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I. INTRODUCTION

The quantum mechanical systems could be investigated in the view of two basic points.

One of them is the studying of bound states to handle the necessary information about the

system under consideration. The other point is solving of scattering problem for a given

quantum mechanical system under the effect of a potential. So, one has to study both of

bound states and scattering states of a quantum mechanical system under consideration to

achieve a complete information about it. Some efforts have been made about the scattering

problem for a relativistic and/or non-relativistic system under the influence of different types

of potentials, such as Manning-Rosen potential [1, 2], Eckart potential [3, 4], Pöschl-Teller

potential [5], Hulthén potential [6], Woods-Saxon potential [7-9], cusp potential [10], and

Coulomb potential [11]. The scattering problem in the case where the mass depends on spa-

tially coordinate has become a particular part of that problem, and has been received great

attention to study of scattering states for a given quantum system [12-15]. The position-

dependent mass formalism is a useful ground to explain the electronic properties of quantum

wells and quantum dots [16], semiconductor heterostructures [17], and impurities in crystals

[18-20].

In this paper, we solve the following one-dimensional Schrödinger equation (h̄ = 1)

{

d2

dx2
− dm(x)/dx

m(x)

d

dx
+ 2m(x)[E − V (x)]

}

ψ(x) = 0 , (1)

obtained from the Hamiltonian [14]

H =
1

2

(

p̂
1

m
p̂

)

+ V . (2)

for the Woods-Saxon potential to study the scattering states within the framework of

position-dependent mass formalism. The effective-mass Schrödinger equation could be trans-

formed into Heun’s equation [21] which is a Fuchsian-type equation with four singularities

[14] by using a coordinate transformation. We obtain the wave function in terms of Heun’s

function and then we find transmission and reflection coefficients by studying the asymp-

totic behavior of the wave function at infinity. We write also the transmission and reflection

coefficients for the case of constant mass by using the properties of Heun’s function and also

the continuity conditions of the wave function at x = 0. We find the wave function for the

case of constant mass in terms of hypergeometric functions and plot the wave functions for
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completeness. In nuclear physics, the Woods-Saxon potential is used to construct a shell

model to describe the single-particle motion in a fusing system [22] and the potential plays

an important role within the microscopic physics because of describing the interaction of a

nucleon with a heavy nucleus [23].

The work is organized as follows. In Section II we obtain exactly scattering state solutions

of the Woods-Saxon potential and transmission and reflection coefficients in the case of

position-dependent mass. We study also the same quantities in the case of constant mass.

The conclusions are given in Section III. In Appendix A we list some equalities related with

Heun’s function required for this work.

II. SCATTERING STATE SOLUTIONS

The Woods-Saxon potential has the form

V (x) = − V0
1 + e δx

, (3)

and we parameterize the mass function as

m(x) = (m0 −m1)
(

M − 1

1 + e δx

)

, (4)

where M = (m0 +m1)/(m0 −m1) and V0, δ,m0 and m1 are positive parameters. The form

of the mass function is strongly similar to that of the potential. We could exactly solve the

problem because of this form and also study the results for the case of constant mass. By

using the transformation y = (1 + e δx)−1 and inserting Eq.(4) and Eq.(3) into Eq.(1), we

obtain the differential equation (0 < y < 1)

ψ′′(y) +

(

1

y
+

1

y − 1
− 1

y −M

)

ψ′(y)

+
1

y(y − 1)(y −M)

{

− a21y −
a22
y
M +

a23
y − 1

(M − 1) +Ma21 + a22 − a23
}

ψ(y) = 0 , (5)

where

a21 = (2/δ2)(m0 −m1)V0 ; −a22 = (2/δ2)(m0 +m1)E ; −a23 = (4/δ2)m1(E + V0) . (6)

To obtain a Fuchsian-type differential equation from Eq. (5), we use a new transformation

ψ(y) = ya2(y − 1)a3f(y) , (7)
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which gives a Heun’s-type equation given as in Eq. (A1) in Appendix A

f ′′(y) +

(

1 + 2a2
y

+
1 + 2a3
y − 1

− 1

y −M

)

f ′(y)

+
1

y(y − 1)(y −M)

{

[−a21 + (a2 + a3)
2]y − [−a21 + (a2 + a3)(1 + a2 + a3)]M + a2

}

f(y) = 0 .

(8)

The general solution of Eq. (8), which is regular in the neighborhood of y = 0, is written in

terms of the Heun’s function as [14]

f(y) = AH(M,−[−a21 + (a2 + a3)(1 + a2 + a3)]M + a2; a2 + a3 − a1,

a2 + a3 + a1, 1 + 2a2,−1; y) , (9)

where the constant A will be determined below.

Let us first investigate the limit x→ ∞
(

y ≃ e−δx → 0
)

, which gives f(0) = A in Eq. (9)

and the solution ψ(y) → Ay a2 = Ae−δa2x becomes

ψ(x) = Ae−ik1x , (10)

where k1 =
√

2(m0 +m1)E and we have used the property of H(a, b;α, β, γ, δ; 0) = 1.

To study the behavior of the solution Eq. (9) for x → −∞(y → 1), 1 − y ≃ eδx, we use

Eq. (A5) of Appendix A, which changes the argument y to 1 − y. Thus, we obtain the

Heun’s function in Eq. (9) as

H(M,−[−a21 + (a2 + a3)(1 + a2 + a3)]M + a2; a2 + a3 − a1, a2 + a3 + a1, 1 + 2a2,−1; y) =

D1H(1−M, [−a21 + (a2 + a3)(1 + a2 + a3)]M + a21 − (a2 + a3)
2 − a2;

a2 + a3 − a1, a2 + a3 + a1, 1 + 2a3,−1; 1− y) +D2(1− y)−2a3

×H(1−M, [−a21 + (a2 − a3)(1 + a2 − a3)]M + a21 − (a2 − a3)
2 − a2;

a2 − a3 + a1, a2 − a3 − a1, 1− 2a3,−1; 1− y) , (11)

where the constants D1 and D2 are written by using Eq. (A6) in Appendix A

D1 = H(M,−[−a21 + (a2 + a3)(1 + a2 + a3)]M + a2;

a2 + a3 − a1, a2 + a3 + a1, 1 + 2a2,−1; 1) , (12)

D2 = H(M,−[−a21 + (a2 − a3)(1 + a2 − a3)]M + a2;

a2 − a3 + a1, a2 − a3 − a1, 1 + 2a2,−1; 1) . (13)
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Using Eq. (11) we obtain the solution in Eq. (9) as

ψ(y) → A(−1)a3{D1e
δa3x +D2e

−δa3x} , (14)

which gives

ψ(x) = eik2x +
D2

D1
e−ik2x , (15)

where k2 =
√

4m1(E + V0) and we set A = (−1)−a3/D1. Thus, we achieve the following

form of the wave function for the limit x→ ±∞

ψ(x) =







eik2x +Re−ik2x , x→ −∞ ,

T ′eik1x , x→ +∞ ,
(16)

As a result, we recover the asymptotic behavior of a plane wave coming from the left-hand

side.

We can write the wave function explicitly

ψ(x) = (−1)2a3(1 + eδx)−(a2+a3)eδa3x

×
H(M, b+ a2; a2 + a3 − a1, a2 + a3 + a1, 1 + 2a2,−1; 1

1+eδx
)

H(M, b+ a2; a2 + a3 − a1, a2 + a3 + a1, 1 + 2a2,−1; 1)
, (17)

where b = −[−a21+(a2+a3)(1+a2+a3)]M . Finally, we give the reflection and transmission

coefficients for the case of position-dependent mass, respectively

|R|2 =
∣

∣

∣

∣

H(M, b′ + a2; a2 − a3 + a1, a2 − a3 − a1, 1 + 2a2,−1; 1)

H(M, b+ a2; a2 + a3 − a1, a2 + a3 + a1, 1 + 2a2,−1; 1)

∣

∣

∣

∣

2

, (18)

where b′ = −[−a21 + (a2 − a3)(1 + a2 − a3)]M , and

|T |2 = k1
k2

1

|H(M, b+ a2; a2 + a3 − a1, a2 + a3 + a1, 1 + 2a2,−1; 1)|2
. (19)

In order to investigate the dependence of the reflection coefficient to the energy E, we

rewrite Eq. (18) in the following form by interchanging α ↔ β in Heun’s function

|R|2 =

∣

∣

∣

∣

H(M, b′ + a2; a2 − a3 + a1, a2 − a3 − a1, 1 + 2a2,−1; 1)

H(M, b+ a2; a2 + a3 + a1, a2 + a3 − a1, 1 + 2a2,−1; 1)

∣

∣

∣

∣

×
∣

∣

∣

∣

H(M, b′ + a2; a2 − a3 − a1, a2 − a3 + a1, 1 + 2a2,−1; 1)

H(M, b+ a2; a2 + a3 − a1, a2 + a3 + a1, 1 + 2a2,−1; 1)

∣

∣

∣

∣

, (20)
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By using Eq. (A7) in Appendix A and keeping in mind that a21 = a22/M − a23/(M − 1), Eq.

(20) gives

|R|2 =
[(M − 1)a2 +Ma3]

2

[(M − 1)a2 −Ma3]2

×
∣

∣

∣

∣

H(M, b′ + a3 − a1; a2 − a3 + a1, a2 − a3 − a1 + 1, 2 + 2a2, 0; 1)

H(M, b− a3 − a1; a2 + a3 + a1, a2 + a3 − a1 + 1, 2 + 2a2, 0; 1)

∣

∣

∣

∣

×
∣

∣

∣

∣

H(M, b′ + a3 + a1; a2 − a3 − a1, a2 − a3 + a1 + 1, 2 + 2a2, 0; 1)

H(M, b− a3 + a1; a2 + a3 − a1, a2 + a3 + a1 + 1, 2 + 2a2, 0; 1)

∣

∣

∣

∣

, (21)

This equation enables us to analyze the dependence of reflection coefficient to the energy E

when the energy goes to infinity. In this case, Eq. (21) gives

|R|2 = E→∞

(√
2m1 −√

m0 +m1√
2m1 +

√
m0 +m1

)2 ∣
∣

∣

∣

H(M,−M(a2 − a3)
2; a2 − a3, a2 − a3, 2a2, 0; 1)

H(M,−M(a2 + a3)2; a2 + a3, a2 + a3, 2a2, 0; 1)

∣

∣

∣

∣

2

,

(22)

Using the equality H(a, b;α, β, γ, 0; y) = 2F1(α, β; γ; y) (for b = −aαβ) [14] and also

2F1(α, α; γ; 1) →α,γ→∞ e α2/γ , we obtain

|R|2 = E→∞

(√
2m1 −√

m0 +m1√
2m1 +

√
m0 +m1

)2

. (23)

Eq. (23) shows that the reflection coefficient increases up to the value obtained in Eq. (23)

while changing with energy. Fig. (1) shows the variation of the reflection and transmission

coefficients as a function of the energy E in the position dependent mass case. In Fig. (2),

the effect of the mass parameters m0 and m1 on the reflection and transmission coefficients

are given. It is seen that the reflection coefficient decreases linearly with mass parameters

while the transmission coefficient increases with the growing values of the parameters. In

the Figs. (1) and (2), It could be seen that the unitarity condition |R|2+ |T |2 = 1 is satisfied

in the constant and position dependent nass cases. In Fig. (2), we see that the reflection

coefficient can not take zero value for the case of E < V0 which is agreed with quantum

mechanical results.

Now, we begin to give the results for the case of constant mass, which means that m0 =

m1, starting from the wave function. With the help of Eq. (A8) in Appendix A, we write

the wave function

ψ(x)m0=m1
= (−1)2a3(1 + eδx)−(a2+a3)eδa3x

× 2F1(1 + a2 + a3, a2 + a3; 1 + 2a2;
1

1+eδx
)

2F1(1 + a2 + a3, a2 + a3; 1 + 2a2; 1)
, (24)
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which can be written in terms of Gamma functions

ψ(x)m0=m1
= (−1)2a3(1 + eδx)−(a2+a3)eδa3x

Γ(a2 − a3)Γ(1 + a2 − a3)

Γ(1 + 2a2)Γ(−2a3)

× 2F1(1 + a2 + a3, a2 + a3; 1 + 2a2;
1

1 + eδx
) . (25)

where used the relation of hypergeometric function 2F1(α, β; γ; 1) =
Γ(γ)Γ(γ−α−β)
Γ(γ−α)Γ(γ−β)

. The pa-

rameters given in Eq. (6) in the case of constant mass become (m0 = m1 = m)

− a22 = (4/δ2)mE ; −a23 = (4/δ2)m(E + V0) . (26)

We depict the wave function for two different values of parameter sets in Fig. (3). It is

seen that the wave function exhibit an oscillatory behaviour for x < 0 and exponentially

decreasing in the region x > 0. The oscillating behaviour of the wave function given in Eq.

(16) for x < 0 is a purely quantum mechanical interference effect between the incident and

reflected waves [23]. The wave function in the region x > 0 goes to zero due to the potential

given in Eq. (3).

We give the reflection and transmission coefficients for the case of constant mass. Using

Eq. (A8) in Appendix A and the relation 2F1(α, β; γ; 1) = Γ(γ)Γ(γ−α−β)
Γ(γ−α)Γ(γ−β)

in Eq. (18), we

obtain

|R|2m0=m1
=

∣

∣

∣

∣

2F1(a2 − a3 + 1, a2 − a3; 1 + 2a2; 1)

2F1(a2 + a3 + 1, a2 + a3; 1 + 2a2; 1)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

Γ(2a3)Γ(a2 − a3)Γ(a2 − a3 + 1)

Γ(−2a3)Γ(a2 + a3)Γ(a2 + a3 + 1)

∣

∣

∣

∣

2

,

(27)

and similarly from Eq. (19)

|T |2m0=m1
=
k1
k2

1

| 2F1(a2 + a3 + 1, a2 + a3; 1 + 2a2; 1)|2
=
k1
k2

∣

∣

∣

∣

Γ(a2 − a3)Γ(a2 − a3 + 1)

Γ(1 + 2a2)Γ(−2a3)

∣

∣

∣

∣

2

.

(28)

It should be noted that we must apply the continuity condition to obtain a relation

between the coefficients written in Eq. (16). The condition that the wave function and its

derivative must be continuous at x = 0 gives k2(1− |R|2) = k1|T ′|2 [24, 25]. In Fig. (4), we

plot the variation of the reflection and transmission coefficients according to the energy E in

the case of constant mass. The reflection coefficient goes to zero when the energy increases

while the transmission coefficient goes to unity. It could be interesting to study the limiting

case of δ → ∞. In that case the potential function becomes V (x) → 0 and the mass function

7



goes to 2m. It means that the reflection and transmission can not appear (Eqs. (27) and

(28)) as expected. In addition, in the limiting case δ → −∞ we obtain a step potential from

Eq. (3) and Eq. (4) gives us m(x) → 2m. Thus, we get the reflection coefficient as

|R|2m0=m1
=δ→−∞

∣

∣

∣

∣

a2 − a3
a2 + a3

∣

∣

∣

∣

2

=δ→−∞

(

k1 − k2
k1 + k2

)2

. (29)

where k1 =
√
4mE and k2 =

√

4m(E + V0).

III. CONCLUSION

We have exactly solved the one-dimensional effective mass Schrödinger equation for the

Woods-Saxon potential. We have found the wave functions in terms of Heun’s function. The

reflection and transmission coefficients are calculated by using the asymptotic behaviour of

the wave function at infinity. To analyze these coefficients in the case of position-dependent

mass, we calculate the reflection coefficient in the limit E → ∞. They are plotted as a

function of mass parameters in Fig. (2). One can see that the unitarity condition in the

scattering problem given as |R|2 + |T |2 = 1 is satisfied in the position dependent mass case

also. We have also obtained the wave function, reflection and transmission coefficients in

the constant mass case. They are presented in the Figs. (3) and (4).

IV. ACKNOWLEDGMENTS

This research was partially supported by the Scientific and Technical Research Council

of Turkey. The authors would like to thank the referee whose comments help us to improve

this work.

Appendix A: Useful Equalities of Heun’s Function

Heun’s equation with the following form
{

d2

dy2
+

(

γ

y
+

1 + α + β − γ − δ

y − 1
− δ

y − a

)

d

dy
+

αβy + b

y(y − 1)(y − a)

}

f(y) = 0 , (A1)

has a solution in the neighborhood of y = 0

f(y) = H(a, b;α, β, γ, δ; y) , (A2)
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and two linearly independent solutions in the neighborhood of y = 1 [14]

f(y) = H(1− a,−b− αβ;α, β, 1 + α + β − γ − δ, δ; 1− y) , (A3)

and

f(y) = (1− y)γ+δ−α−βH(1− a,−b− αβ − (γ + δ − α− β)(γ + δ − aγ); γ + δ − α,

γ + δ − β, 1− α− β + γ + δ, δ; 1− y) , (A4)

The solution in the neighborhood of y = 0 can be written as a linear combination of last

two Heun’s functions [14]

H(a, b;α, β, γ, δ; y) = D1H(1− a,−b− αβ;α, β, 1 + α + β − γ − δ, δ; 1− y)

+ D2(1− y)γ+δ−α−β

× H(1− a,−b− αβ − (γ + δ − α− β)(γ + δ − aγ);

γ + δ − α, γ + δ − β, 1− α− β + γ + δ, δ; 1− y) , (A5)

where the constants are given

D1 = H(a, b;α, β, γ, δ; 1) ,

D2 = H(a, b− aγ(γ + δ − α− β); γ + δ − α, γ + δ − β, γ, δ; 1) . (A6)

The following identity links the arguments (β, γ, δ) to (β + 1, γ + 1, δ + 1), respectively,

(γaβ + b)H(a, b− α;α, β + 1, γ + 1, δ + 1; y)

= aγH(a, b;α, β, γ, δ; y) + aγ(y − 1)
d

dy
H(a, b;α, β, γ, δ; y) . (A7)

Finally, in the limit of a→ ∞, Heun’s function turns into a hypergeometric function [14]

H(a, a∆;α, β, γ, δ; y) =a→∞ 2F1

(

1

2
(α + β − δ) +

√

[
1

2
(α+ β − δ)]2 +∆ ,

1

2
(α + β − δ)−

√

[
1

2
(α + β − δ)]2 +∆ ; γ; y

)

. (A8)

with γ 6= −n(n = 0, 1, 2, ...).
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FIG. 1: The reflection and transmission coefficients in the case of position-dependent mass

for m0 = 0.1, m1 = 10, δ = 5, V0 = 5.
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(a) reflection and transmission coefficients for m1 = 0.01, δ = 3, V0 = 1 and E = 0.05.
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(b) reflection and transmission coefficients for m0 = 1, δ = 5, V0 = 1 and E = 0.1 .

FIG. 2: Reflection and transmission coefficients in the case of position-dependent mass.
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FIG. 3: The unnormalized wave functions in the case of constant mass for

m = 1, δ = 2, V0 = 0.5, E = −m/10 (solid line) and for m = 2, δ = 2, V0 = 0.5, E = −m/10.
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(a) reflection and transmission coefficients for m = 0.5, δ = 5, V0 = 1.
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(b) reflection and transmission coefficients for m = 1, δ = 5, V0 = 1.

FIG. 4: Reflection and transmission coefficients in the case of constant mass.
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