of fluctuation as Â1. This non-uniqueness does not cause any difficulty because p and q are
defined by the order of magnitude of fluctuations.

Appendix B: asymptotic notation

Let f(L) and g(L) be non-negative functions of a positive variable L. Following Ref. [4], we use the following
asymptotic notation:

f(L) = O(g(L)) ⇔ f(L) ≤ Kg(L), (B1)

f(L) = Ω(g(L)) ⇔ Jg(L) ≤ f(L), (B2)

f(L) = Θ(g(L)) ⇔ Jg(L) ≤ f(L) ≤ Kg(L), (B3)

as L→ ∞, where J,K are some positive constants.
Let fν(L)’s be non-negative functions, which are labeled by an index ν, of a positive variable L. We consider a

family that consists of these functions, i.e., a family of real values, {fν(L)}L,ν. Assuming that the number of possible
values of ν increases to infinity as L→ ∞, we use the following asymptotic notation:

fν(L) = O(g(L)) ⇔ fν(L) = O(g(L)) for almost every ν, (B4)

fν(L) = Ω(g(L)) ⇔ fν(L) = Ω(g(L)) for almost every ν, (B5)

fν(L) = Θ(g(L)) ⇔ fν(L) = Θ(g(L)) for almost every ν. (B6)

For example, if ν = 1, 2, . . . , 2L for each L and fν(L) = L2(1 + sinL)(1/L + 1/Lν), then fν(L) = Θ(L2), whereas
it is not Θ(L2).

Appendix C: Range of p

In this appendix, we show that 1 ≤ p ≤ 2. As the operator norm ‖â‖, we employ ‖â‖E , defined by Eq. (2), in this

Appendix. Since

〈

(

∆Â(L)
)2
〉

Lν

≤
〈

Â(L)2
〉

Lν
≤ L2, we find that p ≤ 2. To prove that p ≥ 1, we use the following

Lemma;
Lemma: For any state, which can be a mixed state, there always exists an local operator â∗(l) which satisfies

‖â∗(l)‖E = 1 and 〈∆â∗(l)†∆â∗(l)〉 = 1, (C1)

Proof: For a given state ρ̂(L), its local density operator ρ̂l ≡ Trl′( 6=l)ρ̂(L) can be diagonalized as

ρ̂l =
d
∑

j=1

wj(l)|j, l〉〈j, l|,
d
∑

j=1

wj(l) = 1, (C2)

where {|j, l〉}j is a complete orthonormal set of site l. Take

â∗(l) =
∑

j=odd

(|j, l〉〈j + 1, l|+ h.c.) (where 〈d+ 1, l| ≡ 〈1, l|), (C3)

which is a non-Hermitian local operator with ‖â∗(l)‖E = 1. Since Tr [ρ̂(L)â∗(l)] = 0 and

â∗(l)
†â∗(l) =

d
∑

j=1

|j, l〉〈j, l| = 1̂(l), (C4)

we find that 〈∆â∗(l)†∆â∗(l)〉 = 1. �
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Using this Lemma, we now show the following theorem, from which it is obvious that p ≥ 1.
Theorem: For any state, which can be a mixed state, there always exists an additive operator which satisfies

〈∆Â(L)†∆Â(L)〉 ≥ L. (C5)

Proof: We use the induction method. We define

Â(k) ≡
k
∑

l=1

â(l) (‖â(l)‖ = 1), (C6)

for 1 ≤ k ≤ L. When k = 1, the above Lemma shows that there exists Â(1) such that 〈∆Â(1)†∆Â(1)〉 ≥ 1. Now,

assume that there exists Â(k) such that 〈∆Â(k)†∆Â(k)〉 ≥ 1. From the above Lemma, there exists a local operator

â∗(k + 1) on site k + 1 such that ‖â∗(k + 1)‖ = 1 and 〈∆â∗(k + 1)†∆â∗(k + 1)〉 = 1. So, construct Â(k + 1) as

Â(k + 1) = Â(k) + â∗(k + 1). (C7)

Then,

〈∆Â(k + 1)†∆Â(k + 1)〉 = 〈∆Â(k)†∆Â(k)〉+
{

〈∆Â(k)†∆â∗(k + 1)〉+ c.c.
}

+ 1. (C8)

Therefore, if
{

〈∆Â(k)†∆â∗(k + 1)〉+ c.c.
}

≥ 0 then 〈∆Â(k + 1)†∆Â(k + 1)〉 ≥ k + 1. If, on the other hand,
{

〈∆Â(k)†∆â∗(k + 1)〉+ c.c.
}

< 0 then reconstruct Â(k + 1) as

Â(k + 1) = Â(k)− â∗(k + 1). (C9)

This gives 〈∆Â(k + 1)†∆Â(k + 1)〉 ≥ k + 1. �

Appendix D: Simple examples of states with p = 2 and p = 1

To explain why p is useful and necessary, we give a few simple examples of homogeneous states.
For the GHZ or ‘cat’ state, |ψcat(L)〉 ≡ (|00 · · · 0〉 + |11 · · · 1〉)/

√
2, a heuristic discussion would be sufficient to

judge that it contains superposition of macroscopically distinct states, because it is simply superposition of two
macroscopically distinct states and their coefficients do not vanish as L→ ∞.
By contrast, heuristic discussions will be ambiguous for the following state;

|ψdw(L)〉 ≡
1√
L− 1

(|100 · · ·00〉+ |110 · · ·00〉+ |111 · · ·00〉+ · · ·+ |111 · · ·10〉) , (D1)

where ‘DC’ stands for domain wall (see below). This is superposition of L states, each state differs from the preceeding
state only in a single qubit, and the weight of each state vanishes in the L→ 0 limit.
Even for such a state, by using the index p we can easily judge whether superposition of macroscopically distinct

states is contained. In fact, we can show that p = 2 for |ψdw〉, hence it does contain superposition of macroscopically
distinct states. Physically, this state is superposition of single-domain-wall states. That is, let |j; j + 1〉 be the state
which has a domain wall between sites j and j + 1, then

|ψdw(L)〉 =
1√
L− 1

L−1
∑

j=1

|j; j + 1〉 (D2)

Since the domain wall is clearly a macroscopic object, this state contains superposition of macroscopically distinct
states. This can also be understood by rewriting |ψdw〉 as

|ψdw(L)〉 =
1√
L− 1

L/2−1
∑

j=1

|j; j + 1〉+ 1√
L− 1

L−1
∑

j=L/2

|j; j + 1〉, (D3)

=
1√
2
[a state whose domain wall is located in the left half]

+
1√
2
[a state whose domain wall is located in the right half]. (D4)
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The two states in this expression are clearly distinct macroscopically.
On the other hand, the ‘W state’ |ψW(L)〉 ≡ 1√

L
(|100 · · ·0〉+ |010 · · ·0〉+ · · ·+ |000 · · ·1〉) has p = 1, hence it

does not contain superposition of macroscopically distinct states [11, 12]. This is reasonable because the W state
corresponds to normal states in condense-matter physics, such as a Frenkel exciton excited in an insulating solid [21].
Since both the W state and product states have p = 1, they belong to the same class with respect to superposition of

macroscopically distinct states. In contrast, states with p = 2 are extremely abnormal in view of many-body physics,
as discussed in Sec. II C and Ref. [11].
Regarding the index q for mixed states, see Ref. [22] for several examples.

Appendix E: Approach of a pure state with p = 2 to a mixed state as L→ ∞

It was proved rigorously that any pure state with p = 2 in a finite system of size L does not approach pure states in
an infinite system as L→ ∞ [11]. Although this might sound strange to the reader who is not familiar with quantum
theory of infinite systems [30], its physics can be understood as follows.
In quantum theory of finite systems, all possible representations are equivalent (unitary equivalence). In quantum

theory of infinite systems, in contrast, many representations can exist which are not equivalent to each other [30].
Among two or more inequivalent representations, we have to choose one that is suitable for describing the physical
states of interest [30]. This makes the quantum theory of infinite systems much different from that of finite systems.
The above strange fact comes from this great difference.
As the simplest example, consider a cat state |ψ(L)〉 ≡ (|00 · · · 0〉 + |11 · · · 1〉)/

√
2 of size L. If L is finite, there

exist observables that have non-vanishing matrix elements between |00 · · ·0〉 and |11 · · · 1〉. The expectation values
of such observables discriminate between the pure state |ψ(L)〉 and the mixed state ρ(L) ≡ (|00 · · · 0〉〈00 · · · 0| +
|11 · · · 1〉〈11 · · ·1|)/2. If we take the L→ ∞ limit, however, the quantum theory of infinite systems requires that every
observables should be a function of field operators within a finite region in an infinite space [30]. As a result, there
are no observables that have non-vanishing matrix elements between the L → ∞ limits of |00 · · · 0〉 and |11 · · ·1〉.
This implies that limL→∞ |ψ(L)〉 is not a pure state. Here, the rigorous definition of pure states in Ref. [30] are used
instead of the (over)simplified definition ρ̂2 = ρ̂, because the latter can be used only for (an irreducible representation
for) finite systems.
More mathematically speaking, if |ψ(L)〉 has p = 2 then limL→∞ |ψ(L)〉 is not a vector state of an irreducible

representation. For details, see Ref. [11] and references cited therein.

Appendix F: Equivalence of pe = 2 and p = 2

In this appendix, we show that if pe = 2 then p = 2 and vice versa. For simplicity, we will omit ‘ν’ and ‘(L)’, i.e.,

we will abbreviate Â′(L), |ψν(L)〉, Cν(L) and so on to Â′, |ψ〉, C and so on, respectively. We first note that

∥

∥

∥∆Â′|ψ〉
∥

∥

∥

2

=

∥

∥

∥

∥

∥

L
∑

l=1

D
∑

α=1

c′lα∆b̂α(l)|ψ〉
∥

∥

∥

∥

∥

2

≤
[

L
∑

l=1

D
∑

α=1

|c′lα|
2

][

L
∑

l=1

D
∑

α=1

∥

∥

∥∆b̂α(l)|ψ〉
∥

∥

∥

2
]

≤ LO(L), (F1)

from which pe ≤ 2. Here, we have used the inequality
∑

k

∣

∣

∣

∑

j xjyjk

∣

∣

∣

2

≤ ∑

k

∑

j |xj |
2∑

j′ |yj′k|
2

=
∑

j |xj |
2∑

j′
∑

k |yj′k|
2, which holds for arbitrary complex numbers xj , yjk. On the other hand, it is clear from

the definitions that

p ≤ pe. (F2)

Therefore, if p = 2 then pe = 2.
To show the inverse, we assume that pe = 2, i.e., Eq. (22) holds. Without loss of generality, we also assume that

maxl,α |c′lαmax|
2
= |c′11max|2 . It is clear from Eq. (20) that

|c′11max|
2 ≤ L. (F3)

Our purpose is to show that

|c′11max|
2
= O(L0) (F4)
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because it yields C = O(L0), which gives Eq. (25) (implying p = 2). Equation (22) can be rewritten as

D
∑

α,α′=1

c′ ∗1αmaxc
′
1α′ maxV1α,1α′ +





L
∑

l=2

D
∑

α,α′=1

c′ ∗lαmaxc
′
1α′ maxVlα,1α′ + c.c.



 +

L
∑

l,l′=2

D
∑

α,α′=1

c′ ∗lαmaxc
′
l′α′ maxVlα,l′α′ = O(L2)

(F5)
The first term is positive (because the VCM is a non-negative Hermitian matrix) and ≤ O(L). The second term is
estimated as

∣

∣

∣

∣

∣

∣

L
∑

l=2

D
∑

α,α′=1

c′ ∗lαmaxc
′
1α′ maxVlα,1α′

∣

∣

∣

∣

∣

∣

≤ D|c′11max|
∣

∣

∣

∣

∣

L
∑

l=2

D
∑

α=1

c′ ∗lαmax

∣

∣

∣

∣

∣

max
l,α,α′

|Vlα,1α′ |

≤ D|c′11max|
√

D(L − 1)
√
Lmax
l,α,α′

|Vlα,1α′ |

≤ |c′11max|O(L) ≤ O(L3/2), (F6)

where we have used inequality (F3) and |~x · ~1| ≤ |~x||~1| = n|~x|, which holds for an arbitrary n-dimensional vector ~x.
Therefore, the third term of Eq. (F5) should be

L
∑

l,l′=2

D
∑

α,α′=1

c′ ∗lαmaxc
′
l′α′ maxVlα,l′α′ = O(L2). (F7)

On the other hand, let

c′lα ≡ 1
√

1−∑D
α=1 |c′lαmax|2/L

c′lαmax, (F8)

then the following operator, which does not involve an operator on site 1, takes the form of Eq. (15);

∆Â′ ≡
L
∑

l=2

D
∑

α=1

c′lα∆b̂α(l). (F9)

We therefore have, using Eqs. (F6) and (F7),

0 ≤ 〈∆Â′ν†
max∆Â

′ν
max〉Lν − 〈∆Â′ν†∆Â′ν〉Lν

≤
D
∑

α,α′=1

c′ ∗1αmaxc
′
1α′ maxV1α,1α′ +





L
∑

l=2

D
∑

α,α′=1

c′ ∗lαmaxc
′
1α′ maxVlα,1α′ + c.c.





−|c′11max|2
L

L
∑

l,l′=2

D
∑

α,α′=1

c′ ∗lαmaxc
′
l′α′ maxVlα,l′α′

≤ |c′11max|2O(L0) + |c′11max|O(L)− |c′11max|2
L

O(L2)

≤ |c′11max|
[

|c′11max|O(L0) +O(L)− |c′11max|O(L)
]

. (F10)

Therefore, Eq. (F4) should be satisfied because otherwise the last line would become negative in contradiction with
the first line.
For a family of homogeneous states, in particular, p = pe for every value of p, because in this case the VCM has

the translational invariance and thus an eigenvector corresponding to emax is also translational invariant. [Even when
emax is a degenerate eigenvalue, one can construct a translational-invariant eigenvector by taking linear combination of
eigenvectors corresponding to emax.] From Eq. (20), this means C = O(L0) for the additive operator that is composed
of such an eigenvector, and thus p ≥ pe. From inequality (F2), this yields p = pe.

Appendix G: Proof of 〈β|M̂x|β〉 = kL (0 < k < 1) for M = 2mL

In this appendix, we prove 〈β|M̂x|β〉 = KL (0 < K < 1) for M = 2mL where K is independent of L. We use the
following lemma:
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Lemma: There exists a real number K independent of L such that 2(1−m)(1−K)1−KKK > 1 and 1
2 < K < 1.

Proof: Consider the following function;

f(k) = (1−m) log 2 + k log k + (1 − k) log(1− k) (
1

2
≤ k < 1), (G1)

where 0 < m < 1. Since f(12 ) = −m log 2 < 0, f(k) → (1−m) log 2 > 0 (k → 1), and the function f(k) is continuous

at 1
2 ≤ k < 1, we can apply a intermediate-value theorem and therefore there exists a real number K such that

f(K) > 0 and 1/2 < K < 1. �

Now, we prove 〈β|M̂x|β〉 = kL (0 < k < 1) for M = 2mL. Let P (Mx = −L + 2j) be the probability of getting a

value −L+ 2j when one performs the measurement of M̂x where j = 0, 1, · · · , L. It is represented as

P (Mx = −L+ 2j) =
∑

ν

∣

∣〈Mx = −L+ 2j, ν|β〉
∣

∣

2 ≤
(

L

j

)

max
ν

[
∣

∣〈Mx = −L+ 2j, ν|β〉
∣

∣

2
], (G2)

where |Mx = L− j, ν〉 is an eigenstate of M̂x, and ν = 1, 2, · · · ,
(

L
j

)

labels degenerate eigenstates. Since

∣

∣〈Mx = −L+ 2j, ν|β〉
∣

∣ ≤ 1√
M

M
∑

n=1

∣

∣〈Mx = −L+ 2j, ν|xn〉
∣

∣ ≤
√

M

2L
, (G3)

we have, using Stirling’s formula n! ∼
√
2πn(ne )

n,

P (Mx = −L+ 2j) ≤
(

L

j

)

M

2L
∼ 1
√

2πj(1− j
L){2(1−m)(1 − j

L)
1− j

L ( jL )
j

L }L
. (G4)

From the above Lemma, there exists a real number K independent of L such that 2(1−m)(1 − K)1−KKK > 1 and
1
2 < K < 1. Hence,

LnP (Mx = −L+ 2j) → 0 (KL ≤ j ≤ L) as L→ ∞, (G5)

where n is independent of L. This yields

〈β|M̂x|β〉 →
KL−1
∑

j=0

(−L+ 2j)P (Mx = −L+ 2j) (G6)

as L→ ∞, from which we conclude that 〈β|M̂x|β〉 ≤ KL for large L. �

Appendix H: Maximum eigenvalue of the VCM for product states

In this appendix, we show that emax = 2 for a product state, |ψ〉 = ⊗L
l=1 |φl〉l, where |φl〉l denotes a state of the

qubit at site l (= 1, 2, · · · , L). The VCM of such a state is block-diagonal;
















V1 0 · · · · · · 0
0 V2 0 · · · · · ·
... 0 V3 0 · · ·
...

... · · · · · ·
0 · · · · · · 0 VL

















, (H1)

where Vl is a 3× 3 matrix whose αβ element (α, β = x, y, z) is given by

(Vl)αβ = 〈φl|σ̂α(l)σ̂β(l)|φl〉 − 〈φl|σ̂α(l)|φl〉〈φl|σ̂β(l)|φl〉. (H2)

Therefore, emax is given by the maximum one among the maximum eigenvalues of Vl’s. By a unitary transformation
of this 3× 3 matrix such that |φl〉 becomes an eigenstate of the transformed σ̂z(l), we can transform Vl into

Vl =





1 i 0
−i 1 0
0 0 0



 . (H3)
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Since the maximum eigenvalue of this matrix is 2, we find that emax = 2.
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[35] P. Orponen and U. Schöning, Mathematical Foundations of Computer Science 1984 (Springer, Berlin, 1984), pp. 452-458.
[36] S. Even, A. L. Selman and Y. Yacobi, J. Assoc. Comput. Mach. 32, 205 (1985).
[37] R. V. Book and D-Z. Du, J. Assoc. Comput. Mach. 34, 718 (1987).
[38] Strictly speaking, this picture is not necessarily correct because when quantum states are strongly inhomogeneous Lemax is

not necessarily proportional to the number of pairs of sites whose correlation is of Θ(1). Fortunatelly, however, this picture
is good for most instances in our simulations.

[39] A. Carlini et al., Phys. Rev. Lett. 96, 060503 (2006), and references cited therein.
[40] A. Hosoya, private communication.


	I Introduction
	II Indices of superposition of macroscopically distinct states
	A Index for a family of pure states
	B Index for a family of mixed states
	C Properties of states with p=2 or q=2
	D Efficient method of identifying superposition of macroscopically distinct states

	III Conjecture on quantum computation
	A Exponential Speedup
	B Extra qubits and redefinition of local sites
	C Generalized conjecture
	D Physical meaning of the set H
	E Remarks on the conjecture
	F Further extention to Grover's quantum search algorithm

	IV Analytic results for Grover's quantum search algorithm
	A Notation
	B M dependence of degree of speedup
	C Family of states to evaluate q or p
	D When M=1
	E When M= Poly(L)
	F When M=(2mL)
	G Intermediate values of p

	V Evolution of quantum correlations in Grover's quantum search algorithm
	A Formulation of simulation
	B Results of simulation for M=1
	C Results of simulation for M=2

	VI discussions and summary
	 Acknowledgments
	A On the restriction that "026B30D  (l) "026B30D =1
	B asymptotic notation
	C Range of p
	D Simple examples of states with p=2 and p=1
	E Approach of a pure state with p=2 to a mixed state as L 
	F Equivalence of pe=2 and p=2
	G Proof of "426830A | x |"526930B =kL (0<k<1) for M=2mL
	H Maximum eigenvalue of the VCM for product states
	 References

